CS 775: Advanced Computer Graphics
Lecture 4: Skinning
Character Animation

- Skinning

http://www.okino.com/conv/skinning.htm
Character Animation

- Skinning
 - Binding
Character Animation

- Skinning
 - Binding
 - Always done in a standard rest or *bind* pose.
Character Animation

- Skinning
 - Binding
 - Always done in a standard rest or bind pose.
 - Associate all skin mesh vertices to some skeleton joint(s).
Character Animation

- **Skinning**
 - Moving the skin vertices when the skeleton is moved.
 - Blending the various parts of the mesh.

http://www.okino.com/conv/skinning.htm
Character Animation

• Skinning
 - The skin is a (polygonal) mesh.
 - A mesh is a collection of connected (polygonal) primitives.

http://udn.epicgames.com/Three/UT3CustomCharacters.html
Character Animation

- Skinning
 - Binding
 - The skin mesh is defined in some local frame.
Character Animation

- Skinning
 - Binding
 - The skin mesh is defined in some local frame.
 - The skeleton joints are defined in their own local frames.
 - Let the transformation between any local frame \{ j\} of the skeleton and the local frame of the skin be given by:

\[B_j \]
Character Animation

- Skinning
 - Binding
 - The skin mesh is defined in some local frame.
 - The skeleton joints are defined in their own local frames.
 - Let the transformation between any local frame \{ j \} of the skeleton and the local frame of the skin be given by:
 \[B_j \]

- Binding Matrix
 - or Bind Pose Matrix
Character Animation

- Skinning
 - Binding
 - Associate a group of vertices to a single skeleton link
 - Every vertex of the mesh that is associated to the link \{ j\} is initially given, in the *bind* pose, in local skin space as \(v_k \)
Character Animation

- Skinning
 - Binding
 - Every vertex of the mesh that is associated to the link \{ j\} is initially given, in the *bind* pose, in local skin space as \(v_k \).
 - Binding expresses each skin vertex in the global frame as:
 \[
 0v_k = T_j \cdot B_j^{-1} \cdot v_k
 \]
Character Animation

- Skinning
 - Deforming the mesh
 - When the skeleton links move, T_j changes.
Character Animation

- Skinning
 - Deforming the mesh
 - But the relative position of the vertex in the local joint frame does not change.

\[
{0}v_k = T_j \cdot B_j^{-1} \cdot v_k
\]
Character Animation

- Skinning
 - Deforming the mesh
 - This is known as **Rigid** or Simple skinning.

\[
\mathbf{v}_k = \mathbf{T}_j \mathbf{v}_0
\]
Character Animation

- Skinning
 - Rigid Skinning
 - Simple but low quality skinning.
 - Large distortions happen at bends.
Character Animation

● Skinning
 - Linear Blend Skinning
 • Vertex Blend Skinning, Skeletal Subspace deformation
 • Associate multiple joints with vertices and blend the effect of each joint on the vertex using weights.

\[v_k^0 = \sum_i w_{i,k} T_i B_i^{-1} v_k \]
Character Animation

- Skinning
 - Linear Blend Skinning
 - Associate multiple joints with vertices and blend the effect of each joint on the vertex using weights.

\[
0v_k = \sum_i w_{i,k} B_i^{-1} v_k
\]

For every \(k \), \(\sum_i w_{i,k} = 1 \) and \(0 < w_{i,k} \leq 1 \)

Here \(i \) is the index over all joints associated with the vertex \(v_k \)
Character Animation

• Skinning
 – Linear Blend Skinning
• Deforming the mesh

\[0v_k = \sum_i w_{i,k} T_i B_i^{-1} v_k = \sum_i w_{i,k} M_i v_k \]
Character Animation

- Skinning
 - Linear Blend Skinning
- Mesh normals

\[
0 n_k = \frac{\sum_i w_{i,k} N_i n_k}{\|\sum_i w_{i,k} N_i n_k\|} \\
\]

where \(N_i \) is the first 3x3 submatrix of \(M_i \)

Here we have a \(N_i \) that is rigid. What if it was an Affine transformation?
Character Animation

• Skinning
 - Algorithm
 • Skin::Update()
 - Compute $M_i = T_i B_i^{-1}$ for each joint. B_i^{-1} can be precomputed and stored.
 - Loop through the vertices and blend positions and normals.
 • Skin::Draw()
 - Set matrix state to Identity
 - Loop through skin polygons and draw using global vertex positions and normals

Why separate the two?
Character Animation

- Skinning
 - Algorithm
 - Skin::Update() (*view independent processing*)
 - Compute $M_i = T_i B_i^{-1}$ for each joint. B_i^{-1} can be precomputed and stored.
 - Loop through the vertices and blend positions and normals.
 - Skin::Draw() (*view dependent processing*)
 - Set matrix state to Identity
 - Loop through skin polygons and draw using global vertex positions and normals
Character Animation

- Skinning
 - Limitations of Vertex Blend Skinning
- Skin collapse - Bending

Figure 1: The skeleton subspace deformation algorithm. The deformed position of a point p lies on the line $p'p''$ defined by the images of that point rigidly transformed by the neighboring skeletal coordinate frames, resulting in the characteristic ‘collapsing elbow’ problem (solid line).
Character Animation

- Skinning
 - Limitations of Vertex Blend Skinning
 - Skin collapse – Twisting (Candy Wrapper effect)
Character Animation

- Skinning
 - Limitations of Vertex Blend Skinning
 - Skin collapse
 - A quick solution used to prevent collapse during bending is to dynamically add more bones.

Was done in many games but does not solve the problem completely.
Character Animation

- Skinning
 - Limitations of Vertex Blend Skinning
 - Skin collapse
 - A better solution is to use dual quaternions

Geometric Skinning with Approximate Dual Quaternion Blending, Kavan Collins, Zara and O'Sullivan, ACM TOG 2008
Character Animation

- Skinning
 - Limitations of Vertex Blend Skinning
- Skin Binding
 - Containment Binding
Character Animation

- Skinning
 - Limitations of Vertex Blend Skinning
- Skin Binding
 - Containment Binding
 - Point-to-line Mapping
 - Manual (combined with adding weights)
Character Animation

● Skinning
 - Limitations of Vertex Blend Skinning
 • Indirect control via weights is non-intuitive
 - Weights are added either via simple heuristic rules like
 \[w_{i,k} \propto \frac{1}{d_{i,k}} \]
 where \(d_{i,k} \) is the distance from the skin vertex \(v_k \) to the skeleton joint \(i \)
 - Added manually
 - Demo/Video
Character Animation

- Skinning
 - Limitations of Vertex Blend Skinning
 - Skin collapse
 - Skin Binding is difficult
 - Indirect control via weights is non-intuitive
 - No anatomical basis
 - Advantages
 - It is simple to do and so is very widely used
 - Good starting point for more complex skinning
 - Implementation on hardware is easy