Character Animation

- Skinning

http://www.okino.com/conv/skinning.htm
Character Animation

- Skinning
 - Binding
Character Animation

- Skinning
 - Binding
 - Always done in a standard rest or *bind* pose.
Character Animation

- Skinning
 - Binding
 - Always done in a standard rest or bind pose.
 - Associate all skin mesh vertices to some skeleton joint(s).
Character Animation

- Skinning
 - Moving the skin vertices when the skeleton is moved.
 - Blending the various parts of the mesh.

http://www.okino.com/conv/skinning.htm
Character Animation

- Skinning
 - The skin is a (polygonal) mesh.
 - A mesh is a collection of connected (polygonal) primitives.

http://udn.epicgames.com/Three/UT3CustomCharacters.html
Character Animation

- Skinning
 - Binding
 - The skin mesh is defined in some local frame.
Character Animation

- Skinning
 - Binding
 - The skin mesh is defined in some local frame.
 - The skeleton joints are defined in their own local frames.
 - Let the transformation between any local frame \(\{ j \} \) of the skeleton and the local frame of the skin be given by:

\[
B_j
\]
Character Animation

- Skinning
 - Binding
 - The skin mesh is defined in some local frame.
 - The skeleton joints are defined in their own local frames.
 - Let the transformation between any local frame \{ j \} of the skeleton and the local frame of the skin be given by:

\[
B_j
\]
Character Animation

- Skinning
 - Binding
 - Associate a group of vertices to a single skeleton link
 - Every vertex of the mesh that is associated to the link \{ j\} is initially given, in the bind pose, in local skin space as \(v_k \)
Character Animation

- Skinning
 - Binding
 - Every vertex of the mesh that is associated to the link \{ j\} is initially given, in the *bind* pose, in local skin space as \(v_k \).
 - Binding expresses each skin vertex in the global frame as:
 \[
 ^0v_k = T_j \cdot B_j^{-1} \cdot v_k
 \]
Character Animation

- Skinning
 - Deforming the mesh
 - When the skeleton links move, T_j changes.
Character Animation

- Skinning
 - Deforming the mesh

But the relative position of the vertex in the local joint frame does not change.

The new position of skin mesh vertex in global coordinates for the deformed skin is also given by:

\[v_k^0 = T_j \cdot B_j^{-1} \cdot v_k \]
Character Animation

- Skinning
 - Deforming the mesh
 - This is known as **Rigid** or Simple skinning.
Character Animation

- Skinning
 - Rigid Skinning
 - Simple but low quality skinning.
 - Large distortions happen at bends.
Character Animation

- Skinning
 - Linear Blend Skinning
 - Vertex Blend Skinning, Skeletal Subspace deformation
 - Associate multiple joints with vertices and blend the effect of each joint on the vertex using weights.

\[
0v_k = \sum_i w_{i,k} T_i B_i^{-1} v_k
\]
Character Animation

- Skinning
 - Linear Blend Skinning
 - Associate multiple joints with vertices and blend the effect of each joint on the vertex using weights.

\[
0v_k = \sum_i w_{i,k} T_i B_i^{-1} v_k
\]

- For every \(k \), \(\sum_i w_{i,k} = 1 \) and \(0 < w_{i,k} \leq 1 \)

Here \(i \) is the index over all joints associated with the vertex \(v_k \)
Character Animation

- Skinning
 - Linear Blend Skinning
- Deforming the mesh

$$0v_k = \sum_i w_{i,k} T_i B_i^{-1} v_k$$

$$= \sum_i w_{i,k} M_i v_k$$
Character Animation

- Skinning
 - Linear Blend Skinning
- Mesh normals

\[
0_n_k = \frac{\sum w_{i,k} N_i n_k}{\| \sum w_{i,k} N_i n_k \|}
\]

where \(N_i \) is the first 3x3 submatrix of \(M_i \)

Here we have \(N_i \) that is rigid. What if it was an Affine transformation?
Character Animation

- Skinning
 - Algorithm
 - Skin::Update()
 - Compute $M_i = T_i B_i^{-1}$ for each joint. B_i^{-1} can be precomputed and stored.
 - Loop through the vertices and blend positions and normals.
 - Skin::Draw()
 - Set matrix state to Identity
 - Loop through skin polygons and draw using global vertex positions and normals

Why separate the two?
Character Animation

• Skinning
 - Algorithm
 • Skin::Update() (*view independent processing*)
 - Compute $M_i = T_i B_i^{-1}$ for each joint. B_i^{-1} can be precomputed and stored.
 - Loop through the vertices and blend positions and normals.
 • Skin::Draw() (*view dependent processing*)
 - Set matrix state to Identity
 - Loop through skin polygons and draw using global vertex positions and normals
Character Animation

- Skinning
 - Limitations of Vertex Blend Skinning
- Skin collapse - Bending

Figure 1: The skeleton subspace deformation algorithm. The deformed position of a point p lies on the line $p'p''$ defined by the images of that point rigidly transformed by the neighboring skeletal coordinate frames, resulting in the characteristic ‘collapsing elbow’ problem (solid line).

Pose Space Deformation: A Unified Approach to Shape Interpolation and Skeleton-Driven Deformation, Lewis, Cordner and Fong, SIGGRAPH 2000
Character Animation

- Skinning
 - Limitations of Vertex Blend Skinning
 - Skin collapse – Twisting (Candy Wrapper effect)

Pose Space Deformation: A Unified Approach to Shape Interpolation and Skeleton-Driven Deformation, Lewis, Cordner and Fong, SIGGRAPH 2000
Character Animation

• Skinning
 – Limitations of Vertex Blend Skinning
 • Skin collapse
 – A quick solution used to prevent collapse during bending is to dynamically add more bones

Was done in many games but does not solve the problem completely.
Character Animation

- **Skinning**
 - Limitations of Vertex Blend Skinning
 - Skin collapse
 - A better solution is to use dual quaternions

Geometric Skinning with Approximate Dual Quaternion Blending, Kavan Collins, Zara and O’Sullivan, ACMTOG 2008
Character Animation

- Skinning
 - Limitations of Vertex Blend Skinning
- Skin Binding
 - Containment Binding
Character Animation

- Skinning
 - Limitations of Vertex Blend Skinning
- Skin Binding
 - Containment Binding
 - Point-to-line Mapping
 - Manual (combined with adding weights)
Character Animation

• Skinning
 – Limitations of Vertex Blend Skinning
 • Indirect control via weights is non-intuitive
 – Weights are added either via simple heuristic rules like
 \[w_{i,k} \propto \frac{1}{d_{i,k}} \]
 where \(d_{i,k} \) is the distance from the skin vertex \(v_k \) to the skeleton joint \(i \)
 – Added manually
 – Demo/Video
Character Animation

• Skinning
 - Limitations of Vertex Blend Skinning
 • Skin collapse
 • Skin Binding is difficult
 • Indirect control via weights is non-intuitive
 • No anatomical basis
 - Advantages
 • It is simple to do and so is very widely used
 • Good starting point for more complex skinning
 • Implementation on hardware is easy