Taxonomy

- **Planar Projections**
 - Parallel: Orthographic, Axonometric, Oblique
 - Perspective: One Point, Two Point, Three Point

- **Viewing Projections**
 - Front, Top, Side

- **Planar Projections**
 - One Point, Two Point, Three Point

The Modeling-Viewing Pipeline

1. **Object Coordinates**
2. **World Coordinates**
3. **View Coordinates**
4. **Clip Coordinates**
5. **Normalized Device Coordinates**
6. **Device Coordinates**

Viewing Transformation

Given:
1. In the World Coordinate System (WCS):
 a) Position of the Eye (E)
 b) The lookat point (A)
 c) The up vector, \(\mathbf{v}_{up} \)

Defining the VCS

Given:
1. In the View Coordinate System (VCS):
 a) The distance of near and far clipping planes.
 b) Extents of the near plane L, R, T, B.

\[
\mathbf{v}_{up} = \mathbf{v}_{up} \times \mathbf{n} \parallel \mathbf{v}_{up} \times \mathbf{n} \parallel
\]

\[
\mathbf{n} = \frac{-(A - E)}{\|A - E\|}
\]

\[
\mathbf{u} = \frac{\mathbf{v}_{up} \times \mathbf{n}}{\|\mathbf{v}_{up} \times \mathbf{n}\|}
\]
From WCS to VCS

The viewing transformation should:

• Map the origin of the WCS, \(\mathbf{O} \), to the Eye, \(\mathbf{E} \).

If the point \(P \) has coordinates \((x, y, z)\) in WCS
and \((u, v, w)\) in VCS
then -

\[
\begin{bmatrix}
 x \\
 y \\
 z \\
\end{bmatrix}
= \begin{bmatrix} u & v & w \end{bmatrix}
\]

\[
\begin{bmatrix}
 e_x & e_y & e_z \\
 u & v & w \\
\end{bmatrix}
\]
From WCS to VCS

The viewing transformation should:

- \(x \rightarrow u \)
- \(y \rightarrow v \)
- \(z \rightarrow n \)

Map the origin of the WCS, \(O \), to the Eye, \(E \).

From WCS to VCS - OpenGL

```cpp
glm::lookAt(glm::vec3 eye, glm::vec3 lookat_pt, glm::vec3 upvec);
```

From VCS to CCS

We shear the frustum so that the direction of projection aligns with the \(n \) axis and frustum becomes symmetrically aligned about it.

If the extents of the near plane are given by \(L, R, T, B \) then:

\[
\begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
-N & 0 & 0 & 1
\end{bmatrix}
\]
If the extents of the near plane are given by L, R, T, B then:

We shear the frustum so that the direction of projection aligns with the n axis and frustum becomes symmetrically aligned about it.

After shearing the point $(L, B, -N)$ becomes

$$\frac{(R-L)}{2} \frac{(T-B)}{2} - N$$

Now we scale along u and v so that we get $u = u', v = v'$ as the top side faces of the frustum.

Now we transform the frustum to a canonical frustum.

Now we scale along u and v so that we get $u = u', v = v'$ as the top side faces of the frustum.

This is equivalent to doing a perspective transform. It is called a projection normalization.

An Orthographic projection of a distorted object can be the same as a perspective projection of the undistorted object.
So the complete transformation is:

\[
\begin{bmatrix}
\frac{2N}{R-L} & 0 & \frac{(R-L)}{2N} & 0 \\
0 & \frac{2N}{T-B} & \frac{(T-B)}{2N} & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

CCS coordinates retain the homogenous coordinate.

This is followed by a perspective divide stage, where the coordinates are divided by the 'w' coordinate.

That puts all the coordinates within the normalized +/- 1 cube. This is called the Normalized Device Coordinate System.

This is followed by a perspective divide stage where the coordinates are divided by the 'w' coordinate.

That puts all the coordinates within the normalized +/- 1 cube. This is called the Normalized Device Coordinate System.

\[
\begin{bmatrix}
\frac{(x+1)(R-L)}{2} & \frac{(x+1)(T-B)}{2} & \frac{(x+1)}{2} & 0 \\
\frac{(y+1)(R-L)}{2} & \frac{(y+1)(T-B)}{2} & \frac{(y+1)}{2} & 0 \\
\frac{(z+1)(R-L)}{2} & \frac{(z+1)(T-B)}{2} & \frac{(z+1)}{2} & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
\frac{Z}{W} \\
\frac{Y}{W} \\
\frac{X}{W} \\
1 \\
\end{bmatrix}
\]

\[
glm::frustum(L, R, B, T, N, F); \\
glm::perspective(fovy, aspect, N, F);
\]

\[
N \text{ and } F \text{ give the distance of Near and Far clipping planes from the Eye and must be positive numbers and must not be equal.}
\]

\[
glm::ortho(L, R, B, T, N, F) \\
glm::ortho(L, R, B, T)
\]

Intuition: Visibility computation or Hidden Surface Removal

Algorithm: The Z-Buffer Algorithm

OpenGL:

\[
glClear(GL_DEPTH_BUFFER_BIT); \\
glEnable(GL_DEPTH_TEST);
\]

Why carry the depth through?