Lecture 12: Modelling Surfaces

Surface Modelling
- Implicit Surfaces
 \(F(x, y, z) = 0 \)
- Parametric Surfaces
 \(P(u, v) = (x(u, v), y(u, v), z(u, v)) \)

Parameter Space
Surface in Euclidean Space

Parametric Surfaces
- Surfaces of Revolution
 - Obtained by rotating a 2D generating curve around an axis

Parametric Surfaces
- Surfaces of Revolution
 - A Sphere can be generated by rotating a semi circle around an axis
 - Sphere
 \(Q(\theta, \phi) = (x, y \cos \phi, y \sin \phi) \)
 \(= (r \cos \theta, r \sin \theta \cos \phi, r \sin \theta \sin \phi) \)
 - Similarly we can generate
 - Ellipsoides
 - Paraboloides
 - Cones

Parametric Surfaces
- Surfaces of Revolution
 - A Torus is generated by rotating a circle in the XY plane around an axis, but whose center is not on the axis.
 - Torus
 \(Q(\theta, \phi) = (h + r \cos \phi, k + r \sin \phi, (h + r \cos \phi) \cos \theta, (h + r \cos \phi) \sin \theta) \)

Point
Circle
Line
Cylinder

Circle
Torus
Semi Circle
Sphere
Cone

Cylinder
Torus
Semi Circle
Parametric Surfaces

- Surfaces of Revolution
 - Matrix form for the rotation about X axis
 $$\begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & \cos \phi & 0 & 0 \\
 0 & 0 & \sin \phi & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}$$
 - Parametric curve
 $$P(t) = \begin{pmatrix} x \cos \phi, y \sin \phi \end{pmatrix}$$
 - Parametric Surface
 $$\mathbf{Q}(t, \phi) = S \mathbf{P}$$

- Sweep Surfaces
 - Sweep surfaces are generated by moving a 2D curve along a path
 $$\mathbf{Q}(t, s) = T(s) \mathbf{P}(t)$$
 - $T(s)$ is called the sweep transformation.
 - A translation sweep of a circle generates a cylinder.
 - A translation sweep of a circle with a scaling generates a cone.

- Normal to the polygon or closed curve can be kept fixed or it can be made the instantaneous tangent of the curve of sweep.

- Bilinear Surfaces
 - Linear interpolation fits the simplest curve between two points
 $$P(t) = (1-t)P_1 + tP_2$$
 - Bilinear interpolation fits the simplest surface to four corner points

- Bilinear Surfaces
 - Linear interpolation fits the simplest surface to four corner points
Parametric Surfaces

- **Bilinear Surfaces**
 - Bilinear interpolation fits the simplest surface to four corner points

\[
\begin{align*}
\beta^0_0(v) &= (1-v)\beta_{00} + v \beta_{01} \\
\beta^1_0(v) &= (1-v)\beta_{10} + v \beta_{11} \\
X(u, v) &= (1-u)\beta_{00} + u \beta_{01} + v \beta_{10} + (1-v)\beta_{11}
\end{align*}
\]

\[
X(u, v) = \sum_{i=0}^{1} \sum_{j=0}^{1} b_{ij} B_i^1(u) B_j^1(v)
\]

Parametric Surfaces

- **Ruled Surface**
 - Given two space curves \(C_1\) and \(C_2\) defined in the parametric range \([0, 1]\).
 - Find a surface \(X\) that contains both the curves as boundary curves.

\[
\begin{align*}
X(u, 0) &= C_1(u) \\
X(u, 1) &= C_2(u)
\end{align*}
\]

For a constant \(u\), the iso-parametric curve is a straight line.

Parametric Surfaces

- **Coon's Patch**
 - Given for boundary curves \(C_1, C_2, D_1, D_2\)

\[
\begin{align*}
X(u, 0) &= C_1(u) \\
X(u, 1) &= C_2(u) \\
X(0, v) &= D_1(v) \\
X(1, v) &= D_2(v)
\end{align*}
\]

Parametric Surfaces

- **Ruled Surface**
 - We do linear interpolation in \(v\)

\[
\begin{align*}
X(u, v) &= (1-v)C_1(u) + vC_2(u) \\
X(u, 0) &= C_1(u) \\
X(u, 1) &= C_2(u)
\end{align*}
\]

For a constant \(u\), the iso-parametric curve is a straight line.
Parametric Surfaces

But something is extra here and that is?

RCD

The bilinear patch between the vertices!

Coon’s Patch = RCD

The bilinear patch between the vertices!

Coon’s Patch

\[Q(u, v) = R_x(u, v) + R_y(u, v) - R_{CD}(u, v) \]

\[X(u, v) = R_x(u, v) + R_y(u, v) - R_{CD}(u, v) \]

\[\begin{bmatrix} u \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \]

● Coon’s Bicubic Surface
 - Each boundary curve is a normalized cubic spline
 - Blending function used is also cubic

\[P_i(u) = \begin{bmatrix} P_{11} & P_{12} & P_{13} & P_{14} \\ P_{21} & P_{22} & P_{23} & P_{24} \\ P_{31} & P_{32} & P_{33} & P_{34} \\ P_{41} & P_{42} & P_{43} & P_{44} \end{bmatrix} \]

\[F_i(v) = \begin{bmatrix} F_{11} & F_{12} & F_{13} & F_{14} \\ F_{21} & F_{22} & F_{23} & F_{24} \\ F_{31} & F_{32} & F_{33} & F_{34} \\ F_{41} & F_{42} & F_{43} & F_{44} \end{bmatrix} \]

\[\begin{bmatrix} Q_{00} & Q_{01} & Q_{02} & Q_{03} \\ Q_{10} & Q_{11} & Q_{12} & Q_{13} \\ Q_{20} & Q_{21} & Q_{22} & Q_{23} \\ Q_{30} & Q_{31} & Q_{32} & Q_{33} \end{bmatrix} \]

\[F_{ij}(v) = \frac{v}{(1 - v)} \begin{bmatrix} Q_{00} & Q_{01} & Q_{02} & Q_{03} \\ Q_{10} & Q_{11} & Q_{12} & Q_{13} \\ Q_{20} & Q_{21} & Q_{22} & Q_{23} \\ Q_{30} & Q_{31} & Q_{32} & Q_{33} \end{bmatrix} \]

● Bézier Surface
 - Given the control points, find the surface
Parametric Surfaces

- **Bézier Curves Recap**
 - Mathematically: \(P(t) = \sum b_i B_n^i(x) \) with \(0 \leq t \leq 1 \)
 - Where \(B_n^i(x) = \binom{n}{i} x^i (1-x)^{n-i} \) and is called the Bernstein basis.

- **Bilinear Surfaces Recap**
 - Bilinear interpolation fits the simplest surface to four corner points

- **Bézier Surfaces – The De Casteljau Algorithm**
 - \(B_n^1 = (1-t)b_1 + tb_2 \)
 - \(B_n^0 = (1-t)b_0 + tb_1 \)
 - \(P(x) = B_n^1 + db_2^0 \)
 - \(P(x) = B_n^0 + db_3^0 \)
 - \(X(u, v) = (1-u) B_n^0 + u B_n^1 \)
 - \(X(u, v) = (1-v) B_m^0 + v B_m^1 \)
 - \(X = (1 - u) \begin{bmatrix} B_n^0 & B_n^1 \end{bmatrix} (1 - v) \begin{bmatrix} B_m^0 & B_m^1 \end{bmatrix} \)
 - \(X = \sum_{i=0}^{n} \sum_{j=0}^{m} B_n^i B_m^j (u)(v) \)
Parametric Surfaces

- Bézier Surfaces – The De Casteljau Algorithm

\[B_{i,j}^{m,n}(u,v) = \sum_{r=0}^{m+n} \binom{m+n}{r} B_i^{m}(u) B_j^{n}(v) \]

What if degree of the Bézier in \(u \) and \(v \) is different?

Let degree along \(u \) be \(m \) and along \(v \) be \(n \), with \(m < n \).

- How does this work?

Point on the surface can still be found out. But solution is no longer symmetrical.
Parametric Surfaces

- Bézier Surfaces – The Tensor Product
 - A surface can be thought of as being swept out by a moving and deforming curve.
 - Let the sweep curve be \(b^m(u) = \sum_{i=0}^{m} b_i J^m_i(u) \)
 - Each control point traverses the curve \(b_i = \sum_{j=0}^{n} b_{ij} J^n_j(v) \)
 - Combining, we get the surface as:
 \[
 b^{m,n}(u, v) = \sum_{i=0}^{m} \sum_{j=0}^{n} b_{ij} J^m_i(u) J^n_j(v)
 \]

- The tensor product technique constructs surfaces by “multiplying” two curves.
- Surfaces generated this way are called tensor product surfaces.
- Bézier surfaces or B-spline surfaces are all tensor product surfaces.
Parametric Surfaces

deCasteljau(\(m+1 \times n+1 \) control points, \(u, v \))
{
 for \(i := 0 \) to \(n \) do
 apply deCasteljau's algorithm to the \(i \)-th column of control points with \(v \);
 let the point obtained be \(q_i(v) \);
 apply deCasteljau's algorithm to \(q_0(v), q_1(v), ..., q_n(v) \) with \(u \);
 the point obtained is \(p(u,v) \);
}

Parametric Surfaces

- Bézier Surfaces – Properties
 - Affine Invariance
 - Convex Hull
 - Boundary curve and end-point interpolation
 - Non-local control
 - Degree elevation

Parametric Surfaces

\[
\frac{\partial}{\partial u} b^m_n(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} \Delta^m b_{ij}(u,v) J_{m-i,j}(v)
\]

\[
\frac{\partial}{\partial v} b^m_n(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} \Delta^n b_{ij}(u,v) J_{n-j,i}(u)
\]
Parametric Surfaces

- Bézier Surfaces - Derivatives

\[\frac{\partial}{\partial u} b^m_n(u, v) = \sum_{j=0}^{m} \frac{\partial}{\partial u} b_j n_j(u) M_j^n(v) \]

Cross Boundary Derivatives

\[\frac{\partial}{\partial u} b^m_n(u, v) = \sum_{j=0}^{m} \frac{\partial}{\partial u} b_j n_j(u) M_j^n(v) \]

What can we say about the geometric/parametric continuity of these patches?

Parametric Surfaces

- Bézier Surfaces - Composing Patches

Parametric Surfaces

- Bézier Surfaces - The Utah Teapot

Parametric Surfaces

- Bézier Surfaces - Surface Normals

\[\mathbf{n}(u, v) = \frac{\frac{\partial}{\partial u} b^m_n(u, v) \times \frac{\partial}{\partial v} b^m_n(u, v)}{|\frac{\partial}{\partial u} b^m_n(u, v) \times \frac{\partial}{\partial v} b^m_n(u, v)|} \]

Parametric Surfaces

- Bézier Surfaces - The Twist Vector

\[\Delta_n^m = \sum_{j=0}^{m} \frac{\partial}{\partial n} b_j n_j(u) M_j^n(v) \]

Parametric Surfaces

- B-Splines - Recap

\[P(t) = \sum_{i=0}^{n} B_i N_i(t) \]

With \(t \geq t_{e-1} \) and \(2 \leq k \leq n+1 \)

\(B_i \) - position vectors of the \(n+1 \) vertices of the control polygon

\(N_i(t) \) - normalized B-spline basis functions

\[N_i(t) = \begin{cases} 1, & \text{if } x_{i-1} < t < x_i \\ 0, & \text{otherwise} \end{cases} \]

\[N_i(t) = \frac{(t-x_j)N_{i,j-1}(t)}{x_i-x_j} + \frac{(x_{i+1}-t)N_{i+1,j}(t)}{x_{i+1}-x_i} \]

Cox-deBoor Basis
Parametric Surfaces

- B-Splines Surfaces
 \[b(u, v) = \sum_{i=1}^{m+1} \sum_{j=1}^{n+1} B_{ij}(u) N_i(u) N_j(v) \]

- Properties
 - Affine Invariance
 - Strong Convex hull
 - Local Control

\[b(u, v) = \sum_{i=1}^{m+1} \sum_{j=1}^{n+1} B_{ij}(u) N_i(u) N_j(v) \]

Polygonal Meshes

- The object is often rendered as a collection of polygons.
 - Collection of edges and vertices.
 - Each edge is shared by at most two polygons
 - How to store a mesh?
 - Explicit Representation
 - A set of vertices \((x_i, y_i, z_i)\)...
 - Edges connect successive vertices

Explicit Representation

- A set of vertices \((x_i, y_i, z_i)\)...
- Vertices stored in order of traversal.
- Edges connect successive vertices.
- Difficult to manipulate
- Multiple storage of points

Explicit Representation

- A set of vertices \((x_i, y_i, z_i)\)...
- Vertices stored once in a list \(V\):
 \[V = \{(x_1, y_1, z_1), \ldots, (x_n, y_n, z_n)\} \]
- Edge: \(E = (V_i, V_j, P)\)
- Polygon: \(P = (E_1, E_2, E_3, E_4)\)

Explicit Representation

- A set of vertices \((x_i, y_i, z_i)\)...
- Vertices stored once in a list \(V\):
 \[V = \{(x_1, y_1, z_1), \ldots, (x_n, y_n, z_n)\} \]
- Edge: \(E = (V_i, V_j, P)\)
- Polygon: \(P = (E_1, E_2, E_3, E_4)\)
Polygonal Meshes

- Winged Edge Data Structure

<table>
<thead>
<tr>
<th>Edge</th>
<th>Vertices</th>
<th>Faces</th>
<th>Left Parent</th>
<th>Right Parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>x</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>