Hierarchical Modelling

- Modelling
 - Modelling and Rendering
 - Transformations

- Moving this model?
 - Change the transformations over time.

WHY?!?
Modelling

- Modelling a two-link arm
 - Rigid links
 - Hinges:
 - Upper arm link B has two joints p and q (shoulder and elbow)
 - Lower arm link A has one joint, r
 - Attach points p on B, q on B, and r on A.
 - Parameters to control:
 - Shoulder position T
 - Shoulder angle θ (A and B together rotate about p)
 - Elbow angle ϕ (A rotates about r, and stays attached to B at q)

Modelling

- Modelling a two-link arm
 - Start with A and B in their original positions
 - Apply only to A:
 - Translate by -r
 - Rotate by ϕ about the origin.
 - Translate by q, bringing r and q together.
 - We can now consider q as the origin of the lower arm link, and regard A as being in this coordinate system.

Hierarchical Modelling

- Store the modelling sequence in a hierarchy
 - Leave the geometry:
 - Internal nodes have transformations,
 - Transformations apply to everything under them – start at the bottom and work your way up.

Hierarchical Modelling

- Another view:
 - The shoulder coordinate transformation moves everything below it (i.e., the shoulder)
 - B
 - A and its transformation.
 - The elbow coordinate transformation moves A with respect to the shoulder coordinate transformation.

Modelling

- Modelling a two-link arm
 - Now the transformations apply to both A and B:
 - Translate by -p
 - Translate by T to place the two link arm at the proper position.

Modelling

- Note:
 - θ, ϕ, and T are parameters – we change these to animate the model
 - p, q, and r are structural constraints. If we change them – model falls apart.
Hierarchical Modelling

- Articulated Figures
 - Each node represents the geometry, rotation parameters and structural transformations.
 - Root can be anywhere – here it is at the hip.
 - A realistic human is much more complex
 - Difficult to control so many DoF's (later problem)
 - A Directed Acyclic Graph
 - Not necessarily a tree, as geometry can be transformed instances of each other.

Hierarchical Modelling

- Articulated Figures
 - Character Rigging and skinning

We can model a lot of things this way

Hierarchical Modelling

- We can model a lot of things this way

Hierarchical Modelling

- Doing this in OpenGL 2.x and earlier
 - Use the Matrix Stack
 - Current matrix is automatically product of everything already on the stack
 - This is the matrix on top of the stack
 - Recursive algorithm
 - Load identity matrix
 - For each internal node
 - Push new matrix into stack
 - Concatenate transformations onto current matrix.
 - Recursively descend tree
 - Pop matrix off stack
 - For each leaf node
 - Draw the geometry using the current transformation
Hierarchical Modelling

- Doing this in OpenGL
- Using VAO, VBO and shaders

http://www.gamedev.net/reference/articles/article1267.asp