Modelling

- Modelling and Rendering
- Transformations
Modelling

- Modelling and Rendering
- Transformations
Modelling

- Modelling and Rendering
- Transformations
- Moving this model?
 - Change the transformations over time.
Modelling

- Modelling and Rendering
- Transformations
- Moving this model?
 - Change the transformations over time.
 - Model falls apart!

WHY!?!
Modelling

- The object we are modelling is *constrained* but the model does not know that.

- We need:
 - To represent the structure of the model.
 - A handle on parameters so that we can move only through valid poses.

- So we structure our transformations into a hierarchy.
Modelling

- Modelling a two-link arm
 - Rigid Links
 - Hinge Joints
 - Upper arm link B has two joints p and q (shoulder and elbow)
 - Lower arm link A has one joint, r
 - Attach point q on B to r on A.
 - Parameters to control –
 - shoulder position T
 - shoulder angle θ (A and B together rotate about p)
 - elbow angle φ (A rotates about r, and stays attached to B at q)
Modelling

- Modelling a two-link arm
 - Start with A and B in their original positions
 - Apply only to A
 - Translate by -r
 - Rotate by φ about the origin.
 - Translate by q, bringing r and q together.
 - We can now consider q as the origin of the lower arm link, and regard A as being in this coordinate system.
Modelling

- Modelling a two-link arm
 - Now the transformations apply to both A and B
 - Translate by -p
 - Rotate by θ about the origin.
 - Translate by T to place the two link arm at the proper position.
Modelling

- Modelling a two-link arm
 - Complicated?
 - Remember the sequence of transformations and parameters
 - Re-apply all transformations in same sequence when parameters change

- Note:
 - \(\theta, \phi, \) and \(T \) are parameters – we change these to animate the model
 - \(p, q \) and \(r \) are structural constraints. If we change them – model falls apart.
Hierarchical Modelling

- Store the modelling sequence in a hierarchy
 - Leaves have the geometry.
 - Internal nodes have transformations.
 - Transformations apply to everything under them – start at the bottom and work your way up.

Parameters

Structural constraints

Geometric Primitive
Hierarchical Modelling

- Another view
 - The shoulder coordinate transformation moves everything below it w.r.t. the shoulder:
 - B
 - A and its transformation
 - The elbow coordinate transform moves A with respect to the shoulder coordinate transform.
Hierarchical Modelling

- Articulated Figures

![Hierarchical Model Diagram](image)
Hierarchical Modelling

- Articulated Figures
 - Each node represents the geometry, rotation parameters and structural transformations.
 - Root can be anywhere – here it is at the hip.
 - A realistic human is much more complex
 - Difficult to control so many DoF's (later problem)
 - A Directed Acyclic Graph
 - Not necessarily a tree, as geometry can be transformed instances of each other
Hierarchical Modelling

- Articulated Figures
 - Character Rigging and skinning

http://www.okino.com/conv/skinning.htm
Hierarchical Modelling

- We can model a lot of things this way

- Diagram: Hierarchical structure of a car showing the chassis and its components (right-front wheel, left-front wheel, right-rear wheel, left-rear wheel)
Hierarchical Modelling

- We can model a lot of things this way

Wall-E, PIXAR Animation Studios, 2008
Hierarchical Modelling

- Doing this in OpenGL 2.x and earlier
 - Use the Matrix Stack
 - Current matrix is automatically product of everything already on the stack
 - This is the matrix on top of the stack
- Recursive algorithm
 - Load Identity Matrix
 - For each internal node
 › Push new matrix into stack
 › Concatenate transformations onto current matrix.
 › Recursively descend tree
 › Pop matrix off stack
 - For each leaf node
 › Draw the geometry using the current transformation
Hierarchical Modelling

- Doing this in OpenGL
- Using VAO, VBO and shaders

http://www.gamedev.net/reference/articles/article1267.asp