Modelling

- Modelling and Rendering
- Transformations

Moving this model?
- Change the transformations over time.

WHY?!!

Modelling

- Modelling and Rendering
- Transformations

The object we are modelling is constrained but the model does not know that.

- We need:
 - To represent the structure of the model.
 - A handle on parameters so that we can move only through valid poses.
 - So we structure our transformations into a hierarchy.
Modelling

- Modelling a two-link arm
 - Rigid links
 - Joints:
 - Upper arm link B has two joints p and q (shoulder and elbow)
 - Lower arm link A has one joint r
 - Parameters to control:
 - Shoulder position T
 - Shoulder angle θ (A and B rotate about p)
 - Elbow angle φ (A rotates about r, and stays attached to B at q)

- Attach point q on B to r on A.

Modelling

- Modelling a two-link arm
 - Start with A and B in their original positions
 - Apply only to A:
 - Translate by -r
 - Rotate by φ about the origin.
 - Translate by q, bringing r and q together.
 - We can now consider q as the origin of the lower arm link, and regard A as being in this coordinate system.

Modelling

- Modelling a two-link arm
 - Now the transformations apply to both A and B:
 - Translate by -p
 - Rotate by θ about the origin.
 - Translate by T to place the two-link arm at the proper position.

Hierarchical Modelling

- Store the modelling sequence in a hierarchy
 - Leave the geometry.
 - Internal nodes have transformations.
 - Transformations apply to everything under them – start at the bottom and work your way up.

- Parameters
- Structural constraints
- Geometric Primitives

Hierarchical Modelling

- Another view
 - The shoulder coordinate transform moves everything below it w.r.t. the shoulder:
 - B and its transformation.
 - The elbow coordinate transform moves A with respect to the shoulder coordinate transform.

Parameters

Structural constraints

Geometric Primitives
Hierarchical Modelling

- Articulated Figures
 - Each node represents the geometry, rotation parameters and structural transformations.
 - Root can be anywhere – here it is at the hip.
 - A realistic human is much more complex
 - Difficult to control so many DoF’s (later problem)

- Directed Acyclic Graph
 - Not necessarily a tree, as geometry can be transformed instances of each other

Hierarchical Modelling

- We can model a lot of things this way

- Articulated Figures
 - Character Rigging and skinning

- Wall-E, PIXAR Animation Studios, 2008

- Doing this in OpenGL 2.x and earlier
 - Use the Matrix Stack
 - Current matrix is automatically product of everything already on the stack
 - This is the matrix on top of the stack

- Recursive algorithm
 - Load identity matrix
 - For each internal node
 - Push new matrix into stack
 - Concatenate transformations onto current matrix
 - Recursively descend tree
 - For leaf node
 - Draw the geometry using the current transformation
Hierarchical Modelling

- Doing this in OpenGL
- Using VAO, VBO and shaders

http://www.gamedev.net/articles/article1267.asp