CS475/CS675 - Computer Graphics

Lecture 17: Interpolation for Animation
Animation

- Keyframing
 - Selected (key) frames are specified.
 - Interpolation of intermediate frames.
 - Simple and popular approach.
 - May give incorrect (inconsistent) results.

In-between Frames
Animation

- Keyframing
Animation

- Keyframing
 - Interpolate Position
Animation

• Keyframing
 - Interpolate Orientation
Animation

- Keyframing
 - Interpolate Orientation
 - Interpolate Position
 - Interpolate Shape
 - Interpolate Colour
 - Light Intensity
 - Camera Zoom
 - Any other parameter

Animation

• Keyframing Position
 - Moving on curves.
 - Specify spatial position to fix the curve
 - In addition, we specify the speed at which we travel along the curve

\[A, t = 0 \]
\[B, t = 10 \]
\[C, t = 35 \]
\[D, t = 60 \]
Animation

- Controlling speed on curves
 - Typically parametrization is not arc length.
 - Arc length is the distance along the curve.
 - Arc length parametrization can be computed using
 - Analytical Computation
 - Table-based
 - Summed linear distances (forward differencing)
 - Gaussian quadrature (numerical integration)
Animation

- Controlling speed on curves
 - Given a parametric curve, \(P(u) = (x(u), y(u), z(u)) \)
 - We may have to solve two versions of the problem:
 - Given parameters \(u_1 \) and \(u_2 \), find arc length, \(\text{LENGTH}(u_1, u_2) \)
 - Given an arc length \(s \) and parameter \(u_1 \), find \(u_2 \) so that \(\text{LENGTH}(u_1, u_2) = s \)
Animation

- Controlling speed on curves
 - Generally, neither of the two forms of the problem admit analytical solutions.

- Arc Length

\[
\text{LENGTH}(u_1, u_2) = s = \int_{u_1}^{u_2} \left\| \frac{dP(u)}{du} \right\| \, du = \int_{u_1}^{u_2} \sqrt{\left(\frac{dP(u)}{du} \right)^2} \, du
\]

\[
\sqrt{\left(\frac{dP(u)}{du} \right)^2} = \sqrt{\left(\frac{dx(u)}{du} \right)^2 + \left(\frac{dy(u)}{du} \right)^2 + \left(\frac{dz(u)}{du} \right)^2}
\]
Animation

- Controlling speed on curves
 - The arc length integral can be approximated using a forward differencing method.
 - Create a piece wise linear approximation of the curve from many parameter evaluations and sum these to form the arc length.
 - Store these values into a table.
Animation

- Controlling speed on curves
 - The inversion can then be calculated using bisection

\[s = G(u) \]

is a monotonically increasing function. i.e., if \(u_1 < u_2 \) then \(s_1 < s_2 \)

So we can do a bisection or a binary search for \(u \), given a value of \(s \).
Animation

- Controlling speed on curves
 - Given parameters u_1 and u_2, find arc length, $\text{LENGTH}(u_1, u_2)$
 - Can we compute $s = G(u) = \text{distance from start of curve to point at } u$?
 - With G, arc length parametrization can be obtained by inversion as $P(G^{-1}(s))$, where $G^{-1}(s)$ gives the parameter u up to which distance travelled on the curve is s.

Re-parametrize to have equal spacing in the parametric interval.

Equal arc lengths s over the curve.
Animation

- Controlling speed on curves
 - Space curves we have seen till now give the path.
 - What if we want to control the speeds
 - Accelerates from stop position
 - Reaches maximum speed
 - Decelerates to a stop.
 - Given the speed as a plot of s vs. t.
 - $v = ds/dt$
Animation

- Controlling speed on curves
 - A slow in – slow out curve may look like:
Animation

• Controlling speed on curves
 – Given next time instant t
 – Distance-time curve gives total distance s travelled up to time t.
 – $P(G^{-1}(s))$ gives the position on the path space curve.

• Or solve a space-time optimization for the whole path.
Animation

- Interpolating orientation
 - **Fixed Angle Representation** - Ordered triple of rotations about *global axes.*
 - Any triple is valid that doesn't immediately repeat an axis, e.g., x-y-z or z-x-y. But not x-x-y.
 - Let us assume a z-y-x order for now.
 \[P' = R_z(\gamma) \cdot R_y(\beta) \cdot R_x(\alpha) \cdot P \quad (\alpha, \beta, \gamma) \]
Animation

- Interpolating orientation – Fixed Angle Representation
 - Make a rotation matrix from the angles and interpolate

\[R_z(90) = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

\[R_z(-90) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

\[R_z(?) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]
Animation

- Interpolating orientation – Fixed Angle Representation
 - Interpolate the angles and then form the matrix.
 - Suffers from the Gimbal lock!

\[(0, 0, 0), (0, 90, 0), (0, 90, \pm \epsilon)\]

\[(\pm \epsilon, 90, 0)\]
Animation

- Interpolating orientation
 - **Euler Angle Representation** - Ordered triple of rotations about *local axes*.

- Any triple is valid that doesn't immediately repeat an axis, e.g., x-y-z or z-x-y. But not x-x-y.

- Let us assume a x-y-z order for now.
 \[
 P' = R_x(\alpha) \cdot R_y(\beta) \cdot R_z(\gamma) \cdot P
 \]

Rotation given by a triad of Euler angles is the same as given by a triad of Fixed angles considered in **opposite** order. So it has the same Gimbal Lock problem.
Animation

- Interpolating orientation
 - When to form and apply the matrix if rotation Θ has to be incremented by $\delta \Theta$ in each frame?
 - Form a rotation matrix for $\delta \Theta$ and apply repeatedly to rotated object in each frame.
 - Update the rotation matrix $R_{axis}(\Theta)$ by multiplying with $R_{axis}(\delta \Theta)$ in each frame. Apply updated matrix to the object.
 - Update the rotation angle, Θ by the increment $\delta \Theta$ and form the new matrix $R_{axis}(\Theta + \delta \Theta)$ in each frame. Apply this matrix to the object.
Animation

- Interpolating orientation
 - **Axis Angle Representation** - Specified as an axis of rotation $A(x, y, z)$ and an angle of rotation, θ around it.
 - Euler’s Theorem – Any orientation can be derived from another by a single rotation about and axis.
Animation

- Interpolating orientation - Axis Angle Representation

 To interpolate between two orientations \((A_1, \theta_1)\) and \((A_2, \theta_2)\)

\[
B = A_1 \times A_2 \quad \phi = \cos^{-1}\left(\frac{A_1 \cdot A_2}{||A_1|| ||A_2||} \right)
\]

\[
A_k = R_B(k \cdot \phi) A_1
\]

\[
\theta_k = (1 - k) \theta_1 + k \theta_2
\]

with \(0 \leq k \leq 1\)
Animation

- Interpolating orientation
- **Unit Quaternions**
 - Have the same information as the axis-angle representation but in a more convenient form.

\[q = [s, x, y, z] = [s, v] = [\cos \theta / 2, \sin \theta / 2 \cdot \hat{a}], \text{ where } \hat{a} = \frac{A}{\|A\|} \]
Interpolating orientation – Quaternions

- A non commutative number system that extends complex numbers
- Defined as: $q = s + x \hat{i} + y \hat{j} + z \hat{k} = [s, v]
- where $1, \hat{i}, \hat{j}, \hat{k}$ are called the Hamilton basis
- The product of the basis elements is defined as:

 $\hat{i}^2 = \hat{j}^2 = \hat{k}^2 = \hat{i}\hat{j}\hat{k} = -1$

 $\Rightarrow \hat{i}\hat{j} = \hat{k}, \hat{j}\hat{k} = \hat{i}, \hat{k}\hat{i} = \hat{j}$

 $\Rightarrow \hat{j}\hat{i} = -\hat{k}, \hat{k}\hat{j} = -\hat{i}, \hat{i}\hat{k} = -\hat{j}$

Quaternions form a four dimensional normed division algebra, \mathbb{H} over the real numbers.
• Interpolating orientation – Quaternions
 - A non commutative number system that extends complex numbers
 - Defined as: \(q = s + x \hat{i} + y \hat{j} + z \hat{k} = [s, v] \)
 - where \(\hat{1}, \hat{i}, \hat{j}, \hat{k} \) are called the Hamilton basis
 - The product of the basis elements is defined as:
 \[
 \hat{i}^2 = \hat{j}^2 = \hat{k}^2 = \hat{i} \hat{j} \hat{k} = -1
 \]
 \[
 \Rightarrow \hat{i} \hat{j} = \hat{k}, \hat{j} \hat{k} = \hat{i}, \hat{k} \hat{i} = \hat{j}
 \]
 \[
 \Rightarrow \hat{j} \hat{i} = -\hat{k}, \hat{k} \hat{j} = -\hat{i}, \hat{i} \hat{k} = -\hat{j}
 \]

Note that the multiplication being defined here is a quaternion multiplication and not the inner or out product of vectors. It is **not commutative.**
Animation

- Interpolating orientation – Quaternions
 - Quaternion Arithmetic
 - Addition: \(q_1 + q_2 = [s_1 + s_2, v_1 + v_2] \)
 - Scalar Multiplication: \(k q = [k s, k v] = ks + kx \hat{i} + ky \hat{j} + kz \hat{k} \)
 - Quaternion Multiplication:
 \[
 q_1 q_2 = (a_1 + b_1 \hat{i} + c_1 \hat{j} + d_1 \hat{k})(a_2 + b_2 \hat{i} + c_2 \hat{j} + d_2 \hat{k})
 = (a_1 a_2) - (b_1 b_2 + c_1 c_2 + d_1 d_2) + (a_1 b_2 + b_1 a_2 + c_1 d_2 - d_1 c_2) \hat{i} + \\
 (a_1 c_2 - b_1 d_2 + c_1 a_2 + d_1 b_2) \hat{j} + (a_1 d_2 + b_1 c_2 - c_1 b_2 + d_1 a_2) \hat{k}
 \]
Animation

- Interpolating orientation – Quaternions
 - Conjugate Quaternion: \(q^* = s - x \hat{i} - y \hat{j} - z \hat{k} \)
 - Quaternion Norm: \(||q|| = \sqrt{q q^*} = \sqrt{q^* q} = \sqrt{s^2 + x^2 + y^2 + z^2} \)
 - If \(\alpha \) is real then, \(||\alpha q|| = |\alpha||q|| \)
 - The norm is multiplicative: \(||pq|| = ||p||||q|| \)
 - Unit Quaternion: \(\hat{q} = \frac{q}{||q||} \)
 - Quaternion Inverse: \(q^{-1} = \frac{q^*}{||q||^2} \)
Animation

- Interpolating orientation – Quaternions
 - Quaternion and the Geometry of \mathbb{R}^3
 $\hat{i}, \hat{j}, \hat{k}$ denote both the basis vectors of \mathbb{H} and a basis for \mathbb{R}^3
 - Vectors in \mathbb{R}^3 can be written as pure imaginary quaternions
 \[v = 0 + x \hat{i} + y \hat{j} + z \hat{k} = [0, u] \]
 - Inner product of vectors in \mathbb{R}^3
 \[v_1 \cdot v_2 = x_1 x_2 + y_1 y_2 + z_1 z_2 = \frac{1}{2} (v_1^* v_2 + v_2^* v_1) = \frac{1}{2} (v_1 v_2^* + v_2 v_1^*) \]
 - Cross product of vectors in
 \[v_1 \times v_2 = \frac{1}{2} (v_1 v_2^* - v_2 v_1^*) \]
 - Quaternion multiplication can be written as:
 \[q_1 q_2 = [s_1 s_2 - v_1 \cdot v_2, s_2 v_1 + s_1 v_2 + v_1 \times v_2] \]
Animation

- Interpolating orientation – **Unit** Quaternions
 - A unit quaternion denotes a rotation by an angle θ about an axis A
 - $q = [s, x, y, z] = [s, v] = [\cos \theta/2, \sin \theta/2 \ast \hat{a}]$, where $\hat{a} = \frac{A}{\|A\|}$
 - Multiplication with a unit quaternion q can be used to rotate a vector v
 \[
 R_q(v) = qvq^{-1} = q[0, v]q^{-1}
 \]
 - Composition of rotations is equivalent to quaternion multiplication
 \[
 R_{q_1}(R_{q_2}(\vec{v})) = R_{q_1}(q_2 \vec{v} q_2^{-1}) = q_1 q_2 [0, v] q_2^{-1} q_1^{-1}
 \]
 \[
 = (q_1 q_2)[0, v] (q_1 q_2)^{-1} = R_{q_1 q_2}(\vec{v})
 \]
 - Rotating by a scalar multiple of a unit quaternion is the same as rotating by the unit quaternion $R_q(\vec{v}) = R_{kq}(\vec{v})$

Only Unit Quaternions represent rotations!
Animation

- Interpolating orientation – **Unit** Quaternions
 - Antipodal Unit Quaternions

 - \(q = [\cos(\theta/2), \hat{a}\sin(\theta/2)] \)
 - If we rotate by \(\theta-2\pi \) instead of \(\theta \)
 \[
 \begin{bmatrix}
 \cos((\theta-2\pi)/2), \hat{a}\sin((\theta-2\pi)/2)
 \end{bmatrix}
 \]
 \[
 = \begin{bmatrix}
 \cos(\theta/2-\pi), \hat{a}\sin(\theta/2-\pi)
 \end{bmatrix}
 = [\cos(\theta/2), -\hat{a}\sin(\theta/2)] = -q
 \]

 - So both \(q \) and \(-q\) represent the same rotation and are called antipodal points.

 - If \(0 < \theta < \pi \) then the positive rotation is the shorter one else the negative rotation is the shorter one, i.e., the quaternion with the positive value of the s coordinate will give the shorter path

\[
R_q(v) = R_{-q}(v)
\]

I am abusing notation here for convenience.

Please remember we are talking about unit quaternions.
Animation

- Interpolating orientation – Unit Quaternions
 - Linear Interpolation \(q = (1 - k)q_1 + kq_2 \)
 - How to take equi-distant steps along orientation path?
 - How to pass through orientations smoothly?
 - With dual unit quaternion representation

Dual representation: For Interpolation between \(q_1 \) and \(q_2 \), compute cosine between \(q_1 \) and \(q_2 \) and between \(q_1 \) and \(-q_2\); choose smallest angle.
Animation

- Interpolating orientation – Unit Quaternions
 - Linear Interpolation \(q = (1 - k)q_1 + kq_2 \)
 - This is not equally spaced.
Animation

• Interpolating orientation – Unit Quaternions
 - Spherical Linear Interpolation or SLERP
 - We write, \(q^\alpha = [\cos (\alpha \theta / 2), \hat{a} \sin (\alpha \theta / 2)] \)
 - We want to interpolate between two rotations \(q_1 \) and \(q_2 \)
 - Rotation that takes us from 1 to 2 is given by \(q_2 \hat{q}_1^{-1} \)
 - Now we start at 1, and go to 2 in \(\alpha \) steps as \((q_2 \hat{q}_1^{-1})^\alpha q_1 \)

\[
Slerp(q_1, q_2, \alpha) = (q_2 \hat{q}_1^{-1})^\alpha q_1
\]

\[
Slerp(q_1, q_2, \alpha) = \frac{\sin (1 - \alpha) \theta}{\sin \theta} q_1 + \frac{\sin (\alpha) \theta}{\sin \theta} q_2
\]

\[
\cos \theta = q_1 \cdot q_2 = s_1 s_2 + x_1 x_2 + y_1 y_2 + z_1 z_2
\]