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Motivation for Seminar

Students get class-wide As by boycotting test,
solving Prisoner's Dilemma

Cory Doctorow at 7:11 am Tue, Feb 19

_ _ o _ — FEATURED —
Johns Hopkins computer science prof Peter Frohlich grades his

students' tests on a curve -- the top-scoring student gets an A,
Ei Like and the rest of the students are graded relative to that braini{j&:.
But last term, his students came up with an ingenious, cooperative
609 solution to this system: they all boycotted the test, meaning that
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The story of the boycott is a sterling example of how computer
networks solve collective action problems -- the students solved a
prisoner's dilemma in a mutually optimal way without having to
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INTRODUCTION

Game Theory is
mathematical study of
interaction between
rational, self-interested
agents.

Game Theory applies
mathematical models to
this interaction under the
assumption that each
agent’s actions impact
the pay-offs of all other
participants in the game.

DIFFICULTY oF
VARIOUS GAMES

EPSn ForR COMPUTERS

|

<]

SOWED FoR

R fhonsr CGHGET] (98
SR .
PLAY PERFECTLY

SoueD For | <Gotow)]
POSITION S (2007)
<GCRABBLE |
Reversi] <BEER FONG | 955
BEAT ToP HOMANS | z(ms, e
<CARRAET]
T
SE S
(BUT FOCOSED RED o)
oD CHANGE THIS)
<SNAKES Ao LADDERS |
COMPUIERS =
MAY MEVER
CUTFLAY HUOMANS

l

HARD




Defining & Representing Games

e Finite, n-person game: (N, A, u):

e N is a finite set of n players, indexed by i
o A=Ay x... x A,, where A, is the action set for player i

@ (ai,...,an) € A is an action profile, and so A is the space of

action profiles

e Writing a 2-player game as a matrix:
e row player is player 1, column player is player 2
e rows are actions a € A4, columns are a’ € A,
o cells are outcomes, written as a tuple of utility values for each

player
The normal-form representation of an n-player game specifies

the players' strategy spaces S,,S,..., S, and their payoff functions
u,u..., u,. We denote this game by
G — {5],52,..., 5,7 , U],UZ..., Un/z.




Prisoner’s Dilemma

-

» Two susl?lects are arrested and charged with a
crime. The police lack sufficient evidence to
convict the suspects, unless at least one
confesses. The police explain the consequences
that will follow from the actions they could take.

» If neither confesses then both will be sentenced
to one month in jail.

» If both confess then both will be sentenced to jail
for six months.

» Finally, if one confesses but the other does not,
then the confessor will be released immediately
!:)qlt the other will be sentenced to nine months in
jail.




Battle of the Sexes

» A man and a woman are trying to
decide on an evening's entertainment.

» While at separate workplaces, Pat and
Chris must choose to attend either the
opera or a football match.

» Both players would rather spend the
evening together than apart, but Pat
would rather they be together at the
football match while Chris would
rather they be together at the opera.




Bi-Matrix Representation

Prisoner's dilemma

Prisoner 1
" TConfess | Not Confess
Prisoner 2 Confess -6,-6 0,-9
Not Confess -9,0 -1,-1
Battle of the Sexes
Chris
T  Footbal
Pat Football 2,1 0,0

Opera 0,0 1,2




Strategies

e Suppose the agents agent 1. agent 2. .... agent »n
e Foreachi. let S, = {all possible strategies for agent 7}
» 5, will always refer to a strategy in S,
e A strategy profile is an n-tuple S = (s,. .... s,). one strategy for each agent
e Utility U,(S) = pavoff for agent 7 if the strategy profile 1s §
e s, strongly dominates s, 1f agent 7 always does better with s, than s,
VW 81,00y 81y FtlseesyTns
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e 5. weakly dominates s,"if agent 7 never does worse with s, than s,”. and
there 1s at least one case where agent 7 does better with s, than s,".
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Ilterated Elimination

- |left  [Middle  |Right
Up 1,0 1,2 0,1
Down 0,3 0,1 2,0
et Middle
Up 1,0 1,2
Down 0,3 0,1
et Middle
Up 1,0 1,2

Up 1,2



Pure and Mixed Strategies

e Pure strategy: select a single action and play it

» Each row or column of a payoff matrix represents both an action and a
pure strategy

e Mixed strategy: randomize over the set of available actions according to
some probability distribution

» Let 4, = {all possible actions for agent i}. and a, be any action in A4,

> s;(a;) = probability that action a; will be played under mixed strategy s,
e The support of s, is

» support(s;) = {actions in 4, that have probability > 0 under s,}
e A pure strategy 1s a special case of a mixed strategy

> support consists of a single action

e Fully mixed strategy: every action has probability = 0

» 1.e.. support(s;) = A,




Expected Utility

Definition of Mixed Strategies: In the normal-form game G
=1{5,5,...., Sy s uUy,Up..., Uy ), suppose S; = {s;1,S;5 ..., Sk 1.
Then a mixed strategy for player i is a probability
distribution p = (p;;,pi2.---, Pik ), where 0 < p; < 1 fork =1
, ..., Kand pj;+ pp+.....+ pix = 1
e A payoff matrix only gives payoffs for pure-strategy profiles
e Generalization to mixed strategies uses expected ufility
e LetS=(sy.....s,) be aprofile of mixed strategies

» For every action profile (a,. a,. .... a,). multiply 1ts probability and its

utility
e Ulay. ....a,) sy(a)) sy(ay) ... s,(a,)
» The expected utility for agent 7 1s

Ui(.-r],...?s”)= E Ui(al,...?a") .‘i‘l[ﬂl) 52(.:12)‘ S“({In)

(ay...a,)EA




Best Response

e Some notation:
» IfS=(s.....s,) 15 astrategy profile. then S_, = (s ... 5,12 Spqe -on0 5,)
* 1... 5, 1s strategy profile S without agent i’s strategy
» If's.'1s any strategy for agent 7. then
o (508, )= (50 veen Simqe 533 Sicge o een Sy)
» Hence (s;.5;)=S
® 5.15a best response to S_; if
U. (s;.5,) = U (s,. S_; ) for every strategy s," available to agent 7
® 5. 1S a unique best response to S_; if
U (s;.5,)= U (s, S, ) forevery s,' # s,




Nash Equilibrium

» A strategy profile s = (s;,s,..., 5,,) is a Nash
equilibrium if for every i, s; is a best response to S_,,
i.e., no agent can do better by unilaterally changing
his/her strategy

» Theorem (Nash, 1951): Every game with a finite

number of agents and action profiles has at least one
Nash equilibrium
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Top
Middle ﬂ,O 0,_4 5,3
Bottom 3,5 3,5 6,6




REPRESENTATION, REASONING &
LEARNING

» Both game theory and Artificial Intelligence
deal with “intelligent” agents, who are
embodied in a complex world.

» These agents may interact with other agents,
and try to optimize their behavior, while
employing various reasoning and learning
techniques.

» The above three issues are fundamental both
to Game theory/Economics and to Al/CS.




REASONING

» Protocols for agent » Protocols for
interactions that are distributed
subject to rational environments,
constraints, i.e. agents emphasizing
will follow their own computational
Interests. constraints and

» Vickrey Auction - distributed systems
highest bidder pays features
the second highest bid, » Network Routing - Pay
truth revealing the owner declared
equilibrium cost plus added value

Game Theory Artificial Intelligence



Learning

» Emphasizes learningasa » Emphasizes a nhormative

descriptive tool, approach, and deals with
explaining the algorithms for obtaining
emergence of Nash high payoffs in uncertain
equilibrium or predicting environments based on
agents’ behavior observed feedback

» In an MDP, the agent is in » In Stochastic Game, MDP
one of finitely many is modeled by a game
states, and can select between two players,
one of many actions, whose actions determine
which lead to a certain their payoffs as well as
payoff and to a new state the transition probability.

Game Theory Artificial Intelligence



REPRESENTATION

» Modeling agents as » Work in CS/AIl has
expected utility considered, in addition
maximizers, i.e. it to that classical decision
assigns probabilities to criterion, other forms of
the states of the decision making. This
environment, and utilities includes, for example,
to various outcomes or competitive analysis (aka
consequences, and the competitive ratio
chooses the action, decision criterion) , and
protocol, strategy or the safety-level (worst
policy that maximizes its case) maximization
expected utility. approaches.

Game Theory Artificial Intelligence




Application of Game Theory to

Neural Networks

» The model has the following global behavior: if
Neuron-1 fires, then Neuron-2 shall fire, and if
Neuron-1 is at rest, then Neuron-2 shall be at
rest (it is possible to assume an information
exchange via biochemical substances or electrical
signals between two)

» Neuron-1 can either fire or be at rest, and
Neuron-2 has to respond accordingly

Fire if x>t,
) f(X): Rest otherwise.
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Relationships between (a) biological neurons, (b)
game theory, and (c) artificial neurons.




Game Theoretic Interpretations

» Player-1 believes that Player-2 will play the
mixed strategy (g, 1 — q), then the expected
payoff for Player-1 for playing the pure
strategy Fire is f *(q) = q and for playing the

oure strategy Rest is g*(q) = 1-q.

y If g > 1/2, then f *(g) > g*(g) in which case

Player-1 should play strategy Fire else if g <

1/2, then g*(q) > f*(g) in which case Player-1

should adopt strategy Rest. If g = 1/2,

Player-1 is indifferent about which strategy to

play.
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| 2 Player-1’s best response

1/2 1. (maximizing the expected payoff
Rest Fire r<(g)) from playing (r, 1 — r)
when Player-2 plays (q, 1 — g).
(The additional information on
the vertical axis (r, and
strategies Fire, Rest) aims to
support the interpretation of this
figure.)

Decision-making support for Player-17
if Player-1 believes that Player-2 plays
the mixed strategy (g, 1 — qg).




» Player-1’s expected payoff r*(q) from playing

the mixed strategy (r, 1

— r) when Player-2

plays the mixed strategy (q, 1 — q) is the

weighted sum of the ex
of the pure strategies (F

nected payoff for each
ire, Rest) where the

weights are the probabi

r1(@=r-q-(I)+r-(1—q)
-1 (1—-q ()

ities (r, 1 — r).
O+ (T—-1r)-q-(0)+(1

=r-qt+(1—-1-A-q=1-q+r2q—1).
» If Player-2 plays mixed strategy (q, 1 — q),

then Player-1’s best res

ponse is to play

(i)strategy Fire if g > 1/2,

(ii) strategy Rest if q < 1

/2, and

(iii)any strategy if g = 1/2.
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Neural Nash Equilibrium

»The interesting features in
Figure 8 include those points
where r*(q) and rx(r) intersect
(1.e., points (0, 0), (1/2, 1/2), and
(1, 1).

»If Neuron-1 fires then Neuron-
2’s best response is to fire too.
»If Neuron-1 is at rest, then
Neuron-2’s best response is to
be at rest too.

» An interesting situation exists
for point (1/2, 1/2). This
situation may be interpreted as if
»Neuron-2 is unaware about the
state (strategy) of Neuron-1,
»then Neuron-2 may play either
strategy, and vice versa.

Fire 1

Rest— |[=-——————c————o

1/2 1
Rest Fire

'-r-n:l\'.r-

Combined view of best responses for
Player-1 and Player-2. The three
intersections between r<(q) and r*(r) are
the Nash equilibriums in the game.



Game Theory and Neural Network
Learning

For the algorithm, imagine a one-dimensional, linearly separable,
and supervised learning classification task.

The classification scenario in figure takes place in an arbitrary real-
valued X, y coordinate system, involving n objects, such that for
every object i yields xi € [0, 1].

In their current positions, P’ correctly separates all objects into their
corresponding classes, whereas P incorrectly classifies objects. At the
start of a learning scenario, P may have been positioned randomly
and in successive steps the learning algorithm may have moved this
starting point until it finished in location P’, which is a solution to the
problem.

_l@ Z @l@ D— Q5
1

A one-dimensional, linearly separable, and
supervised learning classification task.
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Neuron-1's point of view: (a), (b)




(d)

(c) Neuron-1"s point of view, (d) Neuron-2’s point of view



Every figure includes two lines f, and either fq or f;, which are all payoff
functions. Line f, is fixed and always remains unaltered during the
learning process. In addition, f, represents the payoff function for Class
1 and so, per definition, the resting state for Neuron-1. The second line
fq is determined by the angle Q, where 0 < Q < 90 degree. This line
represents the payoff function for Class 2 (i.e., the firing state for
Neuron-1). The angle Q is derived by the uniform mapping function m :
q=1[0, 1] - Q = [0o, 900]

The learning algorithm will find out in the training phase that

this point does not separate the two classes correctly and take
appropriate action. In this case, the algorithm will increase

the angle Q, which moves the intersection point further to

the left. There may be several such steps until the algorithm

arrives at point P in Figure 13(b), which is a solution to

the problem.

Any unknown object x, to the left of point P produces two intersections,
one at fy and one at f,. However, any of these points yields fy(x,) >
fo(x)). That is, the payoff for fy(x)) (rest) is always larger than the payoff
for fo(x) (fire). Therefore, Neuron-1 chooses to stay at rest for any such
value. For similar reasons, for any object x, to the right of P, Neuron-
ooses to fire, because for any such value, the payoff fy(x,) < fo(x,).

\ RBLEL 0
( ‘
\ \



Algorithm Game Theory Neural Learning

Start with a randomly chosen angle Qy;

Letk =1,

While there exist misclassified objects by Qk—1 do

Let o; be a misclassified object;
Update the angle to Q, = Q,;  #;
Increment k;

end-While;

Fire if x> Xp

Rest otherwise
g x) =

where x,. /s the x coordinate of intersection point P’ and

in general, the separation point determined by the learning
algorithm.




STOCHASTIC GAMES

A stochastic game is a tuple (Q, N, A, P, R), where
@ () is a finite set of states,
@ /N is a finite set of n players,

e A=Ay x.---x A,,, where A; is a finite set of actions
available to player i,

@ P:(Q x Ax@Q— [0,1] is the transition probability function;
P(q.a,q) is the probability of transitioning from state g to
state ¢ after joint action a, and

@ R=r1,...,1n, where r; : Q x A — R is a real-valued payoff

function for player i.




Behavioral strategy: s;(h,; a;) returns the probability of
playing action ga; for history h,.

Markov strategy: s. is a behavioral strategy in which
si(h; a) = si(h’y; &) if g, = 'y, where g, and g’, are the
final states of h, and h’,, respectively.

Markov perfect equilibrium:

oA strategy profile consisting of only Markov strategies
that is a Nash equilibrium regardless of the starting state
oAnalogous to subgame-perfect equilibrium

»Every n-player, general sum, discounted reward stochastic
game has a Markov perfect equilibrium.

»For every 2-player, general sum, average reward, irreducible
stochastic game has a Nash equilibrium.

\\\\\\\
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R-Max Algorithm

Maintain an internal model of the stochastic
game

Calculate an optimal policy according to
model and carry it out

Update model based on observations

Calculate a new optimal policy and repeat




R-Max Algorithm Input

Input

= N: number of games

= k: number of actions in each game
= €: the error bound

= O: the probability of failure

= R__ :the maximum reward value

= T: the e-return mixing time of an optimal policy




Initialization

Initializing the internal model

Create states {G,...G_} to represent the stages in the
stochastic game

Create a fictitious game G,

Initialize all rewards to (R 0)

max/
Set all transfer functions to point to G,

Associate a boolean known/unknown variable with
each entry in each game, initialized to unknown

Associate a list of states reached with each entry,
which is initially empty




lteration

Repeat

= Compute an optimal policy for T steps based on the
current internal model

= Execute that policy for T steps

= After each step:

= If an entry was visited for the first time, update the rewards
based on observations

= Update the list of states reached from that entry

= If the list of states reached now contains c+1 elements
= mark that entry as known
= update the transition function
= compute a new policy




CONCLUSION

» Game Theory has considered in the past CS-like
representations (e.g. when players are modeled as
automata), and work in Al has considered the use of
game-theoretic mechanisms.

» The connections between the Al and game theory as
consists of three parts:
1. Re-visiting economic and game-theoretic
approaches, in view of their use in computational
settings.
2. Deal with computational issues in the context of
game-theoretic approaches.
3. Integrate game-theoretic approaches and CS
approaches in order to yield new theories for non-
cooperative multi-agent systems
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THANK YOU!

Al. LOADED A STRANGE GAME.
>>> ANALYZE LCVE THE ONLY WINNING
MOVE 16 NOT TO PLAY,
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