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Game Theory is 
mathematical study of 
interaction between 
rational, self-interested 
agents. 

Game Theory applies 
mathematical models to 
this interaction under the 
assumption that each 
agent’s actions impact 
the pay-offs of all other 
participants in the game. 



The normal-form representation of an n-player game specifies 
the players' strategy spaces S1,S2,…, Sn and their payoff functions 
u1,u2..., un. We denote this game by  
G = {S1,S2,…, Sn ; u1,u2..., un }. 



 Two suspects are arrested and charged with a 
crime. The police lack sufficient evidence to 
convict the suspects, unless at least one 
confesses. The police explain the consequences 
that will follow from the actions they could take. 

 If neither confesses then both will be sentenced 
to one month in jail.  

 If both confess then both will be sentenced to jail 
for six months.  

 Finally, if one confesses but the other does not, 
then the confessor will be released immediately 
but the other will be sentenced to nine months in 
jail. 



 A man and a woman are trying to 
decide on an evening's entertainment. 

 While at separate workplaces, Pat and 
Chris must choose to attend either the 
opera or a football match. 

  Both players would rather spend the 
evening together than apart, but Pat 
would rather they be together at the 
football match while Chris would 
rather they be together at the opera. 

 



Confess Not Confess 

Confess -6,-6 0,-9 

Not Confess -9,0 -1,-1 

Football Opera 

Football 2,1 0,0 

Opera 0,0 1,2 

Prisoner’s dilemma 

Battle of the Sexes 

Prisoner 1 

Prisoner 2 

Chris 

Pat 





Left Middle Right 

Up 1,0 1,2 0,1 

Down 0,3 0,1 2,0 

Left Middle 

Up 1,0 1,2 

Down 0,3 0,1 

Left Middle 

Up 1,0 1,2 

Middle 

Up 1,2 





Definition of Mixed Strategies:  In the normal-form game G 
= {S1,S2,…, Sn ; u1,u2..., un }, suppose Si = {si1,si2,…, sik }. 
Then a mixed strategy for player i is a probability 
distribution p = (pi1,pi2,…, pik ), where 0 < pik< 1 for k = 1 
, . . . , K and pi1+ pi2 +…..+ piK = 1 





 A strategy profile s = (s1,s2,…, sn ) is a Nash 
equilibrium if for every i, si is a best response to S-i, 
i.e., no agent can do better by unilaterally changing 
his/her strategy 

  Theorem (Nash, 1951): Every game with a finite 
number of agents and action profiles has at least one 
Nash equilibrium 

Left Centre Right 

Top 0,4 4,0 5,3 

Middle 4,0 0, 4 5,3 

Bottom 3,5 3,5 6,6 



 Both game theory and Artificial Intelligence 
deal with “intelligent” agents, who are 
embodied in a complex world.  

 These agents may interact with other agents, 
and try to optimize their behavior, while 
employing various reasoning and learning 
techniques.  

 The above three issues are fundamental both 
to Game theory/Economics and to AI/CS. 



Game Theory Artificial Intelligence 

 Protocols for agent 
interactions that are 
subject to rational 
constraints, i.e. agents 
will follow their own 
interests. 

 Vickrey Auction – 
highest bidder pays 
the second highest bid, 
truth revealing 
equilibrium 

 Protocols for 
distributed 
environments, 
emphasizing 
computational 
constraints and 
distributed systems 
features 

 Network Routing – Pay 
the owner declared 
cost plus added value  



Game Theory Artificial Intelligence 

 Emphasizes learning as a 
descriptive tool, 
explaining the 
emergence of Nash 
equilibrium or predicting 
agents’ behavior 

 In an MDP, the agent is in 
one of finitely many 
states, and can select 
one of many actions, 
which lead to a certain 
payoff and to a new state 

 Emphasizes a normative 
approach, and deals with 
algorithms for  obtaining 
high payoffs in uncertain  
environments based on 
observed feedback 

 In Stochastic Game, MDP 
is modeled by a game 
between two players, 
whose actions determine 
their payoffs as well as 
the transition probability.  



Game Theory Artificial Intelligence 

 Modeling agents as 
expected utility 
maximizers, i.e. it 
assigns probabilities to 
the states of the 
environment, and utilities 
to various outcomes or 
consequences, and 
chooses the action, 
protocol, strategy or 
policy that maximizes its 
expected utility. 

 Work in CS/AI has 
considered, in addition 
to that classical decision 
criterion, other forms of 
decision making. This 
includes, for example, 
competitive analysis (aka 
the competitive ratio 
decision criterion) , and 
the safety-level (worst 
case) maximization 
approaches. 



 The model has the following global behavior: if 
Neuron-1 fires, then Neuron-2 shall fire, and if 
Neuron-1 is at rest, then Neuron-2 shall be at 
rest (it is possible to assume an information 
exchange via biochemical substances or electrical 
signals between two) 

 Neuron-1 can either fire or be at rest, and 
Neuron-2 has to respond accordingly 

 f (x) ={ 
 

Fire    if x>t, 

Rest    otherwise. 



Relationships between (a) biological neurons, (b) 
game theory, and (c) artificial neurons. 



 Player-1 believes that Player-2 will play the 
mixed strategy (q, 1 − q), then the expected 
payoff for Player-1 for playing the pure 
strategy Fire is f ∗(q) = q and for playing the 
pure strategy Rest is g∗(q) = 1-q . 

 If q > 1/2, then f ∗(q) > g∗(q) in which case 
Player-1 should play strategy Fire else if q < 
1/2, then g∗(q) > f∗(q) in which case Player-1 
should adopt strategy Rest. If q = 1/2, 
Player-1 is indifferent about which strategy to 
play. 



Decision-making support for Player-1 
if Player-1 believes that Player-2 plays 
the mixed strategy (q, 1 − q). 

Player-1’s best response 
(maximizing the expected payoff 
r∗(q)) from playing (r, 1 − r) 
when Player-2 plays (q, 1 − q). 
(The additional information on 
the vertical axis (r, and 
strategies Fire, Rest) aims to 
support the interpretation of this 
figure.) 



 Player-1’s expected payoff r∗(q) from playing 
the mixed strategy (r, 1 − r) when Player-2 
plays the mixed strategy (q, 1 − q) is the 
weighted sum of the expected payoff for each 
of the pure strategies (Fire, Rest) where the 
weights are the probabilities (r, 1 − r).  

 r∗(q) = r · q · (1) + r · (1 − q) · (0) + (1 − r) · q · (0) + (1 
− r) · (1 − q) · (1)  
= r · q + (1 − r) · (1 − q) = 1−q + r(2q − 1). 

 If Player-2 plays mixed strategy (q, 1 − q), 
then Player-1’s best response is to play 
(i)strategy Fire if q > 1/2,  
(ii) strategy Rest if q < 1/2, and  
(iii)any strategy if q = 1/2. 



Mesh Plot of z=r.q + (1-r).(1-q) 

3-D Plot of z=r.q + (1-r).(1-q) 



Combined view of best responses for 
Player-1 and Player-2. The three 
intersections between r∗(q) and r∗(r) are 
the Nash equilibriums in the game. 

‣The interesting features in 
Figure 8 include those points 
where r∗(q) and r∗(r) intersect 
(i.e., points (0, 0), (1/2, 1/2), and 
(1, 1)). 
‣If Neuron-1 fires then Neuron-
2’s best response is to fire too.  
‣If Neuron-1 is at rest, then 
Neuron-2’s best response is to 
be at rest too.  
‣An interesting situation exists 
for point (1/2, 1/2). This 
situation may be interpreted as if 
‣Neuron-2 is unaware about the 
state (strategy) of Neuron-1, 
‣then Neuron-2 may play either 
strategy, and vice versa. 

Neural Nash Equilibrium 



A one-dimensional, linearly separable, and 
supervised learning classification task. 

For the algorithm, imagine a one-dimensional, linearly separable, 
and supervised learning classification task. 
The classification scenario in figure takes place in an arbitrary real-
valued x, y coordinate system, involving n objects, such that for 
every object i yields xi ∈ [0, 1]. 
In their current positions, P’ correctly separates all objects into their 
corresponding classes, whereas P incorrectly classifies objects. At the 
start of a learning scenario, P may have been positioned randomly 
and in successive steps the learning algorithm may have moved this 
starting point until it finished in location P’, which is a solution to the 
problem. 
 



Neuron-1’s point of view: (a), (b) 



(c) Neuron-1’s point of view, (d) Neuron-2’s point of view 



Every figure includes two lines f0 and either fQ or fR, which are all payoff 
functions. Line f0 is fixed and always remains unaltered during the 
learning process. In addition, f0 represents the payoff function for Class 
1 and so, per definition, the resting state for Neuron-1. The second line 
fQ is determined by the angle Q, where 0 ≤ Q ≤ 90 degree. This line 
represents the payoff function for Class 2 (i.e., the firing state for 
Neuron-1). The angle Q is derived by the uniform mapping function m : 
q = [0, 1] → Q = [0◦, 90◦] 
The learning algorithm will find out in the training phase that 
this point does not separate the two classes correctly and take 
appropriate action. In this case, the algorithm will increase 
the angle Q, which moves the intersection point further to 
the left. There may be several such steps until the algorithm 
arrives at point P in Figure 13(b), which is a solution to 
the problem. 
Any unknown object xl to the left of point P produces two intersections, 
one at fQ and one at f0. However, any of these points yields f0(xl ) > 
fQ(xl). That is, the payoff for f0(xl) (rest) is always larger than the payoff 
for fQ(xl) (fire). Therefore, Neuron-1 chooses to stay at rest for any such 
value. For similar reasons, for any object xr to the right of P, Neuron- 
1 chooses to fire, because for any such value, the payoff f0(xl ) < fQ(xl ). 



Algorithm Game Theory Neural Learning 

Start with a randomly chosen angle Q0; 

Let k = 1; 

While there exist misclassified objects by Qk−1 do 

Let oj be a misclassified object; 

Update the angle to Qk = Qk-1 ± η; 

Increment k; 

end-While; 

g (x) ={  
where xP’ is the x coordinate of intersection point P’ and 
in general, the separation point determined by the learning 
algorithm. 

Fire if x> xP’  

Rest otherwise 





Behavioral strategy: si(ht; aij) returns the probability of 
playing action aij for history ht. 
 
Markov strategy: si is a behavioral strategy in which    
si(ht; aij) = si(h’t; aij) if qt = q’t , where qt and q’t are the 
final states of ht and h’t , respectively. 
 
Markov perfect equilibrium:  
oA strategy profile consisting of only Markov strategies 
that is a Nash equilibrium regardless of the starting state 
oAnalogous to subgame-perfect equilibrium 

Every n-player, general sum, discounted reward stochastic 

game has a Markov perfect equilibrium. 

For every 2-player, general sum, average reward, irreducible 

stochastic game has a Nash equilibrium. 











 Game Theory has considered in the past CS-like 
representations (e.g. when players are modeled as 
automata), and work in AI has considered the use of 
game-theoretic mechanisms. 

 The connections between the AI and game theory as 
consists of three parts: 
1. Re-visiting economic and game-theoretic 
approaches, in view of their use in computational 
settings. 
2. Deal with computational issues in the context of 
game-theoretic approaches. 
3. Integrate game-theoretic approaches and CS 
approaches in order to yield new theories for non-
cooperative multi-agent systems 



 Application of Game Theory to Neuronal 
Networks 
Alfons Schuster and Yoko Yamaguchi, 2009 

 Game Theory and Artificial Intelligence 
Moshe Tennenholtz, 2002 

 A Primer in Game Theory 
Robert Gibbons (Published in 1992) 

 Stochastic Games 
L. S. Shapley, 1953 

 R-Max – A General Polynomial Time Algorithm 
for Near Optimal Reinforcement Learning 
Ronen I. Brafman and Moshe Tennenholtz, 2002 




