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A Maximum Likelihood Approach to Continuous
Speech Recognition

LALIT R. BAHL, MEMBER, IEEE, FREDERICK JELINEK, FELLOW, IEEE, AND ROBERT L. MERCER

Abstract-Speech recognition is formulated as a problem of maximum
likelihood decoding. This formulation requires statistical models of the
speech production process. In this paper, we describe a number of sta-
tistical models for use in speech recognition. We give special attention
to determining the parameters for such models from sparse data. We
also describe two decoding methods, one appropriate for constrained
artificial languages and one appropriate for more realistic decoding
tasks. To illustrate the usefulness of the methods described, we review
a number of decoding results that have been obtained with them.

Index Terms-Markov models, maximum likelihood, parameter esti-
mation, speech recognition, statistical models.

I. INTRODUCTION
THE AIM of research in automatic speech recognition is

the development of a device that transcribes natural speech
automatically. Three areas of speech recognition research can
be distinguished: 1) isolated word recognition where words are
separated by distinct pauses; 2) continuous speech recognition
where sentences are produced continuously in a natural man-
ner; and 3) speech understanding where the aim is not tran-
scription but understanding in the sense that the system (e.g.,
a robot or a database query system) responds correctly to a
spoken instruction or request. Commercially available prod-
ucts exist for isolated word recognition with vocabularies of
up to several hundred words.
Although this article is confined to continuous speech recog-

nition (CSR), the statistical methods described are applicable
to the other two areas of research as well. Acoustics, phonet-
ics, and signal processing are discussed here only as required to
provide background for the exposition of statistical methods
used in the research carried out at IBM.
Products which recognize continuously spoken small vocabu-

laries are already on the market but the goal of unrestricted
continuous speech recognition is far from being realized. All
current research is carried out relative to task domains which
greatly restrict the sentences that can be uttered. These task
domains are of two kinds: those where the allowed sentences
are prescribed a priori by a grammar designed by the experi-
menter (referred to as artificial tasks), and those related to a
limited area of natural discourse which the experimenter tries
to model from observed data (referred to as natural tasks).
Examples of natural tasks are the text of business letters,
patent applications, book reviews, etc.
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Fig. 1. A continuous speech recognition system.
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Fig. 2. The communication theory view of speech recognition.

In addition to the constraint imposed by the task domain,
the experimental environment is often restricted in several
other ways. For example, at IBM speech is recorded with a

headset microphone; the system is tuned to a single talker; the
talker is prompted by a script, false starts are eliminated, etc.;
recognition often requires many seconds of CPU time for each
second of speech.
The basic CSR system consists of an acoustic processor

(AP) followed by a linguistic decoder (LD) as shown in Fig. 1.

Traditionally, the acoustic processor is designed to act as a

phonetician, transcribing the speech waveform into a string of
phonetic symbols, while the linguistic decoder translates the
possibly garbled phonetic string into a string of words. In
more recent work [1] -[6], the acoustic processor does not

produce a phonetic transcription, but rather produces a string
of labels each of which characterizes the speech waveform lo-
cally over a short time interval (see Section II).
In Fig. 2, speech recognition is formulated as a problem in

communication theory. The speaker and acoustic processor

are combined into an acoustic channel, the speaker transform-
ing the text into a speech waveform and the acoustic processor

acting as a data transducer and compressor. The channel pro-

vides the linguistic decoder with a noisy string from which it
must recover the message-in this case the original text. One is

free to modify the channel by adjusting the acoustic processor

but unlike in communications, one cannot choose the code be-
cause it is fixed by the language being spoken. It is possible to
allow feedback from the decoder to the acoustic processor but
the mathematical consequences of such a step are not well
understood. By not including feedback we facilitate a consis-
tent and streamlined formulation of the linguistic decoding
problem.
The rest of this article is divided as follows. Section II gives

a brief summary of acoustic processing techniques. Section
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III formulates the problem of linguistic decoding and shows
the necessity of statistical modeling of the text and of the
acoustic channel. Section IV introduces Markov models of
speech processes. Section V describes an elegant linguistic
decoder based on dynamic programming that is practical under
certain conditions. Section VI deals with the practical aspects
of the sentence hypothesis search conducted by the linguistic
decoder. Sections VII and VIII introduce algorithms for ex-
tracting model parameter values automatically from data. Sec-
tion IX discusses methods of assessing the performance of CSR
systems, and the relative difficulty of recognition tasks. Fi-
nally, in Section X we illustrate the capabilities of current rec-
ognition systems by describing the results of certain recogni-
tion experiments.

II. ACOUSTIC PROCESSORS

An acoustic processor (AP) acts as a data compressor of the
speech waveform. The output of the AP should 1) preserve
the information important to recognition and 2) be amenable
to statistical characterization. If the AP ou'tput can be easily
interpreted by people, it is possible to judge the extent to
which the AP fulfills requirement 1).
Typically, an AP is a signal processor, which transforms the

speech waveform into a string of parameter vectors, followed
by a pattern classifier, which transforms the string of parame-
ter vectors into a string of labels from a finite alphabet. If the
pattern classifier is absent, then the AP produces an unlabeled
string of parameter vectors. In a segmenting AP, the speech
waveform is segmented into distinct phonetic events (usually
phones1) and each of these'varying length portions is then
labeled.
A time-synchronous AP produces parameter vectors com-

puted from successive fixed-length intervals of the speech
waveform. The distance from the parameter vector to each of
a finite set of standard parameter vectors, or prototypes, is
computed. The label for the parameter vector is the name of
the prototype to which it is closest.

In early acoustic processors, prototypes were obtained from
speech data labeled by an expert phonetician. In more recent
acoustic processors, prototypes are obtained automatically
from unlabeled speech data [3], [4].
A typical example of a time-synchronous AP is the IBM

centisecond acoustic processor (CSAP). The acoustic param-
eters used by CSAP are the energies in each of 80 frequency
bands in steps of 100 Hz covering the range from 0-8000 Hz.
They are computed once every centisecond using a 2 cs win-
dow. The pattern classifier has 45 prototypes corresponding
roughly to the phones of English. Each prototype for a given
speaker is obtained from several samples of his speech which
has been carefully labeled by a phonetician.

III. LINGUISTIC DECODER
The AP produces an output stringy. From this stringy, the

linguistic decoder (LD) makes an estimate w of the word
string w produced by the text generator (see Fig. 1). To mini-

1 For an introductory discussion of phonetics, see Lyons 17, pp.
99-1321

mize the probability of error, w must be chosen so that

P(lw|y) = maxP(w|y).
w

By Bayes' rule

P(W) P(Y I w)P(wfIy)=~ P(y)

(3.1)

(3.2)

Since P(y) does not depend on w, maximizingP(wjy) is equiv-
alent to maximizing the likelihood P(w, y) = P(w) P(y fw).
Here P(w) is the a priori probability that the word sequence w
will be produced by 'the text generator, and P(y 1w) is the
probability with which the acoustic channel (see Fig. 1) trans-
forms the word string w into the AP output stringy.
To estimate P(w), the LD requires a probabilistic model of

the text generator, which we refer to as the language model.
For most artificial tasks, the language modeling problem is
quite simple. Often the language is specified by a small finite-
state or context-free grammar to which probabilities can be
easily attached. For example, the Raleigh language (see Sec-
tion IV) is specified by Fig. 7 where all words possible at any
point are considered equally likely.
For natural tasks the estimation of P(w) is much more diffi-

cult. Linguistics has not progressed to the point that it can
provide a grammar for a sizable subset of natural English,
which is useful for speech recognition. In addition, the inter-
est in linguistics has been in specifying the sentences of a lan-
guage, but not their probabilities. Our approach has been to
model the text generator as a Markov source, the parameters
of which are estimated from a large sample of text.
To estimate P(y 1w), the other component of the likelihood,

the LD requires a probabilistic model of the acoustic chan-
nel, which must account for the speaker's phonological and
acoustic-phonetic variations and for the performance of the
acoustic processor. Once models are available for computing
P(w) and P(y{w), it is in principle possible for the LD to com-
pute the likelihood of each sentence in the language and deter-
mine the most likely w directly. However, even a small artifi-
cial language such as the Raleigh language has several million
possible sentences. It is therefore necessary in practice to
carry out a suboptimal search. A dynamic programming
search algorithm, the applicability of which is limited to tasks
of moderate complexity, is described in Section V. A more
general tree search decoding algorithm is described in Sec-
tion VI.

IV. MARKOV SOURCE MODELING OF
SPEECH PROCESSES

Notation and Terminology
By a Markov source, we mean a collection of states con-

nected to one another by transitions which produce symbols
from a finite alphabet. Each transition t from a state s has
associated with it a probability q,(t) which is the probability
that t will be chosen next when s is reached. From the states
of a Markov source we choose one state as the initial state and
one state as the final state. The Markov source then assigns
probabilities to all strings of transitions from the initial state
to the final state. Fig. 3 shows an example of a Markov source.
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Fig. 3. A Markov source.

We define a Markov source more formally as follows. Let S
be a finite set of states, J a finite set of transitions, and (d a
finite alphabet. Two elements of 8, s1 and SF are distinguished
as initial and final states, respectively. The structure of a Mar-
kov source is a 1-1 mapping M: Jf-+ S X ( X S. If M(t)
(1, a, r) then we refer to 1 as the predecessor state of t, a as the
output symbol associated with t, and r as the successor state of
t; we write I = L(t), a = A (t), and r = R(t).
The parameters of a Markov source are probabilities q,(t),

sES - {SF}, t E , such that

qs(t)=O if s#L(t)

and

E qs(t) = I, s ES - {SF}.
t

In general, the transition probabilities associated with one
state are different from those associated with another. How-
ever, this need not always be the case. We say that state s1 is
tied to state s2 if there exists a 1-1 correspondence T,,2: To
J such that qs1 (t) = q,2(Ts, ,2(t)) for all transitions t. It is
easily verified that the relationship of being tied is an equiva-
lence relation and hence induces a partition of S into sets of
states which are mutually tied.
A string of n transitions 2tln for which L(t1) = s, is called a

path; if R(t,) = SF, then we refer to it as a complete path. The
probability of a path tl is given by

n
P(j) qsI(ti) fH qR(ti_l)(ti). (4.2)

i=2

Associated with path tn is an output symbol string a' =A (tn).
A particular output string an, may in general arise from more
than one path. Thus, the probability P(al') is given by

p(an ) =Ep(tn ) b(A (tn ), asn) (4.3)
ntI

where

1 if a=b
6(a, b)=

0 otherwise.(4.4)0 otherwise.

A Markov source for which each output string a' determines a
unique path is called a unifilar Markov source.

2te is a short-hand notation for the concatenation of the symbols
tl, t2, - * *, tn. Strings are indicated in boldface throughout.

(4.1)

Fig. 4. A Markov source with null transitions.

bit ... bmt,

Fig. 5. A filtered Markov source.

bi #) ¢ b2 0 b3

Fig. 6. A sequence of transitions to illustrate spanning. b, spans tl;
b2 spans t2, t3, t4; and b3 spans t5, t6-

In practice it is useful to allow transitions which produce no
output. These null transitions are represented diagrammati-
cally by interrupted lines (see Fig. 4). Rather than deal with
null transitions directly, we have found it convenient to asso-
ciate with them the distinguished latter 4. We then add to the
Markov source a filter (see Fig. 5) which removes O, transform-
ing the output sequence a' into an observed sequence b',
where bi E 5I = d - {f}. Although more general sources can
be handled, we shall restrict our attention to sources which do
not have closed circuits of null transitions.

If t1 is a path which produces the observed output sequence
bm, then we say that bi spans tj if tj is the transition which
produced bi or if tj is a null transition immediately preceding a
transition spanned by bi. For example, in Fig. 6, b1 spans
t, ; b2 spans t2, t3, and t4; and b3 spans tS and t6.
A major advantage of using Markov source models for the

text generator and acoustic channel is that once the structure
is specified, the parameters can be estimated automatically
from data (see Sections VII and VIII). Furthermore, compu-
tationally efficient algorithms exist for computing P(w) and
P(y|w) with such models (see Sections V and VI). Markov
source models also allow easy estimation of the relative diffi-
culty of recognition tasks (see Section IX).

The Language Model
Since the language model has to assign probabilities to

strings of words, it is natural for its output alphabet to be the
vocabulary of the language. However, the output alphabet can
include shorter units such as word stems, prefixes, suffixes,

al,..., ant,....
MARKOV

SOURCE., FILTERSOURCE
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Fig. 7. Grammar of the Raleigh language.

etc., from which word sequences can be derived. Fig. 7 is the
model of the artificial Raleigh language which has been used in
some of our experiments. The output alphabet is the 250-
word vocabulary of the language. For diagrammatic conve-
nience, sets of transitions between pairs of states have been re-
placed by single transitions with an associated list of possible
output words.
For natural languages, the structure of the model is not given

a priori. However,

P(W71)= P(W1)P(W2fWi)P(w3Jw)| ) P(wn IwI)
n

fH P(Wk W 1) (4.5)
k=1

and so it is natural to consider structures for which a word
string wkyl uniquely determines the state of the model. A
particularly simple model is the N-gram model where the
state at time k - 1 corresponds to the N - 1 most recent
words Wk -N +1,*, Wk -1. This is equivalent to using the
approximation

P(wD- H P(Wk k -Nw )
k=1

N-gram models are computationally practical only for small
values of N. In order to reflect longer term memory, the state
can be made dependent on a syntactic analysis of the entire
past word stringw, , as might be obtained from an appro-
priate grammar of the language.

The Acoustic Channel Model
The AP is deterministic and hence the same waveform will

always give rise to the same AP output string. However, for a
given word sequence, the speaker can produce a great variety
of waveforms resulting in a corresponding variation in the AP
output string. Some of the variation arises because there are
many different ways to pronounce the same word (this is
called phonological variation). Other factors include rate of

Fig. 8. A word-based Markov subsource.

articulation, talker's position relative to the microphone, am-
bient noise, etc.
We will only consider the problem of modeling the acoustic

channel for single words. Models for word strings can be con-
structed by concatenation of these simpler, single word mod-
els. Fig. 8 is an example of the structure of a Markov source
for a single word. The double arcs represent sets of transitions,
one for each symbol in the output alphabet. The straight-line
path represents pronunciations of average length, while the
transitions above and below can lengthen and shorten the pro-
nunciation, respectively. Since the pronunciation of a word
depends on the environment in which it occurs, it may be nec-
essary in practice to make the parameters of the model depend
on the phonetic environment provided by the preceding and
following words.
Since the same sounds can occur in many different words,

portions of one model will be similar to portions of many
other models. The number of parameters required to specify
all the word models can be reduced by modeling sounds or
phones rather than words directly. This leads to a two-level
model in which word strings are transformed into phone
strings which are then transformed into AP output strings. Us-
ing this approach, the acoustic channel model is built up from
two components: a set of phonetic subsources, one for each
word; and a set of acoustic subsources, one for each phone.
Let? be the alphabet of phones under consideration. A

phonetic subsource for a word is a Markov source with output
alphabet 5P which specifies the pronunciations possible for the
word and assigns a probability to each of them. Fig. 9 shows
the structure of a phonetic Markov subsource for the word
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h
v u

v

Fig. 9. A phonetic Markov subsource.

Fig. 10. An acoustic Markov subsource.

ACOUSTIC ACOUSTIC
SUBSOURCE SUBSOURCE
OF PHONE OF PHONE

ACOUSTIC I \/
SUBSOURCE /
O))FPHONE e A <_
t ~~~~~I/

ACOUSTIC ACOUSTIC
SUBSOURCE SUBSOURCE
OF PHONE O HN

Fig. 11. A phone-based Markov source based on the phonetic subsource
of Fig. 9.

two. The structures of these subsources may be derived by the
application of phonological rules to dictionary pronunciations
for the words [8].
An acoustic subsource for a phone is a Markov source with

output alphabet 'Y which specifies the possible AP output
strings for that phone and assigns a probability to each of
them. Fig. 10 shows the structure of an acoustic Markov sub-
source used with the IBM Centisecond Acoustic Processor.
By replacing each of the transitions in the phonetic sub-

source by the acoustic subsource for the corresponding phone,
we obtain a Markov source model for the acoustic channel.
This embedding process is illustrated in Fig. 11.
Whereas the structure of the phonetic subsources can be de-

rived in a principled way from phonological rules, the struc-
tures of the word model in Fig. 8 and the phone model in Fig.
9 are fairly arbitrary. Many possible structures seem reason-
able; the ones shown here are very simple ones which have
been used successfully in recognition experiments.

V. VITERBI LINGUISTIC DECODING

In the preceding section we have shown that acoustic sub-
sources can be embedded in phonetic subsources to produce a
model for the acoustic channel. In a similar fashion we can
embed acoustic channel word models in the Markov source
specifying the language model by replacing each transition by
the model of the corresponding word. The resulting Markov
source is a model for the entire stochastic process to the left
of the linguistic decoder in Fig. 1. Each complete path t1
through the model determines a unique word sequence w=
W(t4) and a unique AP output string yT = Y(tj ) and has the
associated probability P(t1l). Using well known minimum-cost
path-finding algorithms, it is possible to determine for a given

AP string y', the complete path t1 which maximizes the
probability P(t4) subject to the constraint Y(t1) =y7. A de-
coder based on this strategy would then produce as its output
W(t4). This decoding strategy is not optimal since it may not
maximize the likelihood P(w, y). In fact, for a given pair w,y
there are many complete paths t for which W(t) = w and
Y(t) =y. To minimize the probability of error, one must sum
P(t) over all these paths and select the w for which the sum is
maximum. Nevertheless, good recognition results have been
obtained using this suboptimal decoding strategy [ 1], [2], [9] .
A simple method for finding the most likely path is a dy-

namic programming scheme [10] called the Viterbi Algorithm
[11] . Let Tk(S) be the most probable path to state s which
produces output yIk. Let Vk(S) = P(Tk(s)) denote the probabil-
ity of the path Tk(S). We wish to determine 'Tm(SF).3 Because
of the Markov nature of the process, Tk(S) can be shown to be
an extension of rk -(S') for some s'. Therefore, Tk(S) and
Vk(s) can be computed recursively from Trk -1 (s) and Vk - 1 (s)
starting with the boundary conditions VO(s1)= 1 and 'r(s1)
being the null string. Let C(s, a) = {t|R(t) . s, A(t) = a}.
Then

Vk(s) = max {max Vk -1 (L(t)) qL(t)(t),
t E C(s, Yk)

max Vk(L(t)) qL(t)(t)}-
teC(s, 0)

(5.1)

If the maximizing transition t is in C(S, Yk) then 1rk(S) =
k-1 (L(t)) t; otherwise t must be in C(s, 0) and 'ik(S) =

Tk(L(t)) t, where - denotes concatenation. Note that in (5.1)
Vk(s) depends on Vk(L(t)) for tEC(s, '). Vk(L(t)) must
therefore be computed before Vk(s). Because closed circuits
of null loops are not allowed,3 it is possible to order the states
S1, S2, S3, * * *, such that t E C(sk, 0) and L(t) = s; only ifj<
k. If we then compute Vk(sl), Vk(s2), etc., in sequence, the
necessary values will always be available when required.
Many shortcuts to reduce the amount of computation and

storage are possible and we will briefly mention some of the
more useful ones. If logarithms of probabilities are used, no
multiplications are necessary and the entire search can be car-
ried out with additions and comparisons only. Computation
and storage needs can be reduced by saving for each k, only
those states having relatively large values of Vk(s). This can be
achieved by first computing Vk(max) = maxs Vk(s) and then
eliminating all states s having Vk(s) < A Vk (max) where A is
an appropriately chosen threshold. This makes the search sub-
optimal, but in practice there is little or no degradation in per-
formance if the threshold A is chosen with care.
This type of search can be used quite successfully on artifi-

cial tasks such as the Raleigh language task, where the number
of states is of the order of 1iO.
In addition to its application to suboptimal decoding, the

Viterbi algorithm can be used to align an AP output string y
with a known word string w, by determining the most likely
path t which produces y when w is uttered. The path t speci-
fies a sequence of phones which the algorithm puts into corre-

spondence with the symbols forming the sequence y. Inspec-

3See Section IV, Notation and Terminology.
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tion of this alignment allows the experimenter to judge the
adequacy of his models and provides an intuitive check on the
performance of the AP.

VI. STACK LINGUISTIC DECODING
In the previous section we presented a decoding procedure

which finds the most likely complete path t for a given AP
output string y. This decoding method is computationally
feasible only if the state space is fairly small, as is the case in
most artificial tasks. However, in the Laser task (described in
Section X), the number of states is of the order of 1011 which
makes the Viterbi search unattractive. Furthermore, the pro-
cedure is suboptimal because the word string corresponding to
the most likely path t may not be the most likely word string.
In this section we present a graph-search decoding method
which attempts to find the most likely word string. This
method can be used with large state spaces.
Search methods which attempt to find optimal paths through

graphs have been used extensively in information theory [12]
and in artificial intelligence [13]. Since we are interested in
finding the most likely word string, the appropriate graph to
search is the word graph generated by the language model.
When a complete search of the language model graph is com-
putationally impractical, some heuristic must be used for re-
ducing the computation. Here we describe one specific heuris-
tic method that has been used successfully. To reduce the
amount of computation, a left-to-right search starting at the
initial state and exploring successively longer paths can be car-
ried out. To carry out this kind of search we need to define a
likelihood function which allows us to compare incomplete
paths of varying length. An obvious choice may seem to be
the probability of uttering the (incomplete) sequence w and
producing some initial subsequence of the observed string y,
i.e.,

n .n
E: N(W,y1=P(W) E P(y'i IW). (6.1)
i=O i=o

The first term on the right-hand side is the a priori probability
of the word sequence w. The second term, referred to as the
acoustic match, is the sum over i of the probability that w pro-
duces an initial substringyi of the AP output stringy. Unfor-
tunately, the value of (6.1) will decrease with lengthening
word sequences w, making it unsuitable for comparing incom-
plete paths of different lengths. Some form of normalization
to account for different path lengths is needed. As in the
Fano metric used for sequential decoding [12], it is advanta-
geous to have a likelihood function which increases slowly
along the most likely path, and decreases along other paths.
This can be accomplished by a likelihood function of the form

n

A(w) = E P(w, y i )aOn-i Ep(w', yn+ 62
i=0 W

If we consider P(w,yy ) to be the cost associated with account-
ing for the initial part of the AP string y' by the word string
w, then . P(w', y+ l I w,yA) represents the expected cost of
accounting for the remainder of the AP stringyn+ 1 with some
continuation w' of w. The normalizing factor a can be varied

to control the average rate of growth of A(w) along the most
likely path. In practice, a can be chosen by trial and error.
An accurate estimate of 2I P(w',y+1 w,y ) is, of course,

impossible in practice, but we can approximate it by ignoring
the dependence on w. An estimate ofE(yn+ 1 fy ), the average
value of P(w', yin+ 1 |y), can be obtained from training data.
In practice, a Markov-type approximation of the form

(6.3)E(y)lHlY1)f E(ylj|Yi)
j= i+ 1

can be used. Using k = 1 is usually adequate.
The likelihood used for incomplete paths during the search

is then given by

(6.4)A(w) = P(w) .PY1|)I Ot ,i(i+I Y 1
i=o

For complete paths, the likelihood is

A(w) = P(w) P(yn w), (6.5)

i.e., the probability that w was uttered and produced the com-
plete output stringyn.
The likelihood of a successor path wk = Wk- Wk can be

computed incrementally from the likelihood of its immediate
predecessor wk- . The a priori probability P(wk) is easily ob-
tained from the language model using the recursion

(6.6)

The acoustic match values P(y1 wk) can be computed incre-
mentally if the values P(y |Wk -') have been saved [14].
A search based on this likelihood function is easily imple-

mented by having a stack in which entries of the form (w,
A(w)) are stored. The stack, ordered by decreasing values of
A(w), initially contains a single entry corresponding to the ini-
tial state of the language model. The term stack as used here
refers to an ordered list in which entries can be inserted at any
position. At each iteration of the search, the top stack entry is
examined. If it is an incomplete path, the extensions of this
path are evaluated and inserted in the stack. If the top path is
a complete path, the search terminates with the path at the
top of the stack being the decoded path.
Since the search is not exhaustive, it is possible that the de-

coded sentence is not the most likely one. A poorly articu-
lated word resulting in a poor acoustic match, or the occur-
rence of a word with low a priori probability can cause the
local likelihood of the most likely path to fall, which may then
result in the path being prematurely abandoned. In particular,
short function words like the, a, and of, are often poorly ar-
ticulated, causing the likelihood to fall. At each iteration, all
paths having likelihood within a threshold A of the maximum
likelihood path in the stack are extended. The probability of
prematurely abandoning the most likely path depends strongly
on the choice of A which controls the width of the search.
Smaller values of A will decrease the amount of search at the
expense of having a higher probability of not finding the most
likely path. In practice, A can be adjusted by trial and error to
give a satisfactory balance between recognition accuracy and
computation time. More complicated likelihood functions and
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extension strategies have also been used but they are beyond
the scope of this paper.

VII. AUTOMATIC ESTIMATION OF MARKOV SOURCE
PARAMETERS FROM DATA

Let Pi(t, b7) be the joint probability that b7 is observed at
the output of a filtered Markov source and that the ith output
bi spanst.3
The count

(7.1)

where

'y(t, s, a) = qL(t)(t) 6(R(t), s) 6(A(t), a). (7.5)

As with the Viterbi algorithm described in Section V, the ab-
sence of null circuits guarantees that the states can be ordered
so that ci(si) may be determined from cxi- (s), sEGS, and
cxi(sk), k < .

The probabilities,i(s) satisfy the equations

(7.6a)13m(SF) = 1

Pi3(s) = E g3(R(t)) t(t, s, 4)
m

c(t,bm ) A Pi(t,b1m)P(bm )
i=l

is the Bayes a posteriori estimate of the number of times that
the transition t is used when the string b7 is produced. If the
counts are normalized so that the total count for transitions
from a given state is 1, then it is reasonable to expect that the
resulting relative frequency

fS(t, b7) _ Ec(t, bm) 6(s, L(t)) (7.2)

t'

will approach the transition probability qs(t) as m increases.
This suggests the following iterative procedure for obtaining

estimates of qs(t).
1) Make initial guesses qS(t).
2) Set j =O.
3) Compute Pi(t, b7) for all i and t based on qs(t).
4) Compute fs(t, b7) and obtain new estimates q +I (t)-

fs(t, bm).
5) Set j = j + 1.
6) Repeat from 3.
To apply this procedure, we need a simple method for com-

puting Pi(t, bn). Now Pi(t, bm) is just the probability that a
string of transitions ending in L(t) will produce the observed
sequence b1-,, times the probability that t will be taken once
L(t) is reached, times the probability that a string of transi-
tions starting with R(t) will produce the remainder of the ob-
served sequence. If A(t) = 4, then the remainder of the ob-
served sequence is bM, if A(t) = 4) then, of course, A(t) = bi
and the remainder of the observed sequence is bM1. Thus if
ai(s) denotes the probability of producing the observed se-
quence b' by a sequence of transitions ending in the state s,
and f3i(s) denotes the probability of producing the observed
sequence bm by a string of transitions starting from the state
s, then

Pi(t, b7) = {i- 1 (L(t)) qL(t)(t) Oi3(R(t))
°ci - I (L(t)) qL(t)(t) Oi+ 1 (R(t'

if A(t) =

t)) if A(t)=bi.

The probabilities ai(s) satisfy the equation [15]

ai0(s) = E(s, SI) + Ea0(L(t)) y(t, s, 4)

t

t

+ Eai(L(t))Y(t, s, )) i >1I

+ E Pi+ 1 (R(t)) t(t, s, bi)
t

i.m,s/:sF (7.6b)

where am + 1(S) = 0 and

t(t, s, a) = qL(t)(t) a5(L(t), s) 6(A(t), a). (7.7)

Step 3) of the iterative procedure above then consists of
computing axs in a forward pass over the data, ,Bi in a backward
pass over the data, and finally Pi(t, b7) from (7.3). We refer
to the iterative procedure together with the method described
for computing Pi(t, b7) as the Forward-Backward Algorithm.
The probability, P(b7), of the observed sequence b7 is a

function of the probabilities q,(t). To display this dependence
explicitly, we write P(b7, q,(t)). Baum [ 16] has proven that
P(b , 5 1(t)) q P(b7, q1(t)) with equality only if ql(t) is a
stationary point (extremum or inflexion point) of P(bm, ).
This result also holds if the transition distributions of some of
the states are known and hence held fixed or if some of the
states are tied4 to one another thereby reducing the number of
independent transition distributions.
When applied to a Markov source language model based on

N-grams as described in Section IV the Forward-Backward
Algorithm reduces simply to counting the number of times
K(wf wN - 1), that w' follows the sequence wN - 1, and setting

Wq 1K(wIwi ) (7.8)
w

This is equivalent to maximum likelihood estimation of the
transition probabilities.
When applied to a Markov source model for the acoustic

channel, the Forward-Backward Algorithm is more interesting.
Let us first consider the word-based channel model indicated
in Fig. 8. A known text wl is read by the speaker and pro-
cessed by the acoustic processor to produce an output string
y 7. The Markov source corresponding to the text is con-
structed from the subsources for the words with the assump-
tion that states of the source which arise from the same sub-
source state are tied. The Forward-Backward Algorithm then
is used to estimate the transition probabilities of the sub-
sources from the output string ym . To obtain reliable esti-
mates of the subsource transition probabilities, it is necessary
that each word in the vocabulary occur sufficiently often in

4For definition of tying, see Section IV, Notation and Terminology.
For details of the Forward-Backward Algorithm extended to machines
with tied states, see [151.
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the text w'. For large vocabularies this may require an
bitant amount of reading.
The use of the phone-based model shown in Fig. H

overcome this problem. The Markov source for the t
constructed from phonetic and acoustic subsources a
scribed in Section IV. States in the source arising fror
same acoustic subsource state are assumed to be tied. In
tion, states from different phonetic subsources are assum
be tied if transitions leaving the states result from the
phonological rules. With these assumptions the training
can be considerably shorter since it need only include
ciently many instances of each phone and each phonetic r

VIII. PARAMETER ESTIMATION FROM
INSUFFICIENT DATA

It is often the case in practice that the data available a
sufficient for a reliable determination of all of the paran
of a Markov model. For example, the trigram model fc
Laser Patent Text corpus [18] used at IBM Research is I
on 1.5 million words. Trigrams which do not occur a:
these 1.5 million words are assigned zero probability by:
mum likelihood estimation, a degenerate case of the For+
Backward Algorithm. Even though each of these trigra
very improbable, there are so many of them that they c
tute 23 percent of the trigrams present in new samples of
In other words, after looking at 1.5 million trigrams the
ability that the next one seen will never have been seen b
is roughly 0.23. The Forward-Backward Algorithm prc
an adequate probabilistic characterization of the training
but the characterization may be poor for new data. A m(
for handling this problem, presented in detail in [15], i
cussed in this section.
Consider a Markov source model the parameters of whi(

to be estimated from data b . We assume that bj is in
cient for the reliable estimation of all of the parameters.
Let qs(t) be forward-backward estimates of the tran

probabilities based on b' and let *qs(t) be the correspo
estimates obtained when certain of the states are assum
be tied. Where the estimates q's(t) are unreliable, we v

like to fall back to the more reliably estimated *qL'S(t)
where q4s(t) is reliable we would like to use it directly.
A convenient way to achieve this is to choose as fina

mates of qs(t) a linear combination of qs(t) and *q's(t).
we let qs(t) be given by

qs(t) = Xsc"(t) + (1 - XS) *'(t)

with Xs chosen close to I when qs(t) is reliable and clc
0 when it is not.

Fig. 12(a) shows the part of the transition structure
Markov source related to the state s. Equation (8.1) can
terpreted in terms of the associated Markov source sho
Fig. 12(b), in which each state is replaced by three stat
Fig. 12(b), s^ corresponds directly to s in Fig. 12(a). Th
transitions from s to s and s* have transition probab
equal to Xs and 1 - Xs, respectively. The transitions ou
have probabilities qa(t) = a^5(t) while those out of s* have
abilities *q,(t) = *qs(t). The structure of the associated
kov source is completely determined by the structure c

original Markov source and by the tyings assumed for ol
ing more reliable parameter estimates.

A

)SI

S
A

S2

A
53S3

suffi- (a) (b)
rule. Fig. 12. (a) Part of transition structure of a Markov source. (b) The

corresponding part of an associated interpolated Markov source.

The interpretation of (8.1) as an associated Markov source
ire in- immediately suggests that the parameters X, be determined by
neters the Forward-Backward (FB) Algorithm. However, since the
)r the X parameters were introduced to predict as yet unseen data,
based rather than to account for the training data b', the FB Algo-
mong rithm must be modified. We wish to extract the X values from
maxi- data that was not used to determine the distributions q,(t) and
ward- *q,(t) [see (8.1)]. Since presumably we have only bl at our
1ms is disposal, we will proceed by the deleted interpolation method.
onsti- We shall divide bT into n blocks and for i = 1, , n estimate
text. X from the ith block while using qs(t) and *qs(t) estimates de-
prob- rived from the remaining blocks.
efore Since the Xs values should depend on the reliability of the
)vides estimate qs(t), it is natural to associate them with the esti-

3data mated relative frequency of occurrence of the state s. We thus
ethod decide on k relative frequency ranges and aim to determine
is dis- corresponding values X(1), * - *, X(k). Then Xs = X(i) if the

relative frequency of s was estimated to fall within the ith
ch are range.
suffi- We partition the state space S into subsets of tied states El,

2, S* and determine the transition correspondence
S1itin functions Ts,s, for all pairs of tied states s, s'. We recall from

tnding Section IV that then *qs(t) = *qs,(Ts,s(t)) for all pairs s, s' E
led to Si, i 1, * * * ,r. If L(t)E Si, then T(t)= {t'|t'= TL(t),s'(t),
vould s'eS} is the set of transitions that are tied to t. Since
),but TL(t),L(t)(t) = t, then t E %f(t).

We divide the data bl into n blocks of length l(m = nl). We
1 esti- run the FB Algorithm in the ordinary way, but on the last
Thus iteration we establish separate counters

(j - 1)l m
(8.1) cj(t,bm)-A P,(t,bm )+ E Pi(t,=bm)

(8.2)

for each deleted block of data. The above values will give rise
to detailed distributions

(8.3)qs(t, ) = c,(t, bim) 6(s, L(t))
s1,tI,bm ) (s,L(t))

It'

and to tied distributions

b(s, L(t)) E ci (tI,bm)
~~~~~~t'eE J(t)

*q3(t) = ,6(s, L(t')) E c(t",bm) -

tI t" E (t')

(8.4)
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Note that q,(t, j) and *q,(t, j) do not depend directly on
the output data belonging to the jth block. Thus the data
in the jth block can be considered new in relation to these
probabilities.
We now run the FB Algorithm on data b7l to determine the

X values based on n associated Markov sources which have
fixed distributions over transitions leaving the states s and s*.
These X values are obtained from estimates of probabilities of
transitions leaving the states s of the associated Markov source
[see Fig. 12(b)] . Only k counter pairs pertaining to the values
X(i) and I - X(i) being estimated are established. When run-
ning on the data of the jth block, the jth associated Markov
source is used based on the probabilities q,(t, j) and *qs(t, j).
The values Xs used in the jth block are chosen by computing
the frequency estimates

c,c(t, b' ) 5 (s, L(t))

q(s,j) = bm) (8.5)
t'

and setting Xs = X(i) if q(s, j) belonged to the ith frequency
range. Also, the Xs counts estimated from the jth block are
then added to the contents of the ith counter pair.
After X values have been computed, new test data is predicted

using an associated Markov source based on probabilities

n
t(s,L cj(t,bm)

qs(t) = i= 1n
,: d (s, L (t'))Ect', bml)
t' ci (

*qs(t) =

n
5 (s, L(t)) E , (t', bm )

t'c T(t) /=I

t~~~~~~£ 6(S L(t')) It

E jt, bm )
t'I t"cJ(t') j=l

(8.6)

(8.7)

and X, values chosen from the derived set X(1), - - *, X(k), de-
pending on the range within which the estimate

n
, 6(s, L() , iQj, bm

q(s) t 1=1 (8.8)

EEc,(tl,bm)
t' j=1

falls. It might appear that the convergence of the estimation
of the interpolation weights X(i) needs proving since it involves
the use of different fixed distributions q(s, j) over different
blocks j = 1, , n. However, some thought will reveal that
the problem can be reformulated in terms of a single move
complex Markov source, some of whose parameters are tied
and others fixed. This source is identical to the trellis that is
needed to carry out the X estimation. The process consists of
carrying out the Forward-Backward Algorithms for estimating
the parameters of the complex Markov source, and thus con-
verges by the Baum theorem [16].
This approach to modeling data generation is called deleted

interpolation. Several variations are possible some of which

/pSw/+l(w/lI(wlw2))

,,,, = ,2(w 1W2))/

N\ P(W i3(Wgw2))
, p (w / 4( w1 ,w2))

Fig. 13. A section of the interpolated trigram language model cor-
responding to the state determined by the word pair w1, w2.

are described in [15] . In particular, it is possible to have v dif-
ferent tying partitions of the state space corresponding to
transition distributions (i)qs(t), i = 1, * * , v, and to obtain the
final estimates by the formula

(8.9)qs(t) = E Xi(S) (I)qs(t)
i=l

with Xi(s) values determined by the Forward-Backward
Algorithm.
We illustrate this deleted interpolation algorithm with an ap-

plication to the trigram language model for the laser patent
text corpus used at IBM.
Let 7r(w) be the syntactic part of speech (e.g., noun, verb,

etc.) assigned to the word w. Let Oi, i = 1, , 4 be functions
classifying the language model states wl w2 as follows:

41 (W1W2) = {(WI W2)}

k2(W 1 W2) = {(WW2)1r(w) = r(w1)}

03(WIW2) = {(WW')j17(W) = 7(W1), 7r(W') = 7r(W2)}
4 (WI W2) = {all pairs of words}. (8.10)

Let K(Oj(w1 w2)) be the number of times that members of the
set Oi(w1w2) occur in the training text. Finally, partition the
state space into sets

)5 (W1W2 ) = {ww'|K(Qk1(ww')) = K(Oj (wiW2 3) = 1

j=1, 2,- - - ,i- 1,

K(o/(ww')) = K(oi(w1w2))> 1} (8.11)

which will be used to tie the associated states wlw2 accord-
ing to the frequency of word pair occurrence. Note that if
K(Q I(w1w2)) > 2, then 05(wI w2) is simply the set of all word
pairs that occurred in the corpus exactly as many times as

wIw2 did. A different X distribution will correspond to each
different set (8.11). The language model transition probabili-
ties are given by the formula

4

P(w3lwlW2) = Xi(ks(w1W2))Pi(W3j1i(WIW2)).
1=1

(8.12)

Fig. 13 illustrates this graphically. We use deleted interpola-
tion also in estimating the probabilities associated with the
acoustic channel model.
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IX. A MEASURE OF DIFFICULTY FOR FINITE
STATE RECOGNITION TASKS

Research in continuous speech recognition has led to the de-
velopment of a number of artificial tasks. In order to compare
the performance of different systems on sentences from differ-
ent tasks, it is necessary to have a measure of the intrinsic dif-
ficulty of a task. Although vocabulary size is almost always
mentioned in the description of an artificial task, by itself it is
practically useless as a measure of difficulty. In this section
we describe perplexity, a measure of difficulty based on well
established information theoretic principles. The experimental
results described in the next section show a clear correlation
between increasing perplexity and increasing error rate.
Perplexity is defined in terms of the information theoretic

concept of entropy. The tasks used in speech recognition
can be adequately modeled as unifilar3 Markov sources. Let
P(wJs) be the probability that word w will be produced next
when the current state is s. The entropy, H,(w) associated
with state s is

Hs(w) = - P(w IS) Iog, P(w IS). (9.1)
w

The entropy H(w) of the task is simply the average value of
Hs(w). Thus if ir(s) is the probability of being in state s during
the production of a sentence, then

H(w) - i(s) Hs(w). (9.2)
s

The perplexity S(w) of the task is given in terms of its en-
tropy H(w) by

S(w) = 2H(W) (9.3)

Often, artificially constrained tasks specify the sentences
possible without attaching probabilities to them. Although
the task perplexity depends on the probabilities assigned to
the sentences, Shannon [17] has shown that the maximum en-
tropy achievable for a task with N possible sentences of aver-
age length 1 is 1/1 10g2 N. Hence the maximum perplexity is
Nl/l. If all the sentences for the task could be arranged as a
regular tree, the number of branches emanating from a node
would be N'll. So, for artificially constrained tasks, perplex-
ity can be thought of as the average number of alternative
words at each point. For the Raleigh task of Fig. 7, the num-
ber of alternative words ranges from 1 to 24, and the perplex-
ity is 7.27.
For natural language tasks, some sentences are much more

probable than others and so the maximum perplexity is not
useful as a measure of difficulty. However, the perplexity,
which can be computed from the probabilities of the sentences,
remains a useful measure. Information theory shows that for a
language with entropy H, we can ignore all but the most prob-
able 2lH strings of length 1 and still achieve any prescribed er-
ror rate.
The definition of perplexity makes no use of the phonetic

character of the words in the vocabulary of the language. Two
tasks may have the same perplexity but one may have words
that are substantially longer than the other, thereby making
recognition easier. This problem can be overcome by consid-

ering the sentences of the task to be strings ofphonemes rather
than strings of words. We can then compute the phoneme
level perplexity of the two tasks and normalize them to words
of equal length. In this way the perplexity of the task with
the greater average word length will be lowered relative to that
of the other task.
Some pairs of phonemes are more confusable than others. It

is possible therefore to have two tasks with the same phoneme
level perplexity, one of which is much easier to recognize than
the other, simply because its words are acoustically farther
apart. We can take this into account by considering the joint
probability distribution P(w, y) of word sequences w and
acoustic sequences y and determining from it the conditional
entropy H(w|y). y could be the output string from a particu-
lar acoustic processor or simply the time waveform itself. Un-
fortunately, this is far too difficult to compute in practice.
Perplexity reflects the difficulty of recognition when a com-

plete search can be performed. The effect on the error rate of
performing an incomplete search may be more severe for one
language than for another, even though they have the same
perplexity. However, as the results in the next section show,
there is a clear correlation between perplexity and error rate.

X. EXPERIMENTAL RESULTS
The results given in this section, obtained before 1980, are

described in detail in [3], [51, [6], [18], [19].
Table I shows the effect of training set size of recognition

error rate. 200 sentences from the Raleigh Language (100
training and 100 test) were recognized using a segmenting
acoustic processor and a stack algorithm decoder. We initially
estimated the acoustic channel model parameters by examining
samples of acoustic processor output. These parameter values
were then refined by applying the Forward-Backward Algo-
rithm to training sets of increasing size. While for small train-
ing set sizes performance on training sentences should be
substantially better than on test sentences, for sufficiently large
training set sizes performance on training and text sentences
should be about equal. By this criterion a training set size of
600 sentences is adequate for determining the parameters of
this acoustic channel model. Notice that even a training set
size as small as 200 sentences leads to a substantial reduction
in error rate as compared to decoding with the initially esti-
mated channel model parameters.
The power of automatic training is evident from Table I in

the dramatic decrease in error rate resulting from training even
with a small amount of data. The results in Table II further
demonstrate the power of automatic training. Here, three
versions of the acoustic channel model are used, each weaker
than the previous one. The "complete acoustic channel model"
result corresponds to the last line of Table I. The acoustic
channel model in this case is built up from phonetic subsources
and acoustic subsources as described in Section IV. The pho-
netic subsources produce many different strings for each word
reflecting phonological modifications due to rate of articulation,
dialect, etc. The "single pronunciation" result is obtained with
an acoustic channel model in which the phonetic subsources
allow only a single pronunciation for each word. Finally, the
"spelling-based pronunciation" result is obtained with an
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TABLE I
EFFECT OF TRAINING SET SIZE ON ERROR RATE

% of Sentences
Decoded Incorrectly

Training Set
Size Test Training

0 80% -

200 23% 12%
400 20% 13%
600 15% 16%
800 18% 16%
1070 17% 14%

TABLE II
EFFECT OF WEAK ACOUSTICS CHANNEL MODELS

% of Sentences
Model Type Decoded Incorrectly

Complete Acoustic Channel Model 17%
Single Pronounciation 25%
Spelling-Based Pronounciation 57%

TABLE III
DECODING RESULTS FOR SEVERAL DIFFERENT ACOUSTIC

PROCESSORS WITH THE RALEIGH LANGUAGE

Error Rate

Acoustic Processor Sentence Word

MAP 27% 3.6%
CSAP 2% 0.2%
TRIVIAL 2% 0.2%

TABLE IV
RECOGNITION RESULTS FOR SEVERAL TASKS OF VARYING PERPLEXITY

Vocabulary Word Error Rate

Task Size Perplexity Segmenting AP Time-Synchronous AP

CMU-AIX05 1011 4.53 0.8% 0.1%
Raleigh 250 7.27 3.1% 0.6%o
Laser 1000 24.13 33.1% 8.9%

acoustic channel model in which the single pronunciation
allowed by the phonetic subsources is based directly on the
letter-by-letter spelling of the word. This leads to absurd
pronunciation models for some of the words. For example,
through is modeled as if the final g and h were pronounced.
The trained parameters for the acoustic channel with spelling-
based pronunciations show that letters are often deleted by
the acoustic processor reflecting the large number of silent
letters in English spelling. Although the results obtained in
this way are much worse than those obtained with the other
two channel models, they are still considerably better than
the results obtained with the complete channel model using
parameters estimated by people.
Table III shows results on the Raleigh Language for several

different acoustic processors. In each case the same set of
100 sentences was decoded using the stack decoding algorithm.
MAP is a segmenting acoustic processor, while CSAP and
TRIVIAL are nonsegmenting acoustic processors. Prototypes
for CSAP were selected by hand from an examination of
speech data. Those for TRIVIAL were obtained automatically
from a Viterbi alignment of about one hour of speech data.
Table IV summarizes the performance of the stack decoding

algorithm with a segmenting and a time-synchronous acoustic

processor on three tasks of varying perplexity. The Raleigh
task has been described earlier in the paper. The Laser task is
a natural language task used at IBM. It consists of sentences
from the text of patents in laser technology. To limit the
vocabulary, only sentences made entirely from the 1000 most
frequent words in the complete laser corpus are considered.
The CMU-AIX05 task [20] is the task used by Carnegie-Mellon
University in their Speech Understanding System to meet the
ARPA specifications [211. All these results were obtained
with sentences spoken by a single talker in a sound-treated
room. Approximately 1000 sentences were used for estimating
the parameters of the acoustic channel model in each of the
experiments. There is a clear correlation between perplexity
and error rate. The CMU-AIXO5 task has the largest vocabu-
lary but the smallest perplexity. Note that for each of the
tasks, the performance of the time-synchronous acoustic
processor is considerably better than that of the segmenting
acoustic processor.
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