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Abstract
We propose a variational autoencoder model based on style
loss for learning representations of material microstructure
images. We show using latent space traversals that the model
captures important attributes of microstructures that are re-
sponsible for mechanical properties of materials and is ca-
pable of generating microstructures with particular attributes.
We discuss how the latent vectors can be used to establish a
linkage between structure and properties and enable inverse
inference which is crucial for designing materials and prod-
ucts with target properties.

1 Introduction
When a material is put through a manufacturing process,
it’s internal structure is modified, which in turn affects the
properties of the material. Materials scientists seek answers
to questions such as what processing is required to achieve
the target properties and how do the structure and properties
change with the process parameters. It is well known that
these mappings are complex, highly non-linear and multiple
processing paths can lead to the same property. These map-
pings can be best described through the space of structures
(Kalidindi 2015). The most commonly available description
of the structure is in the form of microscopic images, which
is known as the microstructure (because the length scale is
roughly 10−6m). Obtaining compact representations of mi-
crostructure images 1 is therefore crucial for building robust
process-structure-property linkages.

The microstructure contains a lot of information such as
grain size distribution, volume fractions of different phases
and so on. Depending upon the material system under con-
sideration, very different types of features and information
is relevant. Traditionally, materials scientists have used sta-
tistical methods such as n-point correlation functions and
Gaussian random fields for obtaining representations of mi-
crostructures. The n-point correlation functions capture the
degree of spatial correlation among the locations and con-
stituents in a probabilistic sense (Kalidindi 2015). For ex-
ample, given a microstructure containing two phases, the 2-
point statistics can be used to encode the probability that
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1For simplicity, henceforth referred to as just microstructure

(a) Cast iron (b) Ultra-high carbon steel

Figure 1: Example Microstructures - The information of in-
terest varies with the material system under consideration.
(Credit: (a) Tewary et al. [to be published], (b) (DeCost et al.
2017)

a random vector of length r has both its ends in the same
phase. These are the most widely used correlation functions
for formal mathematical characterization of microstructures.
However, it has been shown that different microstructures
may, under some conditions, lead to similar 2-point corre-
lations (Cang et al. 2018). And beyond n = 2 (i.e., higher-
order spatial correlations), n-point statistics quickly become
intractable. Hence, these methods are not easily extensible
in general.

Another common alternative is using physical descriptors.
For example, consider the two microstructures in Figure 1.
The first one is a cast iron microstructure containing spher-
ical grains of graphite, and the ferrite phase in background.
Here, some physical descriptors of interest are the sizes of
the spherical grains, their density and so on. Whereas the
second one is an ultra-high carbon steel microstructure con-
taining pearlite phase as an alternating layer with the ferrite
phase. Here the important physical descriptors are the ori-
entation of the lamellar pattern, the inter-lamellar spacing
and so on. One needs to employ specific image processing
to extract physical descriptors from given microstructures.
Also, such a representation is specific to the material system
and is tightly tied to the expertise of a materials scientist in
selecting the right descriptors.

Researchers are looking at the recent methods of repre-
sentation learning from the deep learning literature as an al-
ternative to the above-mentioned microstructure representa-
tion methods. A major challenge in leveraging these tech-
niques is the scarcity of data. Transfer learning can be used
to mitigate this up to some extent. However, a further chal-
lenge is that it is even more difficult to get microstructures



with associated property values, owing to the high cost and
time required to do the testing. Deep generative models such
as the variational autoencoders aim to learn good latent rep-
resentations in an unsupervised manner. In absence of a su-
pervisory signal, these models try to learn latent representa-
tions from which the original inputs can be reconstructed
most accurately. Such a representation is expected to en-
code all non-redundant information from the image. Fur-
ther, these models are capable of synthesizing images that
are realistic and statistically equivalent to the training im-
ages. Synthesis is a common goal to support computational
design because the cost and difficulty of experimental char-
acterization is often prohibitively high (Hsu et al. 2020). In-
spired by this, we propose a variational autoencoder archi-
tecture to learn low-dimensional microstructure representa-
tions. We demonstrate that the learned latent representation
indeed encodes important features, with a use-case in which
such features are known in advance. The representation can
be physically interpreted in that individual latent dimensions
correspond to different features which are known to be im-
portant from the physics knowledge. Such a representation is
therefore expected to work well for modeling the structure-
property linkages.

Our key contribution is an interpretable microstructure
representation method that

• captures physically significant factors of variation which
are primarily responsible for the mechanical properties of
the material

• can be used to generate different microstructures by vary-
ing these factors

2 Related work
With the recent advances in machine learning, there is a re-
newed interest among materials scientists to leverage these
advances for material microstructure modeling. Bostanabad
et al. (Bostanabad et al. 2018) provides a detailed review of
the state-of-the-art in computational characterization of ma-
terial microstructure. We discuss some of the more recent
works on application of deep learning for this task.

In some recent works, generative adversarial nets (GANs)
and variational autoencoders have been used for material
microstructure generation. Often the focus is on generation
rather than representation learning. For example, (Banko
et al. 2020) use a conditional GAN to generate microstruc-
tures of thin films conditioned on process parameters and
chemical composition. While Hsu et al. (Hsu et al. 2020)
use GANs to generate small patches of 3D microstructure of
solid oxide fuel cell anodes. They show that the properties
computed by numerical simulations on the generated mi-
crostructures closely match the experimental observations.
Chun et al. (Chun et al. 2020) use a patch-based GAN to
generate microstructures of heterogeneous energetic materi-
als (propellants explosives and pyrotechnics). The input to
their model consists of a pair of vectors for each grid loca-
tion (patch). They show that during generation, the two vec-
tors can be used to control overall morphology. However the
intuitive meanings of individual dimensions of these vec-
tors are not clear and the authors point to this as possible

further work. Liu et al. (Liu et al. 2015) propose a design
method for inferring structures with target properties using
Bayesian optimization around the GAN generator. The au-
thors talk about the possibility of using the implicitly learned
representation from the GAN discriminator for a structure-
property model, but do not present any study on this. Proba-
bly the closest to our work is Cang et al. (Cang et al. 2018),
where a variational autoencoder model with style loss is pro-
posed for generating microstructures of sandstone. The au-
thors show that the generated microstructures are more pre-
dictive of the properties (Young’s modulus, diffusivity and
permeability) than those generated using Gaussian random
field method. They add the style loss to the vanilla VAE ob-
jective function, retaining the original reconstruction loss.
However, the vanilla VAE reconstruction loss is not suitable
for microstructure images (see section 3.2 for more details).
So we completely replace the reconstruction loss with the
style loss. We also show that physically significant factors
of variation are explicitly encoded in the learned representa-
tion. To the best of our knowledge, ours is the first work on a
variational autoencoder model for microstructure generation
and interpretable representation learning.

3 Methodology
3.1 Variational Autoencoders
Variational Autoencoders (Kingma and Welling 2013) are
typically used to learn latent representations of input sam-
ples in an unsupervised manner. The underlying graphical
model is pθ(x, z) = pθ(z)pθ(x|z), where x is the observed
variable (input sample) and z is latent variable (the represen-
tation). Given an input sample, the latent variables can be in-
ferred from the posterior p(z|x). Computing this distribution
is a hard problem due to the intractable partition function re-
quired in applying Bayes’ theorem. In variational inference,
an approximate posterior distribution qφ(z|x) from a known
family is found by minimizing the KL divergence from the
true posterior. That is, find q∗ such that

q∗ = argminqφDKL(qφ(z|x)‖pθ(z|x))

However, computing the KL divergence also involves the
same intractable integrals as in posterior computation. So
instead of minimizing it, another tractable quantity called
the Evidence Lower Bound (ELBO) derived from the above
equation is maximized and it is shown that maximizing
ELBO is equivalent to minimizing the KL divergence. The
ELBO is defined as:

L = −DKL(qφ(z|x)‖pθ(z)) + Eqφ(z|x) [log pθ(x|z)] (1)

The above loss function can be roughly understood as fol-
lows : The second term is the expected log-likelihood of
getting back the same x starting with the inferred z from the
approximate posterior qφ(z|x). It is often called the recon-
struction loss. The first term is a regularizer that penalizes
posteriors very different from the prior.

The prior pθ(z) and the posterior qφ(z|x) are generally
assumed to be Gaussian. The distribution qφ is parameter-
ized by an inference network and resembles an encoder. It
outputs the µ and σ of the posterior for a given input sam-
ple (i.e. qφ(z|xi) = N(z;µxi , σxi)). The distribution pθ is



parameterized by a generator network and resembles a de-
coder. It outputs a sample from the distribution pθ given a
latent vector z.

3.2 Texture-VAE
However, the reconstruction loss in the original VAE objec-
tive is not suitable to model the mismatch between a mi-
crostructure image and its reconstruction. We discuss the
reasons as follows. In the decoder network, the reconstruc-
tion x̂ is a deterministic function of z. Now consider the re-
construction loss : Eqφ(z|x) [log pθ(x|z)]. With continuous
valued outputs such as images, the generator distribution is
generally assumed to be Gaussian whose mean µ = f(z; θ)
is computed by the generator network. Thus, µ = x̂. Since
the reconstruction loss is an expectation of log of a Gaus-
sian density, it is equivalent to (x− µ)2 (i.e. (x− x̂)2) up to
some constants. Hence the reconstruction loss is equivalent
to pixel-wise mean squared error. It has been argued in many
works that pixel-wise comparison is not capable of captur-
ing perceptual image similarity (see for example (Ding et al.
2020), (Dosovitskiy and Brox 2016) or (Larsen et al. 2016)).
This is especially true in case of microstructures, which are
a type of texture images (they contain randomly repeating
patterns such as spheres, lines and so on). Imagine a stripes
pattern and another one, shifted one stripe right. A human
instantly understands that they are essentially “the same tex-
ture”, but the pixel-wise difference could be huge. To sum-
marize, the reconstruction loss term in equation 1 is not suit-
able for texture images since it leads to a pixel-by-pixel com-
parison between input and reconstructed image. This moti-
vates replacing the reconstruction loss with a better suited
measure for textures.

Since textures are different from natural images that gen-
erally contain objects, special considerations are needed for
representing textures. In texture synthesis literature, Gatys
et al. (Gatys, Ecker, and Bethge 2015) proposed to use the
feature correlations computed from different layers of a pre-
trained network (e.g. VGG19) to represent textures. The fea-
ture correlations at layer l are encoded by the Gram ma-
trix G(l), whose elements are inner products between fea-
ture maps at that layer. If layer l has Cl feature maps of size
Wl ×Hl then:

Glij = ΣkF
l
ikF

l
jk

Where,Ml = Wl ∗Hl and F l is the Cl×Ml matrix with the
flattened feature maps as rows. A texture can then be repre-
sented by the concatenation of all Gram matrices. Given an
input texture image, the authors propose a method to gen-
erate similar textures by starting with a random white noise
image and minimizing the squared difference between the
representations. Note that the optimization is with respect to
the image pixels; the weights of the pre-trained network are
not changed. They call the squared difference between Gram
matrix concatenations as the “style loss”:

Lstyle(x, x̂) =

L∑
l=0

wl
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l

∑
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(Glij − Ĝlij)2
 (2)

While this approach of “generation-by-optimization” was

a major improvement over state-of-the-art in texture syn-
thesis, it required an optimization step for each genera-
tion. This method has been extended to feed-forward ap-
proaches that learn a separate generator network to mini-
mize the style loss, for example (Johnson, Alahi, and Fei-
Fei 2016), (Ulyanov, Vedaldi, and Lempitsky 2017) and
(Li et al. 2017). The generator transforms a random in-
put vector (typically a standard Gaussian) into texture im-
ages. However, these methods are not well suited for repre-
sentation learning because they focus on generation. Most
of these methods require learning one network per texture
(or per style). The difficulty in using the same network for
multiple styles seems to stem from the fact that the Gram
matrices of different styles have very different scales and
the generator adapts itself to a particular style. There have
been some works on methods capable of learning multiple
styles/textures with a single model and they seem to focus
on normalizing the styles and forcing a correlation between
the random input and generated image. Variational autoen-
coders naturally address this issue with the encoder learning
different representations for different styles. Lastly, while
the concatenation of Gram matrices characterizes a texture
well, it may not be of much use as a representation vector
by itself for other downstream tasks because it is very high
dimensional (often, more dimensions than the image itself).

Combining these ideas, we propose using the style loss to
train a variational autoencoder. In particular we replace the
reconstruction loss (i.e. the second term) in equation 1 with
the style loss (given in equation 2). We keep the first term
as it is - this regularizes the latent representation by forc-
ing all posteriors to be not far from the prior. With a stan-
dard Gaussian prior with diagonal covariance matrix, this
term encourages a representation with statistically indepen-
dent dimensions, which is expected to be interpretable. This
is discussed in more detail in section 4.3. We call our model
the texture-VAE. We show that a single VAE model trained
with style loss can be used for multiple textures.

3.3 Model architecture

The architecture of our VAE model is shown in Figure 2.
We use the pre-trained VGG19 network (Simonyan and Zis-
serman 2014) for computing the style loss and as the en-
coder. The last two fully connected layers of the encoder that
compute µ and σ of the posterior are trained from scratch.
For the remaining layers, the pre-trained weights are used
without fine-tuning. The decoder contains four blocks of de-
convolution followed by nearest-neighbor upsampling and
LeakyReLU nonlinearity with slope 0.3. It has been previ-
ously observed in literature that for generation, explicit up-
sampling works better than using fractional strided convo-
lutions (Odena, Dumoulin, and Olah 2016). We use a filter
size of 3× 3 throughout.

For computing the style loss, we use the pooling layer
at each scale, i.e. pool 1 to pool 4 and conv 1 1. Gatys et
al. (Gatys, Ecker, and Bethge 2015) recommend using the
convolutional layers instead of pooling. But we found that
in our case, pooling layers worked better.



Figure 2: The variational autoencoder model with style loss.
Lstyle is the sum of squared differences between Gram ma-
trices at all layers and� denotes the inner product of feature
maps (F l)TF l

4 Experiments
4.1 Dataset
We use microstructures of cast iron to demonstrate the ca-
pabilities of our texture-VAE model. These microstructures
were produced in a separate study by Ujjal Tewary et al. (to
be published) of microstructure and mechanical properties
of cast iron produced using sand casting. In the process of
sand casting, molten iron ore mixed with C, Si, Mg etc. is
poured into molds of desired size and kept in sand for cool-
ing. In case of cylindrical molds, the sample cools from the
surface to its core, so the radius governs the cooling rate.
In the study, cylindrical castings of various radii (resulting
in different cooling rates) were made using sand casting.
Microstructures of these cylindrical castings were then cap-
tured using a scanning electron microscope. The original
study consisted of many experiments but we describe here
only those that correspond to the microstructures we used.

We use the microstructures of 12 samples resulting from
combination of four cooling rates corresponding to cylin-
ders of radius 12, 24, 36 and 48mm and three compositions
(mainly varying Magnesium - 0, 0.025 and 0.045% weight).
The images were captured at 100µm length scale, without
any etching. The microstructures mainly contain ferrite and
graphite phases. The cooling rate and initial composition af-
fect the grain size, density and morphology (i.e. appearance
of the graphite - spherical, flaky or both) of the resulting mi-
crostructure. Figure 3 shows small 128x128 patches from a
few microstructures. We have chosen these so that the vari-
ations in grain size (small to large), density (low to high)
and morphology (spherical, flakes and intermediate) can be
clearly seen.

Out of the 12, 6 samples corresponding to the lowest and
highest cooling rates were also subjected to uni-axial com-
pression to obtain their stress-strain behavior. We used all 12
microstructures to train the texture-VAE model while the 6
with property values were used for property prediction task
described in section 4.4.

(a) (b) (c) (d) (e) (f)

Figure 3: Example patch from each microstructure. (a) small
dense spheres, (b) small sparse spheres, (c) large spheres, (d)
intermediate (e) fine flakes and (f) thick flakes

Table 1: Average similarity between reconstructed and orig-
inal patches

Latent Dims Score
DISTS STSIM-2

64 0.7031 0.7592
32 0.7257 0.7640
16 0.6995 0.7609
8 0.6962 0.7591

The original microstructures were 2048x1532. We use
patches of 128x128 cropped by sliding a window with stride
50 for our training.

4.2 Evaluation
While there are many metrics of perceptual image similar-
ity, very few of them are focused on texture images. Two
recently proposed metrics of texture similarity that seem to
be best suited for our evaluation are - i) Deep Image Struc-
ture and Texture Similarity - DISTS (Ding et al. 2020) and
ii) Structural Texture Similarity - STSIM (Ehmann, Pappas,
and Neuhoff 2013). The DISTS score consists of two terms -
first one compares the means of features maps (from a vari-
ant of pre-trained VGG) and the second one computes cross
covariance between them. The two terms are combined us-
ing weights tuned to match human judgments and be invari-
ant to re-sampled patches from the same texture. The STSIM
metric is based on a similar modification of Structural Sim-
ilarity Metric (SSIM) to completely avoid pixel-by-pixel
comparison, but is computed in the Fourier spectrum. We
used the authors’ implementation of DISTS2. STSIM has
several configurations and we compute the STSIM-2 metric
using a publicly available implementation3. Table 1 shows
the average similarity over 100 instances between original
patches and reconstructions from texture-VAE models with
number of latent vector dimensions 8, 16, 32 and 64. The
similarity scores are on a scale of 0 to 1, 1 being the high-
est. The similarity seems to slightly increase with increas-
ing number of latent dimensions, but beyond 64 it didn’t in-
crease, so we stopped there.

One way to qualitatively evaluate a VAE model is to look
at the reconstructed and newly generated samples. Figure 4
shows some example reconstructions while Figure 5 shows
some randomly generated samples from texture-VAE model
with 64 latent dimensions. Although the latent-32 model
had slightly higher similarity scores for reconstructions than

2https://github.com/dingkeyan93/DISTS
3https://github.com/andreydung/Steerable-filter



(a) Small spheres (b) Large spheres (c) Intermediate

(d) Intermediate (e) Fine flakes (f) Thick flakes

Figure 4: Example reconstructions

(a) (b) (c) (d) (e)

Figure 5: Randomly generated samples

latent-64, the latter recovered finer details better, which are
important from the domain perspective (for example the
ferrite grain boundaries, explained in the next paragraph).
Hence we did all further experimentation with the latent-64
model. The left half of each image in Figure 4 is a patch
from the original microstructure - x, while the right half
is the reconstructed image - x̂ = Dec(Enc(x)). We have
shown some representative examples from each microstruc-
ture. It can be seen that even the minute structural details
such as the ferrite grain boundaries (the thin lines in the gray
portion) which are faintly visible only in the case of large
spherical grains in Figure 4b are reconstructed quite well.

These results show that the texture-VAE model is capable
of reconstructing input samples quite well across different
textures. The randomly generated samples also span differ-
ent textures and look structurally similar to the original ones.

4.3 Interpretability
Variational autoencoders have been shown to recover factors
of variation in the training data ((Kingma and Welling 2013),
(Higgins et al. 2017)). The first term in the learning objec-
tive of VAE encourages the posterior pθ(z|x) to be like the
prior p(z) which is a standard normal distribution with diag-
onal covariance matrix. That is, this term encourages the la-
tent dimensions to be statistically independent (Higgins et al.
2017). Such representations are easier to interpret and can
be more useful in downstream tasks ((Ridgeway 2016) and
(Bengio, Courville, and Vincent 2013)). We perform exper-
iments to show that the texture-VAE model recovers physi-
cally significant factors of variation.

Starting with an image x, we obtain its latent representa-
tion z = Enc(x). Then we choose a dimension i of z and
vary it in the range [−4, 4] by choosing 10 equally spaced
values, while keeping all other dimensions unchanged. That
is, z′[i] = j, j ∈ linspace(−4, 4, 10) and z′[k] = z[k] for
all other dimensions k. By decoding these z′ vectors, we ob-
serve the variations in the image space. Figure 6 shows im-
ages of two examples obtained by varying dimensions 17,
23, 26 and 34. These dimensions were chosen for illustra-

z[17]

z[23]

z[26]

z[34]

(a) Starting with large spheres

z[17]

z[23]

z[26]

z[34]

(b) Starting with fine flakes

Figure 6: Effect of varying latent dimensions, starting with
different morphologies. Each row corresponds to one latent
dimension. The leftmost image is the original patch and the
remaining are variations obtained by varying that particular
latent dimension

tion since they seem to produce physically significant vari-
ations that are visually discernible as well. Figure 6a shows
the variations starting with a large-spheres microstructure,
whereas Figure 6b shows the variations starting with a fine-
flakes microstructure. From the figure, dimension 17 seems
to correspond to morphology, with lower values indicating
flaky and higher values indicating spherical structures. Di-
mensions 23 and 26 seem to correspond to the density and
size respectively of spherical grains, with their values in-
creasing as we go from left to right. Whereas dimension
34 seems to correspond to the density of flakes. From the
physics of Cast iron microstructures, it is known that grain
size and density are correlated - when the spherical grains
are large (or the flakes are thick), they are more likely to
be sparse. This correlation seems to be well-captured in the
variations of dimensions 23, 26 and 34.

4.4 Structure-Property linkage
As shown in Figure 6, for cast iron microstructures, some
of the latent dimensions seem highly correlated with quan-
tities such as grain size, morphology, grain density and so
on. It is known that these factors have a profound impact
on the mechanical properties of cast iron. For example, the
spherical grains prevent a passing crack from further propa-
gating, so lead to higher strength. Whereas the flakes deflect
the crack into a number of other directions, so lead to brit-
tleness. Consequently, the representation is expected to lend
itself to a more accurate property prediction model. In the
following, we describe some experiments that support this
claim.

As stated earlier, the stress-strain curves of 6 microstruc-
tures corresponding to the smallest and largest cooling rates
were available, from which we obtained ultimate tensile



Table 2: Property prediction accuracy

Method UTS Ys
R2 MAPE R2 MAPE

LinReg 0.89 20 0.88 14
SVR-RBF 0.97 10 0.98 5

Figure 7: Prediction of Ys for an unseen microstructure

strength and yield strength. We trained a regression model
from the latent representations of patches of these mi-
crostructures to the property values. Note that the property
values correspond to original full-size microstructure im-
ages, whereas our model’s input size is 128x128. We assume
that all 128x128 patches cropped from the same microstruc-
ture image have the same property value. A validation set
containing 20% of the patches was kept aside for evaluation.
Table 2 shows the R2 value and mean absolute percentage
error in prediction of ultimate tensile strength (UTS) and
yield strength (Ys) on the validation set. The table shows that
we get reasonably good accuracy even with a simple linear
regression model, revealing that the learned representation
is highly predictive of the properties. With a more expres-
sive model such as support vector regression (with a radial
basis kernel) the accuracy goes significantly higher, further
strengthening the belief in the predictive power of the repre-
sentation.

To test generalization, we trained the SVR model for yield
strength using only five microstructures and used it to pre-
dict the yield strength for the sixth microstructure. Note that
this is different from the above experiment on the valida-
tion set. Here, the regression model does not see any patches
(and the property values) from the excluded microstructure.
The missing microstructure corresponds to the lowest cool-
ing rate which results in the largest spherical grains. Figure
7 shows the histogram of predicted values on all patches of
this microstructure. It can be seen that the mean prediction
is near 550Mpa. The true value found from experiments is
598Mpa, so the prediction is off by about 8% not deviating a
lot from the 5% error on the validation set. We performed the
same experiment using latent representations obtained from
unmodified, pre-trained VGG19 network. Table 3 shows that
the texture-VAE representations generalize much better as
compared to pre-trained VGG19. We think that the reason
behind better generalization with our representation is that it
encodes physically significant attributes.

Table 3: Prediction of Ys - Generalization

Method MAPE
TextureVAE + SVR 8.02
VGG19 + SVR 18.22

5 Conclusion
We have presented a variational autoencoder model to learn
microstructure representations. The objective function is ob-
tained by replacing the reconstruction loss in the vanilla
VAE with the style loss. We applied the model on a set of
experimental cast iron microstructures. Through latent space
traversals, we showed that the learned representation explic-
itly encodes factors of variation that are primarily respon-
sible for the mechanical properties (such as ultimate ten-
sile strength and yield strength). Consequently, the repre-
sentation is highly predictive of mechanical properties. We
showed that the regression model built using these repre-
sentations can reasonably predict the properties for totally
unseen morphologies.

Since the learned representation is predictive of mechani-
cal properties and some of its dimensions can be physically
interpreted, we expect that it can be used for inverse infer-
ence as well - i.e. predicting the structure required to get
desired properties. A probabilistic model such as Bayesian
network that can represent the joint distribution between la-
tent dimensions and properties can be used to infer the most
probable values of the latent dimensions given the proper-
ties. The obtained latent vector can then be decoded using
the VAE model to give the required microstructure. This is
a direction we are pursuing as further work. We believe the
present work is a step towards a general framework for learn-
ing interpretable microstructure representations.
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