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Abstract

Multimodal dialogue systems have opened
new frontiers in the traditional goal-oriented
dialogue systems. The state-of-the-art dia-
logue systems are primarily based on uni-
modal sources, predominantly the text, and
hence cannot capture the information present
in the other sources such as videos, audios, im-
ages etc. With the availability of large scale
multimodal dialogue dataset (MMD) in the
fashion domain, the visual appearance of the
products is essential for understanding the in-
tention of the user. Without capturing the in-
formation from both the text and image, the
system will be incapable of generating correct
and desirable responses. In this paper, we pro-
pose a novel position and attribute aware atten-
tion mechanism to learn enhanced image rep-
resentation conditioned on the user utterance.
Our evaluation shows that the proposed model
can generate appropriate responses while pre-
serving the position and attribute information.
Experimental results also prove that our pro-
posed approach attains superior performance
compared to the baseline models, and outper-
forms the state-of-the-art approaches on text
similarity based evaluation metrics.

1 Introduction

With the advancement in Artificial Intelligence
(AI), dialogue systems have become a prominent
part in today’s virtual assistant, which helps users
to converse naturally with the system for effective
task completion. Dialogue systems focus on two
broad categories - open domain conversations with
casual chit chat and goal-oriented systems where
the system is designed to solve a particular task
for the user belonging to a specific domain. Re-
sponse generation is a crucial component of every
conversational agent. The task of “how to say”
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the information to the user is the primary objec-
tive of every response generation module. One
of the running goals of AI is to bring language
and vision together in building robust dialogue
systems. Advances in visual question answer-
ing (VQA) (Kim et al., 2016; Xiong et al., 2016;
Ben-Younes et al., 2017), and image captioning
(Anderson et al., 2018; Chen et al., 2018) have
ensured interdisciplinary research in natural lan-
guage processing (NLP) and computer vision. Re-
cently, several works in dialogue systems incorpo-
rating both vision and language (Das et al., 2017a;
Mostafazadeh et al., 2017) have shown promising
research directions.

Goal oriented dialogue systems are majorly
based on textual data (unimodal source). With in-
creasing demands in the domains like retail, travel,
entertainment, conversational agents that can con-
verse by combining different modalities is an es-
sential requirement for building the robust sys-
tems. Knowledge from different modalities car-
ries complementary information about the vari-
ous aspects of a product, event or activity of in-
terest. By combining information from different
modalities to learn better representation is crucial
for creating robust dialogue systems. In a mul-
timodal setup, the provision of different modali-
ties assists both the user and the agent in achiev-
ing the desired goal. Our work is established
upon the recently proposed Multimodal Dialogue
(MMD) dataset (Saha et al., 2018), consisting of e-
commerce (fashion domain) related conversations.
The work focused on generating textual responses
conditioned on the conversational history consist-
ing of both text and image.

In the existing task-oriented dialogue systems,
the inclusion of visually grounded dialogues- as
in the case of MMD dataset- has provided excit-
ing new challenges in the field of interactive di-
alogue systems. In contrast to VQA, multimodal



dialogues have conversations with more extended
contextual dependency, and a clear end-goal. As
opposed to a static image in VQA, MMD deals
with dynamic images making the task even more
challenging. In comparison to the previous slot-
filling dialogue systems on textual data (Young
et al., 2013; Rieser and Lemon, 2011), MMD pro-
vides an additional visual modality to drive the
conversation forward.

In this work, we propose an entirely data-driven
response generation model in a multi-modal setup
by combining the modalities of text and images. In
Figure 1, we present an example from the MMD
dataset. It is a conversation between the user and
the system in a multimodal setting on the fash-
ion domain. From the example, it is understood
that the position of images is essential for the sys-
tem to fulfill the demands of the user. For exam-
ple, in figure, the U3 utterance “Can you tell me
the type of colour in the 1st image” needs posi-
tion information of the particular image from the
given set of images. To handle such situations,
we incorporate position embeddings to capture or-
dered visual information. The underlying motiva-
tion was to capture the correct image information
from the text; hence, we use position aware atten-
tion mechanism. From Figure 1, in utterance U5,
we can see that the user is keen on different as-
pects of the image as well. In this case, user is
interested in the “print as in the 2nd image”. To
focus and capture the different attributes from the
image representation being considered in the text,
we apply attribute aware attention on the image
representation. Hence in order to handle such sit-
uations present in the dataset, we apply both po-
sition and attribute aware attention mechanisms to
capture intricate details from the image and tex-
tual features. For effective interaction among the
modalities, we use Multimodal Factorized Bilin-
ear (MFB) (Yu et al., 2017) pooling mechanism.
Since multimodal feature distribution varies dra-
matically, hence the integrated image-text repre-
sentations obtained by such linear models may not
be sufficient in capturing the complex interactions
between the visual and textual modalities. The in-
formation of the present utterance, image and the
contextual history are essential for better response
generation (Serban et al., 2015).

The key contributions/highlights of our current
work are as follows:

• We employ a position-aware attention mech-

anism to incorporate the ordered visual infor-
mation and attribute-aware attention mecha-
nism to focus on image conditioned on the
attributes discussed in the text.

• We utilize Multi-modal Factorized Bilinear
(MFB) model to fuse the contextual informa-
tion along with image and utterance represen-
tation.

• We achieve state-of-the-art performance for
the textual response generation task on the
MMD dataset.

The rest of the paper is structured as follows. In
Section 2, we discuss the related works. In Section
3, we explain the proposed methodology followed
by the dataset description in Section 4. Experi-
mental details and evaluation metrics are reported
in Section 5. Results along with necessary anal-
ysis are presented in Section 6. In Section 7, we
conclude the paper along with future research di-
rections.

Figure 1: An example from the MMD dataset

2 Related Work

Research on dialog systems have been a major
attraction since a long time. In this section we
briefly discuss some of the prominent research car-
ried out on single and multi-modal dialog systems.

2.1 Unimodal Dialogue Systems

Dialogue systems have mostly focused on single
modal source such as text. Hence, there have been
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several works carried out on data-driven textual
response generation. To help the users achieve
their desired goals, response generation provides
the medium through which a conversational agent
can communicate with its user. In (Ritter et al.,
2011), the authors used social media data for re-
sponse generation following the machine transla-
tion approach. The effectiveness of deep learning
has shown remarkable improvement in dialogue
generation. Deep neural models have been quite
beneficial for modelling conversations as shown in
(Vinyals and Le, 2015; Li et al., 2016a,b; Shang
et al., 2015). A context-sensitive neural language
model was proposed in (Sordoni et al., 2015),
where the model chooses the most probable re-
sponse given the textual conversational history. In
(Serban et al., 2015, 2017), the authors have pro-
posed a hierarchical encoder-decoder model for
capturing the dependencies in the utterances of a
dialogue. Conditional auto-encoders have been
employed in (Zhao et al.; Shen et al., 2018) that
generate diverse replies by capturing discourse-
level information in the encoder. Our current work
differentiates from these existing works in dia-

logue systems in a way that we generate the ap-
propriate responses by capturing information from
both the text and image, conditioned on the con-
versational history.

2.2 Multimodal Dialogue Systems

With the recent shift in interdisciplinary research,
dialogue systems combining different modalities
(text, images, video) have been investigated for
creating robust conversational agents. Dialogue
generation combining information from text and
images (Das et al., 2017a,b; Mostafazadeh et al.,
2017; Gan et al., 2019; De Vries et al., 2017) has
been successful in bridging the gap between vi-
sion and language. Our work differs from these as
the conversation in Multimodal Dialogue (MMD)
dataset (Saha et al., 2018) deals with multiple im-
ages and the growth in conversation is dependent
on both image and text as opposed to a conversa-
tion with a single image. Lately, with the release
of DSTC7 dataset, video and textual modalities
have been explored in (Lin et al., 2019; Le et al.,
2019). Prior works on MMD dataset reported in
(Agarwal et al., 2018b,a; Liao et al., 2018) have



captured the information in the form of knowledge
bases using hierarchical encoder-decoder model.

Our work is different from these existing works
on MMD dataset in the sense that we incorporate
position and attribute aware attention mechanism
for capturing ordered information and minute de-
tails such as colour, style etc. from the image
representations for more accurate response gen-
eration. Our method, unlike the previous works,
make use of the MFB technique for better infor-
mation fusion across different modalities. The ap-
proach that we propose to capture and integrate in-
formation from image and text is novel. We suc-
cessfully demonstrate the effectiveness of our pro-
posed model in generating responses through suf-
ficient empirical analysis.

3 Methodology

In this section we firstly define the problem and
then present the details of the proposed method.

3.1 Problem Definition

In this paper, we address the task of textual
response generation conditioned on conversa-
tional history as proposed in (Saha et al., 2018).
The dialogue consists of text utterances along
with multiple images and given a context of
k turns the task here is to generate the next
text response. More precisely, given an user
utterance Uk = (wk,1, wk,2, ...., wk,n), a set
of images Ik = (imgk,1, imgk,2, ..., imgk,n′)
and a conversational history Hk =
((U1, I1), (U2, I2), ..., (Uk−1, Ik−1)) the task
is to generate the next textual response
Yk = (yk,1, yk,2, ....., yk,n′′).

3.2 Hierarchical Encoder Decoder

We construct a response generation model, as
shown in Figure 2(a), which is an extension of the
recently introduced Hierarchical Encoder Decoder
(HRED) architecture (Serban et al., 2016, 2017).
As opposed to the standard sequence to sequence
models (Cho et al., 2014; Sutskever et al., 2014),
the dialogue context is modelled by a separate con-
text Recurrent Neural Network (RNN) over the en-
coder RNN, thus forming a hierarchical encoder.
The multimodal HRED (MHRED) is built upon
the HRED to include text and image modalities.
The key components of MHRED are the utterance
encoder, image encoder, context encoder and de-
coder.

Utterance Encoder: Given an utterance Um,
a bidirectional Gated Recurrent Units (Bi-GRU)
(Bahdanau et al., 2014) is employed to encode
each word wm,i, i ∈ (1, ..., n) represented by d-
dimensional embeddings into the hidden vectors
hm,U,i.

−−−→
hU,m,i = GRUu,f (wm,i,

−−−−−→
hU,m,i−1) (1)

←−−−
hU,m,i = GRUu,b(wm,i,

←−−−−−
hU,m,i−1) (2)

hU,m,i = [
−−−→
hU,m,i,

←−−−
hU,m,i] (3)

Image Encoder: A pre-trained VGG-19 model
(Simonyan and Zisserman, 2014) is used to ex-
tract image features for all the images in a given
dialogue turn. The concatenation of single image
features is given as input to a single linear layer to
obtain a global image context representation.

Fm,i = V GG(imgm,i) (4)

Fm = Concat(Fk,1, Fk,2, ..., Fk,n′) (5)

hI,m = ReLU(WIFm + bI) (6)

where WI and bI are the trainable weight matrix
and biases, respectively. The number of images in
a single turn is ≤ 5; hence, zero vectors are con-
sidered in the absence of images.

Context-level Encoder: The final hidden rep-
resentations from both image as well as text en-
coders are concatenated for every turn and are fed
as input to the context GRU, as shown in Figure
2(b). A hierarchical encoder is built on top of the
image and text encoder to model the dialogue his-
tory. The final hidden state of the context GRU
serves as the initial state of the decoder GRU.

hc,m = GRUc([hI,m;hU,m,n], hc,m−1) (7)

Decoder: In the decoding stage, the decoder is
another GRU that generates words sequentially
conditioned on the final hidden state of the context
GRU and the previously decoded words. Attention
mechanism similar to (Luong et al., 2015) is incor-
porated to enhance the performance of the decoder
GRU. The attention layer is applied to the hidden
state of context encoder using decoder state dt as
the query vector. The concatenation of the context
vector and the decoder state is used to compute
a final probability distribution over the output to-
kens.

hd,t = GRUd(yk,t−1, hd,t−1) (8)



αt,m = softmax(hTc,mWhd,t) (9)

ct =
k∑

m=1

αt,mhc,m, (10)

h̃t = tanh(Wh̃[hd,t; ct]) (11)

P (yt/y<t) = softmax(WV h̃t) (12)

where, Wh, WV and Wh̃ are trainable weight ma-
trices.

3.3 Proposed Model
To improve the performance of the MHRED
model, rather than just concatenating the represen-
tations of the text and image encoder we apply an
attention layer to mask out the irrelevant informa-
tion. In our case, we apply attention to learn where
to focus and what to focus upon as described in the
user utterance. To decouple these two tasks we
augment the encoder with position and attribute
aware attention mechanisms.

Position-aware Attention: In the baseline
MHRED model, we incorporate position informa-
tion of the images to improve the performance of
the system. For example, “List more in colour as
the 4th image and style as in the 1st image”, the
ordered information of the images is essential for
the correct textual response by the agent to satisfy
the needs of the user. Hence, the knowledge of ev-
ery image with respect to its position is necessary
so that the agent can capture the information and
fulfill the objective of the customer. The lack of
position information of the images in the baseline
MHRED model causes quite a few errors in fo-
cusing on the right image. To alleviate this issue,
we fuse position embedding of every image with
the corresponding image features. The position of
every image is represented by position embedding
PEi, where, PE = [PE1, ..., PEn′ ]. This
information is concatenated to the corresponding
image features. To compute self attention (Wang
et al., 2017) we represent textual features as
HU = [hU,1, ...., hU,n].

αp = softmax(Wp
THU ), Up = αpHU

T (13)

We use the self-attended text embedding as a
query vector Up to calculate the attention distri-
bution over the position embedding PE.

βp = softmax(Up
TWp′PE), Ip = βpPE

T

(14)
where, Wp

T and Wp′ are trainable parameters.

Attribute-aware Attention: To focus on differ-
ent attributes of the image mentioned in the text,
we employ attribute-aware attention.

αa = softmax(Wa
THU ), Ua = αaHU

T (15)

The self-attended text embedding is used as query
vector Ua to compute the attention distribution
over the image feature represented by HI =
[hI,1, ...,HI,n′ ] .

βa = softmax(Ua
TWa′HI), Ia = βaHI

T (16)

where, Wa
T and Wa′ are trainable parameters.

Finally, in our proposed model, as shown in Fig-
ure 3, we incorporate position aware and attribute
aware attention mechanisms to provide focused in-
formation conditioned on the text utterance. We
concatenate Ua and Up vectors for the final utter-
ance representations Uf , Ia and Ip vectors as the
final image representation If . The output of the
context encoder hc along with If and Uf serves as
input to the MFB module. Here, we compute the
MFB between If and Uf .

z = SumPooling(WmUf
T ◦Wm′If

T , k′) (17)

z = sign(z)|z|0.5, z = zT /||z|| (18)

where, Wm and Wm′ are the trainable parameters,
and SumPooling function is same as described
in (Gan et al., 2019). Similarly, we take a pairwise
combination of If , Uf and hc as the final output
of our multimodal fusion module. Hence, the final
multimodal fusion can be represented by hd =
[MFB(Uf , If ),MFB(Uf , hc),MFB(If , hc)],
where hd is used to initialize the decoder.

3.4 Training and Inference

We employ commonly used teacher forcing
(Williams and Zipser, 1989) algorithm at every de-
coding step to minimize negative log-likelihood
on the model distribution. We define y∗ =
{y∗1, y∗2, . . . , y∗m} as the ground-truth output se-
quence for a given input

Lml = −
m∑
t=1

log p(y∗t |y∗1, . . . , y∗t−1) (19)

We apply uniform label smoothing(Szegedy
et al., 2016) to alleviate the common issue of
low diversity in dialogue systems, as suggested in
(Jiang and de Rijke, 2018).



3.5 Baseline Models

For our experiment, we develop the following
models:

Model 1 (MHRED): The first model is the
baseline MHRED model described in Section 3.2.

Model 2 (MHRED + A): In this model, we ap-
ply attention (A) on the text and image features
rather than merely concatenating the features.

Model 3 (MHRED + A + PE): In this model,
position embeddings (PE) of every image is con-
catenated with the respective image features to
provide ordered visual information of the images.

Model 4 (MHRED + PA): Self-attention on the
text representations with respect to position infor-
mation is computed to generate a query vector.
This query vector is used to learn the attention dis-
tribution on the position embeddings to focus on
the discussed image in user utterance.

Model 5 (MHRED + AA): To learn the differ-
ent attributes discussed in the text we apply self-
attention on the text representation and compute a
query vector that attends the image representation
in accordance to the attributes in the text.

Model 6 (MHRED + PA + AA): In this model,
the final text and image representations, denoted
as Uf and If , respectively, and obtained after ap-
plying the position and attribute aware attention,
are concatenated and fed as inputs to the context
encoder.

Model 7 (MHRED + MFB(I, T)): MFB mod-
ule is employed to learn the complex association
between the textual and visual features. The fi-
nal text representation (T) Uf and the final image
representation (I) If are fed as inputs to the MFB
module.

Model 8 (MHRED + MFB(I,T,C)): In this
model, we concatenate the pairwise output of the
MFB module on the contextual information (C),
that is the output of context encoder hc,i along
with text and image representations.

4 Datasets

Our work is built upon the Multimodal Dialogue
(MMD) dataset (Saha et al., 2018) that com-
prises of 150k chat sessions between the cus-
tomer and sales agent. Table 1 lists the detailed
information about the MMD dataset. Domain-
specific knowledge in the fashion domain was cap-
tured during the series of customer-agent interac-
tions. The dialogues incorporate text and image
information seamlessly in a conversation bring-

ing together multiple modalities for creating ad-
vanced dialogue systems. The dataset poses new
challenges for multimodal, goal-oriented dialogue
containing complex user utterances. For exam-
ple, “Can you show me the 5th image in different
orientations within my budget?”, requires quan-
titative inference such as filtering, counting and
sorting. Bringing the textual and image modali-
ties together, multimodal inference makes the task
of generation even more challenging, for example,
“See the second stilettos, I want to see more like
it but in a different colour”. In our work, we use

Dataset Statistics Train Valid Test
Number of dialogues 105,439 22,595 22,595

Avg. turns per Dialogue 40 40 40
No. of Utterances with

Image Response
904K 194K 193K

No. of Utterances with
Text Response

1.54M 331K 330K

Avg. words in Text
Response

14 14 14

Table 1: Dataset statistics of MMD

a different version of the dataset as described in
(Agarwal et al., 2018a,b) to capture the multiple
images, in turn, as one concatenated context vec-
tor for every turn in a given dialogue.

5 Experiments

In this section we present the implementation de-
tails and the evaluation metrics (automatic and hu-
man) that we use for measuring the model perfor-
mance.

5.1 Implementation Details
All the implementations are done using the Py-
Torch1 framework. We use 512-dimensional word
embedding and 10-dimensional position embed-
ding as described in (Vaswani et al., 2017). We use
the dropout(Srivastava et al., 2014) with probabil-
ity 0.45. During decoding, we use a beam search
with beam size 10. We initialize the model pa-
rameters randomly using a Gaussian distribution
with Xavier scheme (Glorot and Bengio, 2010).
The hidden size for all the layers is 512. We em-
ploy AMSGrad (Reddi et al., 2019) as the opti-
mizer for model training to mitigate the slow con-
vergence issues. We use uniform label smoothing
with ε = 0.1 and perform gradient clipping when
gradient norm is over 5. For image representation,

1https://pytorch.org/



FC6(4096 dimension) layer representation of the
VGG-19 (Simonyan and Zisserman, 2014), pre-
trained on ImageNet is used.

5.2 Automatic Evaluation

For evaluating the model we report the stan-
dard metrics like BLEU-4 (Papineni et al., 2002),
ROUGE-L (Lin, 2004) and METEOR (Lavie and
Agarwal, 2007) employing the evaluation scripts
made available by (Sharma et al., 2017).

5.3 Human Evaluation

To understand the quality of responses, we adopt
human evaluation to compare the performance of
different models. We randomly sample 700 re-
sponses from the test set for human evaluation.
Given an utterance, image along with the con-
versation history were presented to three human
annotators, with post-graduate level of exposure.
They were asked to measure the correctness and
relevance of the responses generated by the dif-
ferent models with respect to the following three
metrics:

1. Fluency (F): The generated response is gram-
matically correct and is free of any errors. 2. Rel-
evance (R): The generated response is in accor-
dance to the aspect being discussed (style, colour,
material, etc.), and contains the information with
respect to the conversational history. Also, there is
no loss of attributes/information in the generated
response.

We follow the scoring scheme for fluency and
relevance as- 0: incorrect or incomplete, 1: mod-
erately correct, and 2: correct. We compute the
Fleiss’ kappa (Fleiss, 1971) for the above met-
rics to measure inter-rater consistency. The kappa
score for fluency is 0.75 and relevance is 0.77 in-
dicating “substantial agreement”.

6 Results and Analysis

In this section we present the detailed experimen-
tal results using automatic and human evaluation
metrics both. In addition we also report the errors
that our current model encounters.

6.1 Results using Automatic Evaluation

Results of the different models are presented in Ta-
ble 2. The proposed model performs better than
the other baselines for all the evaluation metrics,
and we find this improvement to be statistically

Description Model BLEU 4 METEOR ROUGE L
State-of
-the-arts

MHRED-attn (Agarwal et al., 2018a) 0.4451 0.3371 0.6799
MHRED-attn-kb (Agarwal et al., 2018b) 0.4634 0.3480 0.6923

Baseline
Models

MHRED 0.4454 0.3367 0.6725
MHRED + A 0.4512 0.3452 0.6754

MHRED + A + PE 0.4548 0.3476 0.6783
MHRED + PA 0.4781 0.3521 0.7055
MHRED + AA 0.4763 0.3511 0.7063

MHRED + PA + AA 0.4810 0.3569 0.7123
MHRED + MFB(I,T) 0.4791 0.3523 0.7115

MHRED + MFB(I,T,C) 0.4836 0.3575 0.7167
Our Proposed

Model
MHRED + PA + AA + MFB(I,T) 0.4928 0.3689 0.7211

MHRED + PA + AA + MFB(I,T,C) 0.4957 0.3714 0.7254

Table 2: Results of different models on MMD dataset.
Here, A: Attention, PE: Positional embeddings, PA:
Position-aware attention, AA: Attribute-aware atten-
tion, MFB (I,T): MFB fusion on image (I) and text (T)
representations, MFB(I,T,C): MFB fusion on I,T and
context (C)

significant 2. The results are reported for con-
text size 5 due to its superior performance in com-
parison to the context size 2, as shown in (Agar-
wal et al., 2018a,b). The MHRED model is a de-
cent baseline with good scores (0.6725 ROUGE-
L, 0.4454 BLEU). The application of attention
over the text and image representations, as op-
posed to the concatenation, provides an absolute
improvement of (+0.85%) in METEOR as well as
in the other metrics. To give the ordered visual
information in Model 3, we incorporate positional
embedding for the images which boost the perfor-
mance of text generation by (+0.94%) in BLEU
score and (+0.58%) in ROUGE-L.

The improved performance shows the effec-
tiveness of position embedding for the images in
a multimodal dialogue setting. The efficiency
of position-aware and attribute-aware attention
mechanism (Model 6) can be seen in the increased
performance of the model with respect to Model 4
and Model 5 with an improvement of 0.68% and
0.6% in ROUGE-L metric, respectively. The MFB
based fusion technique helps to improve the per-
formance of the generation model (Model 8) with
an improvement of 3.82% in BLEU score with
respect to the baseline model, whereas it shows
0.26% improvement in BLEU score in comparison
to Model 6. The final proposed model (MHRED
+ PA + AA + MFB(I,T,C)) after incorporating the
position and attribute aware attention mechanisms
along with MFB fusion attains the state-of-the-
art performance with an improvement of 3.23%
in BLEU score, 3.31% in ROUGE-L and 2.34%
in METEOR in comparison to the existing ap-
proaches (Agarwal et al., 2018b).

2we perform statistical significance t-test (Welch, 1947)
and it is conducted at 5% (0.05) significance level



Figure 4: Position and Attribute aware Attention Visu-
alization

In Figure 4, we show the attention visualiza-
tion to demonstrate the effectiveness of our pro-
posed position and attribute aware attention mech-
anisms. Example 1 in the figure shows that model
can focus on the correct image (in this case, the
3rd image) with the help of position aware atten-
tion mechanism as the focus is given to the word
3rd in the utterance. Example 2 shows the effect of
both position and attribute aware attention mech-
anisms that help in more accurate response gen-
eration. The positional word 2nd along with the
attribute rubber have obtained maximum focus in
the given example. While in Example 3, we can
see the effect of attribute aware attention mech-
anism with maximum attention given to the key-
words such as dark, red, frame in the utterance.

6.2 Human Evaluation Results
In Table 3, we present the evaluation results of
human. In case of fluency, the baseline MHRED
model and the proposed model have shown quite
similar performance. While for the relevance met-
ric our proposed model has shown better perfor-
mance with an improvement of 7.47% in gener-
ating the correct responses. This may be due the
reason that our proposed model focuses on the rel-
evant information in the text as well as the image,
and generates more accurate and informative re-
sponses. All the results are statistically significant
as we perform Welch’s t-test (Welch, 1947) and it
is conducted at 5% (0.05) significance level.

6.3 Error Analysis
We analyse the outputs generated from our pro-
posed model to perform a detailed qualitative anal-

Description Model Fluency Relevance
0 1 2 0 1 2

Baseline MHRED 18.64 39.66 41.70 13.41 39.83 46.76
Proposed MHRED + PA + AA + MFB(I,T,C) 15.54 42.71 41.75 7.36 38.14 54.23

Table 3: Human evaluation results for Fluency and Rel-
evance (All values are in percentages.)

Figure 5: Examples of Responses Generated by the
Different Models

ysis of the responses. In Figure 5, we present a few
examples of the responses generated by the differ-
ent models given the image and utterance as an
input. Some commonly occurring errors include:

1. Unknown tokens: As the baseline MHRED
model uses the basic sequence to sequence frame-
work, the number of unknown tokens is predicted
the most in this case. The model also often pre-
dicts ‘end of sequence’ token just after the ‘out of
vocabulary’ token, thus leaving sequences incom-
plete. Gold: ..the type of the chinos is cargo in the
1st and 2nd image; Predicted: .. the type

2. Extra information: The proposed model
sometimes generates extra informative sentences
than in the ground-truth response due to multiple
occurrences of these attributes together in the data:
Gold: the jackets in the 1st, 2nd and 5th images
will suit well for dry clean; Predicted: the jackets
in the 1st, 2nd and 5th images will suit well for dry
clean, regular, cold, hand clean.

3. Repetition: The baseline, as well as the pro-
posed model in a few cases, go on repeating the
information present in a given utterance: Gold: it
can go well with cropped type navy sweater; Pre-
dicted: it can go well with navy style, navy neck,
navy style, navy neck sweater and with.

4. Incorrect Products: The model generates
the incorrect products in the predicted utterance as
compared to the one present in the original utter-
ance as different products have similar attributes:
Gold: it can go well with unique branded, black
colouring, chic type hand bag; Predicted: it can
go well with black frame colour sunglasses.

5. Wrong choice of images: The model focuses
on incorrect images with respect to the conversa-
tional history due to the discussion over multiple
images in history. Gold: the upper material in
the 2nd image is rubber lace; Predicted: the up-
per material in the 4th image is leather.



7 Conclusion

In this paper, we have proposed an ordinal and at-
tribute aware attention mechanism for natural lan-
guage generation exploiting images and texts. In
a multimodal setting, the information sharing be-
tween the modalities is significant for proper re-
sponse generation, thereby leading to customer
satisfaction. We incorporate the MFB fusing tech-
nique along with position and attribute aware at-
tention mechanism for effective knowledge inte-
gration from the textual and visual modalities. On
the recently released MMD dataset, the incorpo-
ration of our proposed techniques has shown im-
proved performance for the task of textual re-
sponse generation. In qualitative and quantita-
tive analyses of the generated responses, we have
observed contextually correct and informative re-
sponses, along with minor inaccuracies as dis-
cussed in the error analysis section. Overall the
performance of our model shows the variations
and more accurate responses in comparison to the
other models keeping the attribute and position in-
formation of the generated responses intact.

In future, along with the opportunity of extend-
ing the architectural design and training method-
ologies to enhance the performance of our sys-
tems, we look forward to designing a specific com-
ponent to enhance the natural language generation
component of an end-to-end chatbot, by includ-
ing image generation and retrieval systems for the
completion of a multimodal dialogue system.
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