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Abstract. Identifying Named Entities is vital for many Natural Lan-
guage Processing (NLP) applications. Much of the earlier work for iden-
tifying named entities focused on using handcrafted features and knowl-
edge resources (feature engineering). This is a barrier for resource-scarce
languages as many resources are not readily available. Recently, Deep
Learning techniques have been proposed for various NLP tasks requiring
little/no hand-crafted features and knowledge resources, instead the fea-
tures are learned from the data. Many proposed deep learning solutions
for Named Entity Recognition (NER) still rely on feature engineering as
opposed to feature learning. However, it is not clear whether the deep
learning system or the engineered features are responsible for the positive
results reported. This is in contrast with the goal of deep learning sys-
tems i.e., to learn the features from the data itself. In this study, we show
that a feature learned deep learning system is a viable solution to NER
task. We test our deep learning systems on CoNLL English and Spanish
NER datasets. Our system is able to give comparable results with the
existing state-of-the-art feature engineered systems for English. We re-
port the best performance of 89.27 F-Score for English when comparing
with systems which do not use any handcrafted features or knowledge
resources. Evaluation of our trained system on out-of-domain data indi-
cate that the results are promising with the reported results. Our system
when tested on Spanish NER achieves the best reported F-Score of 82.59
indicating its applicability to other languages.
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1 Introduction

Named Entity Recognition has been an important task in NLP. Various problems
like Information Extraction, Question Answering, Machine Translation requires
identifying named entities. Existing Supervised NER systems typically require
large amounts of training data. Success of many of these systems depend on
handcrafted features and knowledge resources in the form of gazetteers, part-of-
speech taggers etc. This poses a major constraint for resource poor languages.

A diverse set of machine learning algorithms have been applied for tack-
ling NER as part of CoNLL 2003 NER Shared Task Challenge [20]. The shared



task saw use of many statistical models like Hidden Markov Models, Maximum
Entropy Models, Conditional Random Fields (CRF), Voted Perceptrons, Recur-
rent Neural Networks. Many of the participants reported results on NER using
system combination. Much of the focus was on using handcrafted features in
the form of gazetteers, part-of-speech tags, affixes, capitalization features, chunk
tags. The inclusion of these features and also system combination achieved best
results on the shared task challenge.

Deep learning systems, which use multiple layers of neural network have
shown promising results in various applications. The advantage offered by the
deep learning technique is the requirement for little/no handcrafted features for
these tasks. This is opposed to non-deep learning systems which typically rely on
knowledge resources and lots of handcrafted features. The deep learning systems
typically learn useful representations (feature learning) in an unsupervised way
on a large unlabeled data which are then used as features in the supervised task.

Deep Learning techniques have also been successfully applied in various
NLP tasks [4, 17, 16, 3]. Word embeddings [10, 11] are continuous low-dimensional
dense vector representations of words learned in an unsupervised way. These
word embeddings have been shown to capture various syntactic and semantic in-
formation about the word. Such representations when used in mainstream NLP
applications have shown to perform better or achieve comparable performance
compared to existing systems.

In this paper, we explore the use of a complete deep learning based approach
for NER. We use Long Short Term Memory (LSTM) variant of Recurrent Neu-
ral Network along with Convolutional Neural Network (CNN) to train a NER
system. The system uses only pre-trained word embeddings as input and and
the decoder is much simpler compared to the decoder used in Senna[4]. Our
experiments indicate that a feature learned deep learning approach is able to
achieve closer to state-of-the-art results.

2 Related Work

System based on the combination of various machine learning algorithms was
the best performing system[8] in CoNLL Shared task for English. This system
used various features like part-of-speech tags, affixes, orthographic information,
gazetteers, chunk information etc. Later a system based on multi-task approach
[1] further improved the performance. The approach used a handful of features
like part-of-speech tags, affixes, tokens in a syntactic window chunk etc.

A complete deep learning system, Senna[4] was proposed to solve various
NLP problems. The model proposed to use a time-delay neural network which
ran over words and a decoder layer calculating sentence-level likelihood using
transition matrix at the top to find the best tag sequence at the sentence level.
The model used pre-trained word embeddings and during training of the NER
system the word embeddings were updated. The only features used by the system
were pre-trained word embeddings, uppercase information and gazetteer list.



A new way to train phrase embeddings was proposed in the context of NER
[12]. These phrase embeddings are then used with other features to train an NER
system. The system used two CRFs, where the output from first CRF is given
as input to the second CRF. This system achieves the best reported results on
CoNLL Shared task data.

Bidirectional LSTMs[9] were also tested for NER task. They observe that
vanilla Bidirectional LSTMs have the disadvantage of not being able to capture
tag dependencies. They use a decoder layer similar to [4] at the top to capture
the tag dependencies.

Another deep learning solution, CharWNN[14], to automatically retrieve rel-
evant features from the character sequence forming a word in the context of
part-of-speech tagging was proposed. They send the character sequence through
a CNN and obtain character level features. These character level features are
then augmented to the word embeddings. The model was later applied to Por-
tuguese and Spanish NER [5].

A common theme emerging from most of the systems is feature engineering.
Existing deep learning systems proposed also rely on feature engineering. Deep
Learning approach with no feature engineering for NER as a viable solution needs
to be explored. This is important because for many resource poor languages,
there is unavailability of resources required and the need for creating handcrafted
features. In this paper we study the feasibility of such a complete deep learning
approach on English and Spanish NER. We also compare our approach with
CharWNN[5] for Spanish NER as theirs is a complete deep learning approach.

3 Deep Learning NER

Given a sequence of word-entity label pairs i.e,D = (X,Y ) whereX = (x1, . . . , xn)
is the sequence of words in a sentence and Y = (y1, . . . , yn) is the corresponding
tags. The task is to find the best possible named entity tag sequence t∗ for a
given sequence of words as in equation 1.

argmax
t∗

P (t|X) (1)

This involves estimating the parameters of the conditional probability P (Y |X).
The conditional probability can be decomposed as in equation 2.

P (y1, . . . , yn|x1, . . . , xn) =
N∏
i=1

P (yi|x1, . . . , xn, yi−1) (2)

LSTMs have traditionally been favored for problems with sequential nature.
For NER task the modeling using LSTM is given in equation 3,

P (y1, . . . , yn|x1, . . . , xn) =
N∏
i=1

P (yi|g(x1, . . . , xi)) (3)



where g is a LSTM which extracts relevant features by looking at current word
and all the previous words.

Since the above modeling does not take into account the information from
the right context Bidirectional LSTM [15] is preferred as it is able to capture
information from both the directions.

P (y1, . . . , yn|x1, . . . , xn) =
N∏
i=1

P (yi|g(x1, . . . , xi), h(xi, . . . , xn)) (4)

Here both g and h are LSTMs and we use the same LSTM for both forward
direction as well as backward direction. We call this architecture Bi-LSTM.

This is the simplest LSTM model usually used for Sequence Labeling tasks.
The major disadvantage with the above approach is the independence assump-
tion between successive tags i.e, the model does not account for P (yi|yi−1). For
example in NER, modeling that I-PER tag always follows B-PER tag is impor-
tant. Modeling of this dependence is crucial for successful application of LSTMs
for sequence labeling task.

Later BI-LSTM-CRF[9] was proposed which used a CRF like layer which
was added on top of LSTM layer to obtain the best tag sequence. They show
that Bidirectional LSTM performs relatively poorly and the accuracy increases
with the addition of CRF like top layer.

In our work, we instead use a teacher training model to capture the tag
dependencies. We use Feedforward Neural network as the decoder. This decoder
takes in representation from the Bidirectional LSTMs as well as the correct
previous tag as input. This kind of architecture is similar to the decoder in
Neural Machine Translation system. During testing, Viterbi decoding is used to
find the best possible tag sequence.

P (y1, . . . , yn|x1, . . . , xn) =
N∏
i=1

P (yi|g(x1, . . . , xi), h(xi, . . . , xn), yi−1) (5)

The architecture of the model is as shown in figure 1. The input to the system
is pre-trained word embeddings. Forward LSTM reads the entire source sequence
one word at a time left-to-right. Similarly backward LSTM reads the words from
right-to-left. The hidden state of both the forward and backward LSTMs for a
particular word is concatenated. Additionally true previous tag is concatenated
and given to the decoder for predicting the NER tag.

3.1 Character nGram Features

The bidirectional LSTM model described above relies heavily on pre-trained
word embeddings. It is clear that various character-level features like suffixes,
uppercase information, presence of non-alphanumeric characters help in NER
task. Unlike existing systems which augments these handcrafted features into
the word embedding we follow the path of learning these features from the data



Fig. 1: Architecture of Bidirectional LSTM for NER

[14, 5]. The major difference from our approach and theirs is the use of multiple
region sizes. Unlike CharWNN[14, 5] where region size is kept to 5 characters,
we extract features from convolutional layers for each region size from 1 to 4.
The convolutional layer is followed by a max-pooling layer. These character-
level features bring in additional information along with the word embeddings.
The intuition for having parallel convolutional layers of varying region size is
to extract relevant nGram character features. For example, convolutional layer
looking at unigram character tries looks for presence of uppercase characters and
presence of non-alphanumeric characters. Convolutional layer looking at trigram
characters tries to extract relevant trigram character features and need not worry
about presence/absence of uppercase characters.

The architecture of CNN layer which runs over a unigram and extract mul-
tiple features is as shown in figure 2. Unlike CharWNN[14, 5] we do not have
a common character lookup table before the convolutional layer. The convolu-
tional layer which runs over unigrams extracts character embedding but they
serve a different purpose. By not having a common character lookup table we
directly look for relevant ngram character sequences. The features extracted are
augmented into the pre-trained word embeddings. We call this system Feature
Learned NER.

3.2 Sparse Word Embeddings

The current neural embeddings are dense and uninterpretable. These dense em-
beddings capture many modalities of the word. Extracting relevant features from
this dense representation for a particular task may require a complex model. To
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Fig. 2: Character Level CNN for NER

tackle this we would like to have a relatively sparse representation for the word
but capturing much of the information from the dense representation.

There has been some work to obtain interpretable sparse representations
from the word embeddings [7]. The approach uses sparse coding to obtain sparse
interpretable word representations. Unlike the previous work which looks for in-
terpretable word representations we use a relatively sparse word representations
on NER task to evaluate its usefulness.

We learn a sparse word representation by sending the pre-trained word em-
bedding through an autoencoder layer. We use Rectified Linear Units (ReLU) at
the hidden layer followed by dropout layer [18]. By using ReLUs we achieve some
kind of sparsity in the hidden layer representation and dropout layer bring in
regularization into the model. The sparse hidden layer representation obtained
replaces the word embeddings in our model.

4 Experimental Setup

We begin the section by describing the datasets used in our experiments and the
description of various hyper-parameters used in our experiments. The hyper-
parameters are chosen by doing a random grid search and evaluation on the
development set. In all our experiments the pre-trained word embeddings are
not updated.

4.1 Word Embeddings

We have used the pre-trained Glove word embeddings [13]. For our experiments
we choose the 50 dimensional word embeddings trained on Wikipedia and Gi-
gaword. The word embeddings are available for around 400K words. We also



test using word embeddings from Senna [4] in our experiemnts. Since, senna
word embeddings are fine-tuned for the NER task, we believe that the results
would be better than glove word embeddings. Interesting observation would be
performance of senna word embeddings when used on out-of-domain tasks. For
Spanish NER, we use the publicly available Spanish word embeddings1 [2]. The
word embeddings are of 300 dimensional and trained using word2vec [10, 11]
tool.

4.2 Corpus

We evaluate our system on the standard CoNLL 2003 English NER Shared Task
data [20]. The data is distributed in the IOB format with B-XXX tag used when
two mentions of the same entity appear next to each other. The data identifies
4 types of tags, Person, Location, Organization and Miscellaneous. This data
is converted to standard IOB format where every entity begins with the tag
B-XXX followed by I-XXX if it is a multiword named entity.

We test our trained model on out-of-domain datasets. MUC-7 dataset is
the common choice for reporting out-of-domain performance. It is annotated
for named entities like Person, Location and temporal entities like Date, Time
and Number expressions like monetary units. We choose MUC7 Formal run for
comparison with existing systems. Since the dataset has no Miscellaneous tags
as in CoNLL 2003 data, we follow the same procedure as [21] where we keep only
Person, location, Organization tags and all other tags as non-named entities (O
tag). Similarly after prediction is done, we replace all predicted Misc tags by O.

We also test our Deep Learning model on Wiki50 Dataset [22]. The Wiki50
Dataset contains annotations for both Named Entities and Multiwords. The
dataset was created from fifty wikipedia articles from different domains. We con-
vert all non-named entity tags to Others. The Named Entity tags are converted
into IOB Format. We consider the entire Wiki50 dataset for testing.

We compare the performance of our model with various existing systems. We
compare the results of our model on out-of-domain datasets and the reported
performance by other systems. For Wiki50 Dataset and MUC7 formal run, we
run Senna [4] without tokenization and report the results.

For Spanish NER, we use the CoNLL 2002 Spanish corpus which was used
for CoNLL 2002 Shared Task [19]. The data is similar to the English CoNLL
2003 data. The official splits are used as training, development and test files.

4.3 Parameter Setup

The number of hidden layer neurons were set to 200 in all our models. For
Convolution layer at the character layer we considered ngrams of 1,2,3 and 4.
Each convolutional layer extracted 15 sets of features from the character layer.
The features extracted from convolution layers which run over ngram characters
of 1,2,3 and 4 are concatenated and augmented to word embeddings. If any

1 http://crscardellino.me/SBWCE/



of the word had less than 4 characters we pad it with a special symbol. Pre-
trained word embeddings are not updated in our model. For word with no word
embeddings we kept it’s corresponding word embedding as all zeroes. We used
Adagrad [6] in all our experiments for optimization. After every epoch the cost
on development set was monitored and when the cost increased, the learning
rate was halved. We used Backpropagation Through Time algorithm without
truncation for training. We observed that batch size of 1 gave the best results.
We used dropout layer after the bidirectional LSTM layer in all our models.

For getting sparse word representation, the Glove word embeddings are sent
through an autoencoder layer. We keep the number of hidden layer neurons to
500. The hyper-parameter space was between 100 to 600 dimensions. Our goal
was not to learn an interpretable sparse representation so we did not try using
large number of hidden neurons. The training was stopped for 4 epochs to prevent
the model from learning an identity function. This learned representation gave
the best performance on the CoNLL English Shared task development set. The
obtained representation was also evaluated on syntactic and semantic analogy
tasks [11] and the results were lower than reported by [13].

For Spanish NER, we set the number of hidden layer neurons is kept to 150.
There are 4 parallel convolutional layers running over character ngrams of 1,2,3
and 4 and extracting 20 features each.

5 Results

In this section we analyze the obtained results. The table 1 discusses the re-
sults obtained from Knowledge Lean Deep Learning models along with baseline
systems and Deep Learning based state-of-the-art systems.

Table 1: CoNLL English NER Shared Task Test Results

System F1 (%)

Senna [4] (no Gazetteers) 88.67
Huang [9] (no Gazetteers) 88.83
Passos [12] 90.90

Bi-LSTM 81.10
Bi-LSTM + Transition 83.30
Bi-LSTM + Character Features 85.87
Feature Learned NER (CNN Single Width) 88.19
Feature Learned NER 88.90
Feature Learned NER (Senna) 89.20
Feature Learned NER + PreTrained 89.27

The results obtained from the Vanilla Bi-LSTM with only pre-trained word
embeddings are much lower compared to existing systems. The major source



for these errors were the confusion with non-named entities and named entities.
Another major source was missing word embeddings for many words forcing the
network to predict correct tag only looking at the context. Adding transition
features (previous tag information) into the system improves the results but the
improvements in the results were not satisfactory.

Adding a Convolutional layer over the character sequence and using features
obtained after max pooling along with word embeddings boosted the results for
the Vanilla Bi-LSTM. The convolutional layer looked at ngrams of 3 characters.

Combining previous tag information with character level features improved
the results further and brought into the regime of existing systems. Now instead
of running a single convolutional layer over 3 characters having parallel convo-
lutional layers each running over n characters (with n =1,2,3,4) gave a F-Score
of 88.9. Using Senna embeddings as input we see an increase in F-Score to 89.2.
The results indicate that our system is able to give comparable results to feature
engineered systems.

Learning a sparse representation for words over using pre-trained word em-
beddings gave the best performance of our system. The results obtained are
comparable with state-of-the-art systems. When we consider systems which does
not use any handcrafted features or knowledge resources, our reported results
are the best with a F-Score of 89.27. The results indicate that a complete deep
learning approach is a viable solution for resource scarce languages.

The following table reports the results for Spanish NER. We report the re-
sults only for Feature Learned NER system which uses multiple character fea-
tures along with transition features from teacher training. The results indicate
that our feature learned deep learning model is able to achieve state-of-the-art
performance for Spanish NER.

Table 2: Results on Spanish NER: CoNLL 2002 Test Data

System F1 (%)

CharWNN[5] 82.21

Feature Learned NER 82.59

Out-of-domain Results

Here we report the results of our model on two out-of-domain datasets. The
results are provided in tables 3 and 4. Here we compare only those systems
which were trained on CoNLL Shared Task dataset and the trained model was
tested on MUC7 datasets. For Wiki50 dataset, we report the results only for
Senna.

On MUC7 and Wiki50 datasets, the results are lower compared to existing
systems. On analysis on Wiki50 data, we find that a significant number of named



Table 3: Wiki50: Out-of-Domain Results

System F1 (%)

Senna (with Gazetteers) 54.26

Feature Learned NER 54.53
Feature Learned NER + PreTrained 52.34
Feature Learned NER (Senna) 55.51

entities do not have any corresponding word vectors. The statistics of unknown
words present in different datasets for Feature Learned NER model is given in
table 5. This makes our system to rely heavily on learned character features. As
our model tries to learn the character level features in a supervised way it might
not generalize well.

Table 4: MUC7 Formal Run: Out-of-Domain Results

System F1 (%)

CRF + Glove [13] 82.2
Senna (with Gazetteers) 79.66
CRF [21] 82.71

Feature Learned NER 80.53
Feature Learned NER + PreTrained 79.60
Feature Learned NER (Senna) 79.49

Sparse word representations lost some of the information present in the orig-
inal word embedding. This was also evident when these representations were
tested for syntactic and similarity analogy tasks. This could be the reason for
the poor performance on out-of-domain task. Our model outperforms Senna
system on both MUC7 dataset and Wiki50 dataset.

Table 5: Statistics on Known and Unknown words in Test Set

Dataset CoNLL MUC7 Wiki50

Present + Tagged Correct 37909 50145 70096
Present + Incorrect Tagged 5430 4909 9345
Absent + Correct 3051 4227 16089
Absent + Incorrect 276 145 4838



6 Conclusion

In this paper, we showed that a feature learned deep learning system is a viable
approach for NER. Our experiments show that a feature learned deep learn-
ing system gives comparable results with the existing state-of-the-art systems
for English NER. When systems which do not perform feature engineering are
considered, we achieve the best F-Score on CoNLL English NER task. The per-
formance of our system on out-of-domain task is also encouraging. Best F-Score
is observed for Spanish NER using our feature learned deep learning approach.
This is an encouraging result for the applicability of a feature learned deep learn-
ing based NER system for resource scarce languages. We believe that learning
both character-level features and gazetteer features in an unsupervised way is
the way to go for improving the performance of this NER system on both in-
domain and out-of-domain tasks. We would like to study the performance of
our NER system on resource scarce and morphologically rich languages which
presents a different challenge.
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