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Abstract. The task of end-to-end relation extraction consists of two
sub-tasks: i) identifying entity mentions along with their types and ii)
recognizing semantic relations among the entity mention pairs. It has
been shown that for better performance, it is necessary to address these
two sub-tasks jointly [22, 13]. We propose an approach for simultaneous
extraction of entity mentions and relations in a sentence, by using in-
ference in Markov Logic Networks (MLN) [21]. We learn three different
classifiers : i) local entity classifier, ii) local relation classifier and iii)
“pipeline” relation classifier which uses predictions of the local entity
classifier. Predictions of these classifiers may be inconsistent with each
other. We represent these predictions along with some domain knowl-
edge using weighted first-order logic rules in an MLN and perform joint
inference over the MLN to obtain a global output with minimum in-
consistencies. Experiments on the ACE (Automatic Content Extraction)
2004 dataset demonstrate that our approach of joint extraction using
MLNs outperforms the baselines of individual classifiers. Our end-to-end
relation extraction performance is better than 2 out of 3 previous results
reported on the ACE 2004 dataset.

1 Introduction

Real world entities are referred in natural language sentences through entity
mentions and these are often linked through meaningful relations. The task of
end-to-end relation extraction consists of two sub-tasks: entity extraction and
relation extraction. The sub-task of entity extraction deals with identifying entity
mentions and determining their entity types. The other task of relation extraction
deals with identifying whether any semantic relation exists between any two
mentions in a sentence and also determining the relation type if it exists. In this
paper, we refer to entity extraction and relation extraction tasks as defined by
the Automatic Content Extraction (ACE) program [3] under the EDT (Entity
Detection and Tracking) and RDC (Relation Detection and Characterization)
tasks, respectively. ACE standard defined 7 entity types 1: PER (person), ORG

1 https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-edt-v4.2.6.pdf



(organization), LOC (location), GPE (geo-political entity), FAC (facility), VEH
(vehicle) and WEA (weapon). It also defined 7 coarse level relation types 2: EMP-
ORG (employment), PER-SOC (personal/social), PHYS (physical), GPE-AFF
(GPE affiliation), OTHER-AFF (PER/ORG affiliation), ART (agent-artifact)
and DISC (discourse).

Compared to the work (refer the surveys [18, 19]) in Named Entity Recogni-
tion (NER), there are relatively few attempts [4, 5, 13, 15] to address the more
general entity extraction problem. NER extracts only named mentions (e.g. John
Smith, Walmart) whereas entity extraction is expected to also identify common
noun and pronoun mentions (e.g. company, leader, it, they) and their entity
types. This task is more challenging than NER because entity type of men-
tions like leader or they may vary from sentence to sentence depending on
which real life entity they are referring to in that sentence. For example, entity
type of leader would be PER in the sentence John Smith was elected as

the leader of the Socialist Party whereas its entity type would be ORG
in the sentence Pepsi is a market leader in its segment.

There has been a lot of work for relation extraction like Zhou et al. [6],
Jiang and Zhai [10], Bunescu and Mooney [1] and Qian et al. [20]. All of these
approaches assume that the boundaries and the types of entity mentions are
already known. Several features based on this information are used for relation
prediction. In order to use such relation extraction systems, there should be
separate entity extraction system whose output acts as an input for relation ex-
traction. In such a “pipeline” method, the errors are propagated from first phase
(entity extraction) to second phase (relation extraction) affecting the overall re-
lation extraction performance. Another major disadvantage of the “pipeline”
method is that it facilitates only one-way information flow, i.e. the knowledge
about entities is used for relation extraction but not vice versa. However, the
knowledge about relations can help in correcting some entity extraction errors.

In order to overcome these problems, we propose an approach which uses in-
ference in Markov Logic Networks (MLN) for simultaneous extraction of entities
and relations in a sentence. This approach facilitates two-way information flow.
MLNs combine first-order logic and probabilistic graphical models in a single
representation. An MLN contains a set of first-order logic rules, and each rule
is associated with a weight. The fewer rules a world violates, the more probable
it is. Also, higher the weight of a rule, greater is the probability of a world that
satisfies the rule compared to the one that does not. In our approach, three sepa-
rate classifiers are learned: a local entity classifier, a local relation classifier and a
“pipeline” relation classifier which uses predictions of the local entity classifier.
Predictions of these classifiers along with other domain knowledge are repre-
sented using weighted first-order logic rules in an MLN. Joint inference over this
MLN is then performed to get a final output with least possible contradictions
or inconsistencies among the individual classifiers.

The specific contributions of this work are : i) a novel approach for joint
extraction of entity mentions and relations using inference in MLNs and ii) easy

2 https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-rdc-v4.3.2.PDF



and compact representation of the domain knowledge using first-order logic rules
in MLNs. The rest of the paper is organized as follows. Section 2 describes some
background and necessary building blocks for our approach. Section 3 describes
our approach in detail and Section 4 describes the working of our approach
through an example. Experimental results are presented in Section 5. Related
work is then described briefly in Section 6. Finally we conclude in Section 7 with
brief discussion about the future work.

2 Building Blocks for Our Approach

2.1 Markov Logic Networks

Markov Logic Networks (MLN) which were proposed by Richardson and Domin-
gos [21], combine first-order logic and probabilistic graphical models in a single
representation. Formally, a Markov Logic Network L is defined as a set of pairs
(Fi, wi), where each Fi is a formula in first-order logic with a real weight wi.
Along with a finite set of constants C = {C1, C2, · · · , C|C|}, it defines a Markov
Network ML,C as follows:

1. ML,C contains one binary node for each possible grounding of each predicate
appearing in L. The value of the node is 1 if the ground atom is true, and 0
otherwise.

2. ML,C contains one feature for each possible grounding of each formula Fi

in L. The value of this feature is 1 if the ground formula is true, and 0
otherwise. The weight of the feature is the wi associated with Fi in L.

The probability distribution of random variable X over possible worlds x speci-
fied by Markov Network ML,C is given by,

P (X = x) =
1

Z
exp

(∑
i

wini(x)

)
(1)

where ni(x) is the number of true groundings of Fi in x and Z is the partition
function. MLN can be used to find probability of a formula (say F1) being true,
given some other formula (say F2) is true.

P (F1|F2,ML,C) =
P (F1 ∧ F2|ML,C)

P (F2|ML,C)
=

∑
x∈XF1

∩XF2
P (X = x|ML,C)∑

x∈XF1
P (X = x|ML,C)

where XFi represents the set of worlds where Fi holds and P (X = x|ML,C) is
computed using the equation 1.

2.2 Identifying Entity Mention Candidates

It is necessary to first identify the span (or boundaries) of each entity mention 3

in a given sentence. We model this as a sequence labelling problem. A sentence

3 We consider the “head” extent of a mention defined by ACE standard as the entity
mention so that all the valid entity mentions are always non-overlapping.



is a sequence of words and each word in a sentence is assigned a label indicating
whether that word belongs to any entity mention or not. We use BIO encoding
for this purpose.

– O: Label for the words which are not part of any entity mention

– B: Label for the first word of entity mentions

– I: Label for the subsequent words (except the first word) of entity mentions

We employ the Conditional Random Field (CRF) model [12], which is trained
in a supervised manner. Given any new sentence, we use the trained CRF model
to predict the 2 most probable label sequences as follows:

S1:A/O Palestinian/B Council/B member/B says/O anger/O is/O growing/O ./O
S2:A/O Palestinian/B Council/I member/B says/O anger/O is/O growing/O ./O

In this sentence, entity mention candidates from the topmost sequence are
Palestinian, Council and member. Entity mention candidate Palestinian

Council is generated from the second sequence. Generally, the candidates gen-
erated from the most probable sequence are more likely to be valid entity men-
tions. The candidates generated from the second most probable sequence are
considered valid entity mentions only if they satisfy certain constraints. These
constraints are applied in the form of first-order logic rules in MLNs and will be
explained later. A special entity type NONE is assigned to a candidate entity
mention if it is an invalid entity mention.

2.3 Local Entity Classifier

The local entity classifier is used to predict the most probable entity type for
each candidate entity mention in a given sentence. This classifier is referred to as
“local” as it takes an independent decision for each entity mention irrespective
of its relation with other mentions. A Maximum Entropy Classifier is trained in
a supervised manner which captures the characteristics of each entity mention
E using following features:
1. Lexical Features: Head word and other words in E, words preceding and
succeeding E in the sentence
2. Syntactic Features: POS tags of the head word and other words in E, POS
tags of the words preceding and succeeding E, parent of head word of E in the
dependency tree and also the dependency relation with the parent
3. Semantic Features: WordNet category (if any) of the head word of E. Some
specific synsets in the WordNet (e.g. person, location, vehicle) are marked
as possible “categories” and if any word is direct or indirect hypernym of such
synsets, it is said to be falling in the corresponding “category”.
As this classifier is trained using only the valid entity mentions in the training
data, it always predicts one of the 7 ACE entity types and never predicts the
NONE type.



2.4 Local Relation Classifier

The local relation classifier is used to predict the most probable relation type
for each pair of candidate entity mentions in a given sentence. This classifier is
referred to as “local” as it takes an independent decision for each pair of entity
mentions irrespective of their entity types.

In addition to ACE 2004 relation types, it considers two special relation types
“NULL” (indicating that no semantic relation holds) and “IDN” (representing
intra-sentence co-references). In the sentence Pepsi is a market leader, the
entity mentions leader and Pepsi are co-references and hence we add the IDN
relation between these mentions. With the help of IDN (identity) relation type,
information about intra-sentence co-references can be incorporated in a princi-
pled way without using an external co-reference resolution system. Also, more
number of entity mentions get involved in at least one relation, resulting in better
entity extraction performance. For example, in the ACE 2004 dataset, there are
22718 entity mentions and 4328 relation instances resulting in only 7604 entity
mentions involved in at least one relation. Considering the IDN relation, number
of relation instances increases to 12060 covering 14930 entity mentions.

A Maximum Entropy Classifier is used which captures the characteristics of
each entity mention pair (E1, E2) with the help of following features:
1. Lexical Features: Head words and other words of E1 & E2, words preceding
and succeeding E1 & E2 in the sentence
2. Syntactic Features: POS tags of the head word and other words in E1 & E2,
POS tags of the words preceding and succeeding E1 & E2, parents of head words
of E1 & E2 in the dependency tree and also the dependency relations with the
parents, path connecting E1 & E2 in the dependency tree, their common ancestor
in the dependency tree
3. Semantic Features: WordNet categories (if any) of the head words of E1 &
E2, the common ancestor and other words on the path connecting E1 & E2 in
the dependency tree of the sentence, syntactico-semantic structures identified in
Chan and Roth [2].

2.5 Pipeline Relation Classifier

Unlike the local relation classifier, the “pipeline” relation classifier is dependent
on the output of the local entity classifier. It uses following features in addition
to the features used by the local relation classifier.
1. Entity types of E1 and E2 as predicted by the local entity classifier
2. Concatenation of entity types of E1 and E2

3. A binary feature indicating whether the types of E1 and E2 are same or not.

This classifier is referred to as a “pipeline” classifier because of unidirectional
information flow. In other words, the knowledge about types of entity mentions
is used by the relation classifier but not vice versa.



3 Joint Extraction using Inference in MLNs

3.1 Motivation

As described in the previous section, we have 3 classifiers producing various
predictions about entity types and relation types. These decisions may be in-
consistent, i.e. relation type predicted by the local relation classifier may not
be compatible with the entity types predicted by the local entity classifiers.
Also, there may be contradiction in predictions of local relation classifier and
“pipeline” relation classifier. Our aim is to take predictions of these classifiers
as input and make a global prediction which minimizes such inconsistencies.
MLN provides a perfect framework for this, where we can represent predictions
of individual classifiers as first-order logic rules where weights of these rules are
proportional to the prediction probabilities (soft constraints). Also, the consis-
tency constraints among the relation types and entity types can be represented
in the form of first-order logic rules with infinite weights (hard constraints).
Now, the inference in such an MLN will provide a globally consistent output
with maximum weighted satisfiability of the rules. The detailed explanation is
provided in subsequent sections about how the first-order logic rules are created
and how the corresponding weights are set.

3.2 Domains and Predicates

We specify one MLN for a sentence, i.e. for all candidate entity mentions and
possible relation instances in a sentence. The software package used for inference
in MLN is Alchemy 4. We define 3 domains : entity, etype and rtype. The
entity domain represents entity mentions where an unique ID is assigned to
each entity mention. It is specified as follows in Alchemy for a sentence with n
entity mentions having IDs from 1 to n:

entity = {1, 2, · · · , n}

The next domain etype represents the set of all possible entity types and another
domain rtype represents the set of all possible relation types. These domains are
specified in Alchemy as follows:

etype = {PER,ORG,LOC,GPE,WEA,FAC, V EH,NONE}

rtype = {EMPORG,GPEAFF,OTHERAFF,PERSOC,PHY S,ART,NULL, IDN}

We define following predicates which are used for writing various first-order
logic rules. The arguments for these predicates come from the above domains.
1. ET (entity, etype): ET (i, E) is true only when entity type of the entity men-
tion i is equal to E. It is true for one and only one entity type. It represents
the entity type prediction of the local entity classifier and used as an evidence
during inference.

4 http://alchemy.cs.washington.edu/



2. RTP (entity, entity, rtype): RTP (i, j, R) is true only when type of relation
between entity mentions i and j is equal to R. It is true for one and only one
relation type. It represents relation type prediction of “pipeline” relation classi-
fier. It is also used as an evidence.
3. RTL(entity, entity, rtype) : Similar to RTP but represents relation type pre-
diction of local relation classifier.
4. ETFinal(entity, etype) : Similar to ET but represents global entity type pre-
diction and is used as a query predicate during inference.
5. RTFinal(entity, entity, rtype) : Similar to RTP but represents global relation
type prediction and is used as a query predicate.

During the inference in MLN, the probabilities of all possible groundings of
query predicates are computed, conditioned on the specific groundings of the
evidence predicates.

3.3 Generic Rules

Although one MLN is created for each sentence, some first-order rules are com-
mon and they are added to MLNs of all the sentences. We refer to these rules
as Generic Rules. These rules represent some universal truths about the domain
and hence the weight associated with each of these rules is set to infinity. In
other words, any world that violates any of these rules, is practically impossi-
ble. These rules provide an easy and effective way of incorporating the domain
knowledge about entity types and relation types. For each valid combination of
relation type and entity type of one of its argument, we write rules to constrain
the possible entity types for the other argument. Such rules can be easily de-
vised by going through the ACE 2004 labelling guidelines. Following are some
representative examples 5. Note that the variables x, y are universally quantified
at the outermost level.
1. If there is an EMPORG relation between two entity mentions and entity type
of any mention is PER, then entity type of other mention can only be one of :
ORG or GPE.

RTFinal(x, y, EMPORG) ∧ ETFinal(x, PER)⇒ (ETFinal(y,ORG) ∨ ETFinal(y,GPE)).

RTFinal(x, y, EMPORG) ∧ ETFinal(y, PER)⇒ (ETFinal(x,ORG) ∨ ETFinal(x,GPE)).

2. For the “identity” relation type IDN , the constraint is that the entity types
of both the mentions should be same.

RTFinal(x, y, IDN) ∧ ETFinal(x, z)⇒ ETFinal(y, z).

RTFinal(x, y, IDN) ∧ ETFinal(y, z)⇒ ETFinal(x, z).

5 All the rules can’t be listed because of the space constraints.



3.4 Sentence-specific Rules

These rules are specific to each sentence and represent the predictions by the
individual baseline classifiers. Unlike the Generic Rules, these rules are added
with finite weights.
Weight Assignment Strategies: In order to learn the weights of various first-
order logic rules, historical examples of predictions of 3 base classifiers along with
gold-standard predictions would be required. Instead we chose to compute these
weights by using some functions of the corresponding prediction probabilities.
The work by Jain [9] discussed various ways of weight assignments to represent
knowledge in MLNs. In another work, Heckmann et al. [8] adjusted the rule
weights experimentally for citation segmentation using MLNs. On the similar
lines, following two strategies are adopted for weight assignments.

1. Log of Odds Ratio (LOR): Richardson and Domingos [21] states that
the weight of a formula F is log odds between a world where F is true and a
world where F is false. For a prediction with probability p, we set the weight

of corresponding formula as log
(

p
1−p

)
. Here, the penalty for violating any

formula will increase logarithmically with its probability.
2. Constant Multiplier (CM): As per this strategy, for a prediction with

probability p, we set the weight of corresponding formula as K · p. Here, the
penalty for violating any formula will increase linearly with its probability.
We have used K = 10 in all our experiments.

Rules induced by the Local Entity Classifier: For each candidate entity
mention, the entity type predicted by the local entity classifier acts as an evi-
dence for the MLN inference. The classifier also assigns some probability to each
possible entity type. For each entity mention id i, for each possible entity type
E, following rule is added with the weight proportional to the probability of
prediction.

ET (i, Emax)⇔ ETFinal(i, E)

Here, Emax is the entity type predicted by the local entity classifier. The weights

assigned to this rule as per above strategies would be log
(

Pe(E|i)
1−Pe(E|i)

)
and K ·

Pe(E|i), where Pe(E|i) is the probability assigned to entity type E for the entity
mention id i by the local entity classifier.
Rules induced by the Pipeline Relation Classifier: For each pair of en-
tity mentions, the relation type predicted by the “pipeline” classifier acts as
an evidence for the MLN inference. For each pair of candidate entity mentions
(i, j), for each possible relation type R, following rule is added with the weight
proportional to the probability of prediction.

RTP (i, j, Rmax)⇔ RTFinal(i, j, R)

Here, Rmax is the relation type predicted by the “pipeline” relation classifier.The

weights assigned to this rule would be log
(

wtp·PP
r (R|i,j)

1−PP
r (R|i,j)

)
and K · PP

r (R|i, j) ·
wtp, where PP

r (R|i, j) is the probability assigned to the relation type R for



the pair (i, j) by the “pipeline” relation classifier. And wtp is the reliability of
prediction of “pipeline” classifier, which indicates how confident the local entity
classifier was in predicting entity types for entity mentions i and j. We set
wtp = Pe(E

i
max|i) · Pe(E

j
max|j).

Rules induced by the Local Relation Classifier: For each pair of candidate
entity mentions, the relation type predicted by the local classifier acts as an
evidence for the MLN inference. For each pair entity mentions (i, j), for each
possible relation type R, following rule is added with the weight proportional to
the probability of prediction.

RTL(i, j, RL
max)⇔ RTFinal(i, j, R)

Here, RL
max is the relation type predicted by the local relation classifier.The

weights assigned to this rule would be log
(

PL
r (R|i,j)

1−PL
r (R|i,j)

)
and K · PL

r (R|i, j),
where PL

r (R|i, j) is the probability assigned to the relation type R for the pair
(i, j) by the local relation classifier.
Rules for identifying valid/invalid entity mentions: We generate candi-
date entity mentions using top 2 most probable BIO sequences. In general, we
have a high confidence that candidate mentions from the topmost sequence are
valid and have a lower confidence for candidates from the second sequence. This
intuition is captured by addition of following rules. For each candidate i from

the topmost sequence, we add !ETFinal(i,NONE) with the weight log
(

p
1−p

)
or K ·p, based on the weighing strategy employed. Also for each candidate i from

the second sequence, we add ETFinal(i,NONE) with the weight log
(

1−p
p

)
or

K · (1 − p). In both the cases, p is the highest probability for any entity type
predicted for that mention by the local entity classifier. As we are generating
candidate entity mentions by using top 2 most probable BIO sequences, there
may be some overlapping entity mentions. For each pair of such overlapping can-
didate entity mentions (say i and j), following rules are added so that at most
one of them is a valid entity mention.

!ETFinal(i,NONE)⇒ ETFinal(j,NONE).

!ETFinal(j,NONE)⇒ ETFinal(i,NONE).

We assume candidate mentions generated from the second BIO sequence to be
valid, only if they are involved in some valid relation other than NULL. Also,
an invalid entity mention should not be involved is any non NULL relation with
any other mention. To ensure this desired consistency, following rules are added
for each pair of candidate mentions (i, j) where one of them (say i) is generated
from second BIO sequence.

!RTFinal(i, j,NULL)⇒!ETFinal(i,NONE).

ETFinal(i,NONE)⇒ RTFinal(i, j,NULL).

After the inference, if the probability of ETFinal(i,NONE) is the highest for
any candidate mention i, then it is identified as an invalid mention. And because



of above rules ensuring consistency, such mentions are never involved in any non
NULL relation.

3.5 Additional Semantic Rules

We explored the possibility of incorporating some domain knowledge by exploit-
ing the easy and effective representability of the first-order logic. In order to
incorporate the additional rules, we define following new predicates:
1. CONS(entity, entity) : CONS(i, j) is true only when there is no other entity
mention occurring in between the mentions i and j in a sentence.
2. CONJ(entity, entity) : CONJ(i, j) is true only when there is a conjunction
(i.e. connected through the dependency relations “conj:and” or “conj:or” in the
dependency tree) between the two mentions i and j.
Using the knowledge of conjunctions: When two entity mentions are con-
nected through a conjunction (like and, or) and one of them is connected to a
third entity mention with PHYS (i.e. located at) relation, then the other entity
mention is also very likely to be connected to the third mention with PHYS
relation. E.g. in the sentence fragment troops in Israel and Syria, a PHYS
relation between troops and Israel implies another PHYS relation between
troops and Syria. To incorporate this knowledge, following generic rules are
added in MLNs of all sentences.

RTFinal(x, y, PHY S) ∧ ((CONJ(y, z) ∧ CONS(y, z)) ∨ (CONJ(z, y) ∧ CONS(z, y)))

∧ET (y, t) ∧ ET (z, t)⇒ RTFinal(x, z, PHY S).

RTFinal(x, y, PHY S) ∧ ((CONJ(w, x) ∧ CONS(w, x)) ∨ (CONJ(x,w) ∧ CONS(x,w)))

∧ET (w, t) ∧ ET (x, t)⇒ RTFinal(w, y, PHY S).

Linking entity mentions with same types: The entity mentions linked
through certain dependency relations tend to share the same entity type. E.g. in
the sentence fragment companies such as Nielsen, the mentions companies

and Nielsen are very likely to have the same entity type. This is one of the
Hearst patterns [7] to automatically identify hyponyms from text. If entity men-
tions i and j follow such a pattern, we add following rule to their sentence’s
MLN : ETFinal(i, x)⇔ ETFinal(j, x).
Using knowledge about relation types: If an entity mention of type PER
is involved in a EMPORG relation, then it is highly unlikely that the same
person will be connected to any other mention with the EMPORG relation.
This is because any person can have at most one employer mentioned in a single
sentence. To impose this constraint, we add following rule.

RTFinal(x, y, EMPORG) ∧ (y 6= z)∧!RTFinal(y, z, IDN)∧!RTFinal(z, y, IDN)

∧ETFinal(x, PER)⇒!RTFinal(x, z, EMPORG)∧!RTFinal(z, x, EMPORG).



3.6 Joint Inference

As described above, an MLN is created for a sentence using some Generic Rules
with infinite weights and some sentence-specific rules. Given such an MLN, we
are interested to know the most probable groundings of the query predicates
given some specific groundings of evidence predicates. In our case, ETFinal and
RTFinal are the query predicates and ET , RTP , RTL, CONS and CONJ are
the evidence predicates. Inference over this MLN gives the probability of each
possible grounding of the query predicates, conditioned on the given values of
the evidence predicates. We used the default inference algorithm in Alchemy
named “Lifted Belief Propagation” [26]. For each candidate entity mention i,
grounding of the predicate ETFinal(i, E) with the highest probability is chosen
and corresponding value of E is its final entity type except the case when E =
NONE. In that case, we do not identify the corresponding candidate mentions as
a valid entity mention. Similarly, for each entity mention pair (i, j), grounding
of the predicate RTFinal(i, j, R) with the highest probability is chosen and
corresponding R value is its final relation type.

4 Example

In this section, we describe an example sentence where the joint inference helps
in correcting the prediction errors by the individual classifiers. Consider the
sentence from the ACE 2004 dataset: she is the new chair of the black

caucus. In order to identify the candidate entity mentions, top 2 label sequences
predicted by the CRF model are considered.

1. she/B is/O the/O new/O chair/O of/O the/O black/O caucus/B ./O
2. she/B is/O the/O new/O chair/B of/O the/O black/O caucus/B ./O

Table 1 shows all the candidate entity mentions identified along with their IDs
and predictions of the local entity classifier. It can be observed that mention ID

Table 1. Candidate entity mentions identified in the example sentence

ID Entity Mention From First BIO Sequence? Predicted Type Actual Type

1 she Yes PER PER
2 chair No PER PER
3 caucus Yes PER ORG

2 is generated from the second best BIO sequence and hence will be considered a
valid mention only if it is involved in a relation with some other mention. More-
over, the entity type predicted for the mention ID 3 (caucus) is incorrect. This
error propagates to the relation classification with “pipeline” classifier predicting
relation between chair and caucus to be IDN instead of EMP-ORG. But the
local classifier predicts the correct relation type EMP-ORG for this pair as it is



not using the entity type features. The first-order logic rules for this sentence’s
MLN are shown in the Table 2. The LOR (log of odds ratio) weights assignment
strategy is used. In case of soft constraints, the number preceding each rule in-
dicates its weight. No weight is explicitly specified for the hard constraints and
they always end with a period.

Table 2. First-order logic rules for the MLN of example sentence

Rules induced by the local entity
classifier

Rules for identifying valid/invalid entity
mentions

6.13 ET (1,PER)⇔ ETFinal(1,PER) 6.13 !ETFinal(1,NONE)
−0.93 ET (2,PER)⇔ ETFinal(2,LOC) 0.71 ETFinal(2,NONE)
−0.89 ET (2,PER)⇔ ETFinal(2,ORG) 0.15 !ETFinal(3,NONE)
−0.71 ET (2,PER)⇔ ETFinal(2,PER) ETFinal(2,NONE)⇒ RTFinal(1,2,NULL).
−0.53 ET (3,PER)⇔ ETFinal(3,ORG) !RTFinal(1,2,NULL)⇒!ETFinal(2,NONE).
0.15 ET (3,PER)⇔ ETFinal(3,PER) ETFinal(2,NONE)⇒ RTFinal(2,3,NULL).

!RTFinal(2,3,NULL)⇒!ETFinal(2,NONE).

Rules induced by the local and pipeline relation classifiers

3.37 RTL(1, 2, IDN)⇔ RTFinal(1, 2, IDN)
2.99 RTP (1, 2, IDN)⇔ RTFinal(1, 2, IDN)

1.52 RTL(1, 3, NULL)⇔ RTFinal(1, 3, NULL)
−1.66 RTL(1, 3, NULL)⇔ RTFinal(1, 3, IDN)
0.35 RTP (1, 3, NULL)⇔ RTFinal(1, 3, NULL)
−1.63 RTP (1, 3, NULL)⇔ RTFinal(1, 3, IDN)

−1.80 RTL(2, 3, EMPORG)⇔ RTFinal(2, 3, PHY S)
−1.09 RTL(2, 3, EMPORG)⇔ RTFinal(2, 3, IDN)
0.24 RTL(2, 3, EMPORG)⇔ RTFinal(2, 3, EMPORG)
−0.46 RTP (2, 3, IDN)⇔ RTFinal(2, 3, IDN)

Table 3. MLN inference output for entity types

she (ID 1) chair (ID 2) caucus (ID 3)

ETFinal(1, PER) =0.99 ETFinal(2, PER) =0.92 ETFinal(3, PER) =0.35
ETFinal(1, GPE) =0.01 ETFinal(3, GPE) =0.03 ETFinal(3, ORG) =0.39

ETFinal(2, GPE) =0.02 ETFinal(3, NONE) =0.14
ETFinal(2, NONE) =0.01 ETFinal(3, FAC) =0.03

The joint inference combines the evidence from the above three classifiers
and generates a globally consistent output. The outputs for the query predicates
ETFinal and RTFinal are shown in the Tables 3 and 4, respectively. The
predicate groundings which have negligible probability are not shown. Here,
it can be observed that the entity mention chair (ID 2) has been correctly
identified as a valid mention and the type of entity mention caucus has been
correctly predicted as ORG. Also the correct relation type of EMP-ORG between
chair and caucus has been chosen as the global prediction.



Table 4. MLN inference output for relation types

(she,chair) (she, caucus)

RTFinal(1, 2, IDN) =0.92 RTFinal(1, 3, EMPORG) =0.02
RTFinal(1, 2, PHY S) =0.01 RTFinal(1, 3, PERSOC) =0.02
RTFinal(1, 2, ART ) =0.01 RTFinal(1, 3, OTHERAFF ) =0.02

RTFinal(1, 2, OTHERAFF ) =0.02 RTFinal(1, 3, NULL) =0.90
RTFinal(1, 2, NULL) =0.01 RTFinal(1, 3, IDN) =0.02

(chair,caucus)

RTFinal(2, 3, EMPORG) =0.33
RTFinal(2, 3, PHY S) =0.10

RTFinal(2, 3, GPEAFF ) =0.10
RTFinal(2, 3, OTHERAFF ) =0.09

RTFinal(2, 3, IDN) =0.20

5 Experimental Analysis

In order to demonstrate the effectiveness of our approach, we compare its per-
formance with other approaches which have reported their results for end-to-end
relation extraction on ACE 2004 dataset 6. For fair comparison, we follow the
same assumptions made by Chan and Roth [2] and Li and Ji [13], i.e. ignoring the
DISC relation, not treating implicit relations as false positives and using coarse
entity and relation types. All the results are obtained by 5-fold cross-validation
on ACE-2004 data. Note that the actual folds used by each algorithm may differ.

Table 5. Results on the ACE 2004 dataset (Micro-averaged, 5-fold cross-validation)

Approach Entity Extraction Relation Extraction Entity+Relation
P R F P R F P R F

Local Classifiers 80.9 77.6 79.2 53.2 43.9 48.1 46.2 38.1 41.8
Pipeline Classifier 53.3 46.4 49.6 48.7 42.5 45.4
Chan and Roth [2] 42.9 38.9 40.8
Li and Ji [13] 83.5 76.2 79.7 64.7 38.5 48.3 60.8 36.1 45.3
Miwa and Bansal [16] 83.3 79.2 81.2 56.1 40.8 47.2
MLN (LOR) 79.3 79.9 79.6 56.2 45.2 50.1 50.6 40.8 45.2
MLN (LOR)+Rules 79.3 80.0 79.6 56.6 45.1 50.2 51.0 40.6 45.2
MLN (CM) 78.9 80.1 79.5 57.2 45.2 50.5 51.6 40.8 45.6
MLN (CM)+Rules 79.0 80.1 79.5 57.9 45.6 51.0 52.4 41.3 46.2

Comparative performances of all the approaches are shown in the table 5. A
true positive for the task of entity extraction means that an entity mention has
been correctly identified as the valid mention and also its type has been identified
correctly. A true positive for the task of relation extraction means that for a
pair of valid entity mentions, its relation type (except for special relation types

6 We have not yet acquired a more recent ACE 2005 dataset



NULL and IDN) has been identified correctly. For entity+relation extraction, a
stricter criteria is used where a true positive means that for a pair of valid entity
mentions, not only its relation type is identified correctly but types of both
the mentions are also identified correctly. Even if any one of these predictions is
incorrect, we consider it as a false positive for the predicted combination of entity
types and relation type and also as a false negative for the true combination of
entity types and relation type.

It can be observed that MLN inference with CM (Constant Multiplier)
weights assignment strategy performs better that the LOR (Log of Odds Ra-
tio) in case of relation extraction whereas for entity extraction LOR strategy is
better. Addition of semantic rules (discussed in the Section 3.5) results in bet-
ter performance for both the strategies. Also, we can observe that MLN (CM)
with semantic rules comfortably outperforms the individual classifiers: local en-
tity classifier, local relation classifier and “pipeline” relation classifier. In case
of end-to-end relation extraction, our approach outperforms the approaches of
Chan and Roth [2] and Li and Ji [13] on the ACE 2004 dataset and also achieves
a comparable performance as compared to Miwa and Bansal [16]. We also achieve
comparable performance in case of entity extraction as compared to Li and Ji [13]
but underperform in comparison with Miwa and Bansal [16].

6 Related Work

Previous work on joint extraction of entities and relations can be broadly
classified into 5 categories : i) Integer Linear Programming (ILP) based ap-
proaches [22, 24], ii) Probabilistic Graphical Models [23, 25], iii) Card-pyramid
parsing [11], iv) Structured Prediction [13, 14, 17] and v) Recurrent Neural Net-
work (RNN) based model [16]. Our approach is similar to ILP based approaches,
but we use MLNs for joint inference which provide much better representation
to incorporate complex domain knowledge as compared to ILP. For example,
the rules defined in the section 3.5 are quite easy to incorporate using first-order
logic but the same would be cumbersome in ILP. The approaches by Singh et
al. [25] and Li and Ji [13] not only carry out joint “inference” but also create a
joint “model” where the parameters for both the tasks are learned jointly.

Zhang et al. [27] used Markov Logic rules to perform Ontological Smoothing.
The concept of Ontological Smoothing is to find a mapping from a user-specified
target relation to a background knowledge base. This mapping is then used to
generate extra training data for distant supervision. Similar to our approach,
they also use Markov logic rules to ensure consistency between relation types
and entity types. One major difference is that the relation types used by them
were quite specific and not as general as ACE 2004 relation types. Zhu et al. [28]
also used MLNs but they addressed a relation extraction problem which is bit
different from the ACE 2004 RDC task. It requires the explicit mention of rela-
tion in the form of words other than the words inside entity mentions. This is not
always true for ACE 2004 relations. For example, EMP-ORG relation holds be-



tween Indian and soldiers in the sentence Indian soldiers attacked the

terrorists.

7 Conclusion and Future Work

We described the problem of end-to-end relation extraction and the need to
jointly address its sub-tasks of entity and relation extraction. We proposed a
new approach for joint extraction of entity mentions and relations at the sentence
level, which uses joint inference in Markov Logic Networks (MLN). We described
in detail about the domains, predicates and first-order logic rules used to create
an MLN for a sentence. We also explored how the effective representability of
first-order logic can be used to incorporate various semantic rules and domain
knowledge. Finally, we demonstrated better than the state-of-the-art end-to-end
relation extraction performance on the standard dataset of ACE 2004.

In future, we plan to analyze the two weights assignment strategies (CM
and LOR) in detail and develop deeper understanding of pros and cons of each
one. Also, we have tried only a small number of additional semantic rules. In
future, we wish to take advantage of the first-order logic framework to incor-
porate deeper semantic knowledge. Another important direction to explore is
about learning the weights of first-order logic rules automatically.
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