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Abstract
An essential component of any dialogue system is understanding the languagewhich is known as spoken language understanding
(SLU). Dialogue act classification (DAC), intent detection (ID) and slot filling (SF) are significant aspects of every dialogue
system. In this paper, we propose a deep learning-based multi-task model that can perform DAC, ID and SF tasks together. We
use a deep bi-directional recurrent neural network (RNN) with long short-term memory (LSTM) and gated recurrent unit (GRU)
as the frameworks in our multi-task model. We use attention on the LSTM/GRU output for DAC and ID. The attention outputs
are fed to individual task-specific dense layers for DAC and ID. The output of LSTM/GRU is fed to softmax layer for slot filling
as well. Experiments on three datasets, i.e. ATIS, TRAINS and FRAMES, show that our proposed multi-task model performs
better than the individual models as well as all the pipeline models. The experimental results prove that our attention-based multi-
task model outperforms the state-of-the-art approaches for the SLU tasks. For DAC, in relation to the individual model, we
achieve an improvement of more than 2% for all the datasets. Similarly, for ID, we get an improvement of 1% on the ATIS
dataset, while for TRAINS and FRAMES dataset, there is a significant improvement of more than 3% compared to individual
models.We also get a 0.8% enhancement for ATIS and a 4% enhancement for TRAINS and FRAMES dataset for SFwith respect
to individual models. Results obtained clearly show that our approach is better than existing methods. The validation of the
obtained results is also demonstrated using statistical significance t tests.
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Introduction

In the area of dialogue systems, spoken language understand-
ing (SLU) is a critical step towards understanding the utter-
ance of the user. To create robust human/machine dialogue
systems or chatbots, it is essential to understand the user and
respond according to the user’s request. To satisfy the user, it

is vital to have an SLU module in every human/machine dia-
logue systems that help in understanding the intentions and
extracting necessary information from the user utterance.
Spoken language understanding mainly deals with assigning
a functional tag to the user input. The functional tag expresses
the communicative intentions behind every user utterance also
known as utterance’s dialogue act. The first step in dialogue
processing is to identify the dialogue acts of the user utterance,
and is known as dialogue act classification (DAC). The clas-
sification of the dialogue acts in a user utterance can assist an
automated system in producing an appropriate response to the
user. Dialogue acts (DA) can be said to understand the inten-
tion of the user. An example of DAC is given in Table 1. The
correct classification of dialogue acts will help the system in
resolving the queries of the user. For every dialogue system, it
is essential to understand the intentions of the user. Many
works have been done to understand the different aspects of
the user and their feelings as in [23, 36, 64] to create a system
that can help in increasing the interaction between the human
and machine. Also, several works are being done for properly
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replying to the user queries as in [58, 66, 74] to complete the
different modules of a dialogue system that can understand the
user and appropriately respond to them.

For dialogue systems, especially for goal-oriented systems,
the second step in dialogue processing is to identify the intent
of the user, i.e. the primary goal of the user. The global prop-
erties of an utterance are the intent that signifies the primary
goal of the user. Intent detection (ID) is a critical processing
step of semantic analysis in dialogue systems. While it is a
standard utterance classification task and distinctly less com-
plex than the other tasks of semantic analysis, the errors made
by a classifier for intent detection are more visible—as they
often lead to wrong system responses. Therefore, a robust
intent detection system plays a crucial role in building an
effective dialogue system. An example of intent detection is
given in Table 1. Intents are mainly domain-dependent.
Hence, for different goal-oriented dialogue systems, we have
a unique set of intents.

The final step in spoken language understanding is to ex-
tract the necessary information in the form of slots automati-
cally. The task is to fill in a set of arguments or ‘slots’ embed-
ded in a semantic frame to accomplish a goal in human-
machine dialogue systems. We show the example of slots in
Table 1. This task of finding a suitable label for every word in
the utterance is referred to as slot filling.

As already discussed, the primary tasks of goal-oriented
dialogue systems are the dialogue act classification (DAC),
intent detection (ID) and slot filling (SF) that capture the se-
mantic information of the user utterances. According to the
information extracted, the system can then decide on the ap-
propriate actions to be taken, to help the users achieve their
demands. SLU applications are becoming increasingly signif-
icant in our everyday lives. Numerous devices, such as
smartphones, have personal assistants that are built with
SLU technologies.

Problem Definition

In this paper, we solve three very important problems of SLU,
viz. dialogue act classification, intent detection and slot filling.
Dialogue act classification has been treated as an utterance
classification problem. It aims to classify a given user utter-
ance x, consisting of words in a sequence x = (x1, x2,…, xT)
into one of the D pre-defined set of dialogue acts, yd, based
upon the contents of the sentence such that:

yd ¼ argmax
d∈D

P yd=xð Þ ð1Þ

Intent detection is basically treated as a semantic utterance
classification problem. It aims to classify a given user utter-
ance x, consisting of words in a sequence x = (x1, x2,…, xT)
into one of the N pre-defined set of intent classes, yi, based
upon the meaning of the sentence such that:

yi ¼ argmax
i∈N

P yi=xð Þ ð2Þ

Slot filling refers to the extraction of semantic constituents
from an input text, and to fill in the values for a pre-defined set
of slots in a semantic frame. The slot filling task is considered
as assigning semantic labels to every word in the utterance.
Given a sentence x comprising of a sequence of words x = (x1,
x2,…, xT), the objective of a slot filling task is to find a se-
quence of semantic labels s = (s1, s2,…, sT), for every word in
the sentence, such that:

bs ¼ argmax
s

P s=xð Þ ð3Þ

Motivation and Contributions

In the literature, there exists a significant number of works
related to dialogue act classification, intent detection and slot
filling, but there still is room for progress, especially with
regard to making these models as task- and domain-invariant
as possible. The problem ismore challenging when the system
has to deal with more realistic, natural utterances expressed in
natural language, by several speakers. Irrespective of the ap-
proach being adopted, the biggest problem is the ‘naturalness’
of the spoken language input. In most of the existing works,
dialogue act classification, intent detection and slot filling
have been carried out in isolation.

In this paper, we propose a multi-task model for dialogue
act classification (DAC), intent detection (ID) and slot filling
(SF). Information of one task can provide useful evidence for
the other, and sharing of this information might be helpful to
improve the quality of the task. Our multi-task model makes
use of this shared representation, and solve all the three prob-
lems concurrently. Another motivation for employing a multi-
task model is that the essential elements of SLU, i.e. DAC, ID
and SF can be predicted at once providing an end-to-end

Table 1 An example of DAC, ID
and SF Sentence When is the flight from Chicago to Dallas

Slots O O O O O B-fromcity_
name

O B-tocity_
name

Intent Flight_time

Dialogue act Question
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neural network system. Experiments on the benchmark
datasets show that our proposed model performs superior
compared to the individual models when these three tasks
(DAC, ID and SF) are handled in isolation, i.e. in a single-
task framework.

The major contributions of this work are:

– We propose a multi-task model for dialogue act classifi-
cation, intent detection and slot filling by employing dif-
ferent RNN architectures such as LSTM and GRU.

– We create a benchmark corpus for the SLU tasks, i.e.
DAC, intent detection and slot filling on TRAINS and
FRAMES datasets for capturing more realistic and natu-
ral utterances spoken by the speakers in a human/machine
dialogue system.

The remainder of this paper is organized as follows: In the
“Related Work” section, we present a very brief survey about
the related works. We describe our proposed approach in the
“Proposed Approach” section. Experimental setup and the
datasets are reported in the “Dataset and Experiment” section.
Results and its analysis are discussed in the “Results and Error
Analysis” section. Finally, the concluding remarks and direc-
tions for future research are presented in the “Conclusion and
Future Work” section.

Related Work

As a significant component in spoken dialogue systems, spo-
ken language understanding system captures the semantic
meanings transmitted by speech signals. The primary units
in SLU systems mainly deal with DAC, intent detection and
slot filling. In the past, these tasks have mostly been per-
formed in isolation.

Dialogue Act Classification

In the past, identification of dialogue acts (DAs) has been
carried out by framing the problem either as classification or
as a sequence labelling task. Different machine learning-based
approaches such as support vector machines (SVMs) [40, 53],
hidden Markov models (HMM) [54, 57, 61], maximum en-
tropy models (MEMM) [1], Bayesian networks [12, 21, 25,
26], naive Bayes [4, 55] and conditional random fields (CRF)
[29, 33] have been used for the recognition of dialogue acts. In
[6], the authors used prosodic cues for automatically classify-
ing dialogue acts with the help of SVM on a Spanish
CallHome database. Multi-class dialogue act classification
with several binary classifiers combined through error correc-
tion output codes using SVM on ICSI meeting corpus was
explored in [40]. The influence of contextual information on
dialogue act classification with the help of SVMwas explored

in [53] on the Switchboard corpus. In [61], HMM-based dia-
logue act taggers were investigated which were trained on
unlabelled data that helped in reducing the tagging errors on
the SPINE dialogue corpus. The authors in [54] explored
HMM and neural network-based methods for speech act de-
tection on the Spanish CallHome dataset. Automatic segmen-
tation and classification of dialogue act from the ICSI meeting
corpus with the help of decision trees and maximum entropy
classifier was explored in [1]. A complete analysis of condi-
tional and generative dynamic Bayesian networks on the ICSI
meeting corpus was explored in [21] for dialogue act detec-
tion. In [33], syntactic features were used for classifying
Czech dialogue acts using CRF. The authors in [29] used
CRF that helped in learning sequential dependencies for dia-
logue act classification. Prosodic features and gestures also
help in understanding the communicative intentions of the
user as in [6, 62].

Due to the effectiveness of deep learning, it has been
adopted for many language processing tasks, including dia-
logue act classification. Recurrent neural network (RNN) has
been extensively employed for the classification of DAs [22,
27, 39, 47]. The authors in [27] used stacked LSTMs for
dialogue act classification on the Switchboard and MRDA
corpus. Contextual language model-based RNN to tract the
interactions between different speakers in a dialogue was de-
signed in [39] for the Switchboard corpus. A latent variable
RNN for modelling the words and sentences together was
proposed in [22]. RNNs, along with convolutional neural net-
works (CNN), has also been employed in the past [24, 41]. For
recognizing the DAs, deep neural networks with CRF have
also been used [34, 75]. These approaches have utilized vari-
ous lexical, syntactic and prosodic cues as features for model-
ling the DAs. The authors in [34] used hierarchical RNN
along with CRF for classifying the utterances into its corre-
sponding dialogue acts.

Intent Detection

Historically, SLU research has come into view from the call
classification systems [11] and the ATIS project [49]. For in-
tent detection, machine learning-based traditional approaches
such as support vector machine (SVM) [14] and Adaboost
[59, 60] have been employed for detecting the intents of a user
utterance. Authors in [15] presented an approach for intent
classification by considering the heterogeneous features com-
prising of user utterances. For detecting the intents, the authors
in [28] enriched the word embeddings to make the perfor-
mance of the model better. A promising direction towards
solving these problems is deep learning, which combines both
classification and feature design into the learning process. For
efficient learning under low-resource SLU tasks, the authors
in [42] have proposed a multi-scale RNN structure. Several
deep learning techniques have been successively utilized for
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intent detection such as [17]. The method proposed here
makes use of CNN. Recurrent neural networks (RNNs) and
long short-term memory (LSTM) [19] have also been previ-
ously explored for intent detection [50, 51]. The authors in
[51] used RNN along with word hashing to take care of the
out-of-vocabulary (OOV) words present in the corpus. A
comparative study of different neural network architectures
considering only lexical information of the utterance as a fea-
ture has been investigated in [50]. An ensemble-based deep
learning architecture was employed in [7] for intent detection
on the ATIS dataset.

Slot Filling

For sequence labelling, factorized probabilistic models such
as maximum entropy Markov model (MEMM) [43] and con-
ditional random field (CRF) [52] have been used that directly
capture the global distribution. Syntactic features via syntactic
tree kernels with SVM were employed in [46] for slot filling.
For sentence simplification, a dependency parsing-based ap-
proach was proposed in [60] for completing the SLU tasks.
For slot filling, various deep learning-based methods such as
deep belief network (DBN) [5] and RNNs [44, 45, 69] have
been proposed due to their keen abilities to capture dependen-
cies, and it has proved to outperform the traditional models,
such as CRF. The authors in [71] used transition features to
improve RNNs and the sequence level criteria for optimiza-
tion of CRF to capture the dependencies of the output label
explicitly. The authors in [70] used deep LSTMs along with
regression models to obtain the output label dependency for
slot filling. In [76], a focus mechanism for an encoder-decoder
framework was proposed for slot filling on the ATIS dataset.
The authors in [73] introduced a generative network based on
the sequence to sequence model along with pointer network
for slot filling.

Joint Tasks

Lately, intent detection has been jointly done with slot filling
using deep learning techniques. Various RNN models using
LSTM or GRU as its basic cell have been employed [16, 37,
38, 72] for detecting the intents and slots together. Different
deep learning architectures have been employed for intent
detection and slot filling together using CNN [67] and recur-
sive neural networks [13]. The authors in [20] employed a
triangular CRF that used an additional random variable for
detecting the intents on top of the standard CRF. Also,
CNN-based triangular CRF model for joint intent detection
and slot filling was proposed in [67] where the features were
extracted by the CNN layers and were shared by both the
tasks. Hierarchical representations within the input text
learned using a recursive neural network (RecNN) were pro-
posed for the joint task [13] of intent detection and slot filling.

In [38], the intent variation was modelled continuously along
with the arrival of new words to achieve better performance
for the joint task using LSTM. [72] used bi-directional GRUs
to learn the representations of the sequence shared by the
intent and slot filling tasks. Recently, attention-based bi-direc-
tional RNNswere also proposed for jointly addressing the task
of intent detection and slot filling [37]. A bi-model-based
RNN semantic frame parsing network structure was employed
for intent detection and slot filling in [63]. The authors in [10]
used a slotted gate that focused on learning the relationship
between intent and slot vectors for joint modelling of the tasks
on the ATIS and SNIPs dataset. In [16], the authors investi-
gated the alternative architectures for modelling lexical con-
text for SLU and presented a joint approach using single bi-
directional RNNs with LSTM cells for a domain, intent and
slot filling. In [31], the authors used character embeddings and
word embeddings as input to LSTM for domain, intent and
slot filling. Sequential dialogue context modelling using RNN
for SLUwas investigated in [2]. The authors in [3] employed a
deep learning architecture for jointly performing dialogue act
classification and slot filling in DSTC2 corpus. In our previ-
ous work [8], we have proposed an ensemble method for
jointly identifying the intents and slots in a given utterance.
In another work reported in [9], a hierarchical approach was
employed to capture the contextual information for identify-
ing the intents and slots simultaneously in a given utterance.

In our present work, we propose a multi-task approach for
performing dialogue act classification, intent detection and
slot filling tasks using attention-based deep learning architec-
ture. To the best of our knowledge, this is the very first attempt
employing an in-depth learning approach using combined
word embedding representation for solving these three tasks
concurrently.

Methodology

The overall block diagram of our proposed architecture is
depicted in Fig. 1. Our model is a multi-task deep learning-
based architecture that performs three tasks, namely intent
identification, slot filling and dialogue act classification.
These three tasks share the underlying representations through
common layers but have their task-specific classifying layers.

Proposed Approach

The three tasks share the underlying representations through
common layers but have their task-specific classifying layers.
Each word representation is a concatenation of two compo-
nents: a vector representation from word embeddings and an-
other one from a single layer CharCNN over the character
embeddings of the word followed by a highway layer. For
sequentially encoding information, the obtained word
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representations are operated with multiple stacked LSTM
layers having residual connections between the consecutive
layers.

Slot filling applies dense layers and softmax over the hid-
den representation of each time step to obtain the predictions.
Intent detection and dialogue act classification, however, first
apply attention to get representation and then apply dense and
softmax layers over them to obtain predictions. The detailed
architecture of our proposed multi-task model is given in
Fig. 2.

Word Representation

The NLU component receives each utterance as a sequence of
words w = (w1,w2,…,wT). The representation of the i

thword,
xi, is obtained as the concatenation of two vectors: the word
embedding (xwi ) and the output from a single layer CharCNN
network over the character embeddings (xci ).

Word Embedding Several algorithms exist for learning distrib-
uted representations for words in a given corpus. The word
vectors pre-trained with these learning objectives often dis-
play semantic and distributional informativeness. Words
which occur in similar contexts and are similar in meaning
are closer to each other in these embedding spaces. Such em-
beddings are useful as basic representations in diverse appli-
cations of natural language processing (NLP). For word em-
beddings, we use three pre-trained embedding models:
GloVe1 [48], Word2Vec2 and Fasttext.3 We use these pre-

trained word vectors to obtain (xwi )—one of the components
of our word representations, and the choice of the algorithm
for pre-training is a hyperparameter. Slot filling is a sequence
labelling problem where each word provides the context for
the next word. Hence, proper representation of words for this
task is essential. Previously, there have been quite a few works
for proper representation of words for sequence labelling tasks
as in [35].

CharCNN and Single Layer Highway Network over Character
EmbeddingsWe derive word representations similar to [30] to
utilize the semantic and morphological features that can be
extracted from character-level representations.

Let the kthword wk be represented as a padded sequence of
characters [c1, c2,…, cl], with l being the maximum character
length, the vocabulary of characters be C, embedding dimen-
sion of the characters be td, and Q ∈ Rd × ∣C∣ be the embed-
ding matrix for the characters. Using Q, we obtain the charac-
ter matrix Ck ∈ Rl × d, where the jth row corresponds to the
character embedding for cj.

We then apply the convolution operation over Ck using
multiple filters of varying sizes. For jth filter Fj, the output of
the convolution operation is obtained by applying the filter F
repeatedly with unit strides on sub-matrices of Ck:

outk i; j½ � ¼ tanh F j � Ck i : iþ m−1½ � þ bj
� � ð4Þ

Here, we represent the sub-matrix ofCk from ith row to (i +
m − 1)th row asCk[i : i +m − 1] where i = 1, 2,…, n −m + 1.m
is the size of the filter and bj is the bias term. Finally, we take
max over time:

yk j½ � ¼ max
i

outk i; j½ � ð5Þ

The weight sharing in CNN helps filters to search for n-
gram features over space, and each of the filters learns to
search for its feature. The global max pooling helps in identi-
fying the presence of the n-gram feature invariant to the
position.

Themax-pooled convolutional layer is followed by a single
layer highway network, represented by the eq:

xck ¼ t⊙g WHyk þ bHð Þ þ 1−tð Þ⊙yk ð6Þ
t ¼ σ WTyk þ bTð Þ ð7Þ

Here, the activation function is g; t and (1-t) are the trans-
form gate and the carry gate, respectively. Wh, WT, bH and bT
are the parameters of the highway layer. Highway layers es-
sentially help develop deep layers by separately controlling
the expression of inputs and transformations to the output
for each dimension.

Final Word Representation Thus, the ithwordwi is represented
as xi which is a concatenation of xwi and xci .

1 http://nlp.stanford.edu/projects/glove/
2 https://code.google.com/archive/p/word2vec/
3 https://fasttext.cc/

Fig. 1 Block diagram of our proposed approach
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Sentence Representation

We use stacked bi-directional RNN layers with LSTM and
GRU as its basic cell unit to process the sequence x = (x1,
x2,…, xT), as they are designed to process the sequential input.
The number of layers L is a hyperparameter. This layer
grounds each token representation with contextual informa-
tion from both the directions in the input sequence, thus

making it easier for downstream classification layers which
make use of such information.

Given any inputs u1, u2, …, uT, a bi-directional LSTM/
GRU layer computes a set of T vectors h1, h2, …, hT. The ht
is the concatenation of a forward LSTM/GRU hidden state ht

!
which reads the sentence in the forward direction, and a back-
ward LSTM/GRU hidden state ht← that reads the sentences in
the reverse direction.

Fig. 2 Overall architecture of the proposed multi-task model
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ht
!¼ RNNt

���!
u1; u2;…; uTð Þ ð8Þ

ht← ¼ RNNt
← u1; u2;…; uTð Þ ð9Þ

ht ¼ ht
!
; ht←

h i
ð10Þ

Now, the output of the Bi-LSTM/Bi-GRU layer is added to
the input from previous LSTM/GRU layer employing residual
connections (if it is not the first Bi-LSTM/Bi-GRU layer), to
enhance the flow of gradients during backpropagation, i.e. the
input to layer l + 1,

u1; u2;…; uT½ �lþ1 ¼
u1; u2;…; uT½ �lþ
h1; h2; ::; hT½ �l
h1; h2; ::; hT½ �l

8<: if l! ¼ 1
if l ¼¼ 1

ð11Þ

Intent and Dialogue Act Classification

For both intent and dialogue act classification, we use
identical architectures: an attention layer over the task-
shared sentence representation followed by dense layers

and softmax. However, the parameters are task-specific
and are not shared.

Firstly, a self-attention layer [68] is applied over the
output of the stacked LSTMs/GRUs to obtain an impor-
tance weighted mean of the hidden states of all the time
steps u. The salient contexts required to identify the class
type are aggregated by the attention mechanism to build
the output vector. Often the expressions indicative of the
class appear in the short spans of text within the sentence,
and the attention expertly attends to those specific LSTM/
GRU encoded contexts.

eht ¼ tanh Waht þ bað Þ

αt ¼ e
ehT

t *uw

∑T
t¼1e

ehT

i *uw

u ¼ ∑
T

t¼1
αt*eht

ð12Þ

Where ht denotes the LSTM/GRU’s hidden state for time
t, uw is the randomly initialized query trained through
backpropagation, αt models the saliency of the tth state
normalized by softmax.

Input Layer

Embedding

Bi-LSTM/ Bi-GRU

MLP

DA

Bi-LSTM/ Bi-GRU

MLP Bi-LSTM/ Bi-GRU

MLPIntent

Slot

(a) Pipeline Model: DAC ID, ID SF

Input Layer

Embedding

Bi-LSTM/ Bi-GRU

MLP

DA

Bi-LSTM/ Bi-GRU

MLP MLP

Intent Slot

(b) Pipeline Model: DAC Multi-Task Model ID and
SF

Input Layer

Embedding

Bi-LSTM/ Bi-GRU

MLP MLP

DA
Bi-LSTM/ Bi-GRU

MLP

Intent

Slot

(c) Pipeline Model:Multi-Task Model DAC and ID SF

Input Layer

Embedding

Bi-LSTM/ Bi-GRU

MLP MLP

DA
Bi-LSTM/ Bi-GRU

MLP

Slot

Intent

(d) Pipeline Model:Multi-Task Model DAC and SF ID

Input Layer

Embedding

Bi-LSTM/ Bi-GRU

MLP

DA

Bi-LSTM/ Bi-GRU

MLP

Bi-LSTM/ Bi-GRU

MLP

Intent

Slot

(e) Pipeline Model: DAC ID, DAC,ID SF

Fig. 3 Block diagram of the various models for DAC, ID and SF
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The dense layers help to non-linearly combine the
obtained features from the attention layer. The softmax
layer applies an affine transformation to reduce the di-
mension to the number of output classes, and normalize
the scores to obtain a probability distribution over the
possible classes.

P by ¼ ijx; θ
� �

¼ softmaxi pTwi þ zið Þ

¼ ep
Twiþzi

∑S
s¼1ep

Twsþzs

ð13Þ

where zs and ws are the bias and weight vector of the sth

labels, p is the output from the dense layers, and S is the
number of total classes. The system predicts the most
probable class.

Slot Filling

For slot filling, the hidden unit for each time step coming from
the output of the shared sentence representation is transformed
by a dense layer and then by a softmax layer. The dense layer
helps to combine the hidden features for that time step non-
linearly. The softmax layer first projects the output from the
dense layer to the number of possible slot classes and then
transforms the scores for each class into a probability
distribution.

Objective Function

The objective is to minimize the sum of the cross-entropy
losses of the three tasks for the entire training dataset.

Pipeline Models

There are other ways in which we can use the knowledge of
DA or intent for the slot filling tasks and vice versa. To com-
pare with our multi-task model, we implement various models
which operate in a pipelined way. We develop five pipelined
models, as shown in Fig. 3.

Model-1

In Fig. 3a, we use the information of dialogue acts for the
detection of intents, whereas we use the knowledge of intents
for slot filling. In this model, we have three different stacked
Bi-LSTMs/Bi-GRUs for each task. The first stacked Bi-
LSTM/Bi-GRU is used for DAC, and the output firstly applies
attention, which gives a representation which is then fed to a
multi-layer perceptron (MLP) for classifying the DAs. The
second stacked Bi-LSTM/Bi-GRU is employed for intent de-
tection, which is implemented similarly as dialogue act clas-
sification. The inputs are embeddings, and the output of the
MLP corresponds to DAC. The output is fed to an MLP for
the detection of intents. Finally, the third stacked Bi-LSTM/
Bi-GRU is utilized for slot filling with embeddings and output
of intent as inputs to MLP. The output is again fed to an MLP
classifier for extracting the slots.

Model-2

The second model is shown in Fig. 3b. Here, we implement a
different type of pipelined structure where the information of
dialogue act is used in a multi-task model (MTM) that performs
intent detection and slot filling simultaneously. Here, we employ
two stacked Bi-LSTM/Bi-GRU. The first Bi-LSTM/Bi-GRU
model performs DAC. While the second Bi-LSTM/Bi-GRU
model is used for identifying the intents as well as for extracting
the slots. The outputs of second Bi-LSTM/Bi-GRU model are
fed to two differentMLPs for intent detection and slot filling. For
intent detection, before the output is supplied toMLP, attention is
applied, and the representation obtained is used as input for the
MLP for identifying the intents.

Model-3

The third pipelined model is constructed as shown in Fig. 3c.
In this model, we implement a multi-task model (MTM) for
DAC and ID using a stacked Bi-LSTM/Bi-GRU. On the out-
put, attention is applied separately for both DAC and intent.
The obtained representation from both attention layers is fed

Table 2 Datasets with their representation of dialogue acts, intents and
slots used in the experiments

Data set # train # test # dialogue act # intents # slots

ATIS 4978 893 3 17 127

TRAINS 5355 1336 5 12 32

FRAMES 20,006 6598 10 24 136

Table 3 Hyperparameter tuning: 1st column lists the different
parameters, 2nd column lists the values tried, 3rd column lists the final
value chosen for each parameter

Parameter Range Final

Word embedding Glove/Word2vec/Fasttext Fasttext

Word embedding size 100/200/300 250D

Dropout 0–0.5 0.15

Bi-directional True/false True

Learning rate 0.5–3 1.0

Residual Yes/no Yes

Stacked LSTM layer 1–5 3

Hidden size 50–300 200
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to two MLPs for DAC and ID, respectively. The information
of this model, along with the embeddings, is supplied to a Bi-
LSTM/Bi-GRU whose output is given to an MLP for slot
filling.

Model-4

The fourth pipelined model is constructed as shown in Fig. 3d.
In this model, we implement a multi-task model (MTM) for
DAC and SF using a stacked Bi-LSTM/Bi-GRU, and the out-
put is fed to two MLPs for DAC and SF, respectively. For
DAC, before the output is fed to MLP, attention is applied,
and the representation obtained is used as input for the MLP
for identifying the dialogue acts. The information of this mod-
el, along with the embeddings, is fed to a Bi-LSTM/Bi-GRU
whose output is given to an MLP for intent detection.

Model-5

The last model is constructed as shown in Fig. 3e. This
pipelined model is implemented in a similar way to the first

model with a slight difference. Here, the information of DA
along with intent is subjected as input to the slot filling model.

Dataset and Experiment

Datasets

We evaluate our proposed multi-task model on two bench-
mark datasets. The first dataset is the well-known ATIS
corpus which has been manually annotated for DAC. The
other dataset is TRAINS, consisting of dialogue conver-
sations, and we manually annotated this corpus with dia-
logue acts, intents and slots. The utterance, dialogue act,
intent and slot distribution for both the datasets are given
in Table 2.

ATIS DatasetA significant by-product of DARPA (Defence
Advanced Research Program Agency) project was the
ATIS (Airline Travel Information System) corpus. The
ATIS corpus [49] is one of the most extensively used

Table 4 Results of different proposed multi-task models with character embeddings

Model ATIS TRAINS FRAMES

DA
(accuracy)

Intent
(accuracy)

Slot
(F1 score)

DA
(accuracy)

Intent
(accuracy)

Slot
(F1 score)

DA
(accuracy)

Intent
(accuracy)

Slot
(F1 score)

Bi-GRU 92.23 92.67 89.16 72.85 70.89 85.14 55.69 45.66 61.74

Bi-LSTM 93.82 93.56 90.63 72.54 68.95 86.33 55.82 45.02 60.25

Bi-GRU with attention 93.54 93.11 91.27 74.25 73.11 88.19 57.36 47.96 64.87

Bi-LSTM with attention 94.37 93.52 92.77 74.66 73.05 87.26 57.88 48.65 69.71

Table 5 Results of different word embeddings

Model Embeddings ATIS TRAINS FRAMES

DA
(accuracy)

Intent
(accuracy)

Slot
(F1 score)

DA
(accuracy)

Intent
(accuracy)

Slot
(F1 score)

DA
(accuracy)

Intent
(accuracy)

Slot
(F1 score)

Bi-GRU Word2Vec 94.23 93.81 91.77 78.23 75.36 90.81 62.54 51.47 81.66

Glove 95.72 94.68 92.03 78.99 76.81 91.23 63.81 52.69 82.84

Fasttext 96.89 96.11 93.67 80.55 79.82 94.75 65.41 54.05 83.15

Bi-LSTM Word2Vec 94.55 94.17 92.09 78.04 74.82 90.23 62.99 51.78 81.93

Glove 95.88 94.93 93.01 79.11 77.35 92.56 64.02 52.98 83.26

Fasttext 96.98 96.83 93.91 80.14 79.37 94.20 66.06 55.21 84.78

Bi-GRU with attention Word2Vec 95.62 94.68 92.45 79.36 76.91 92.33 65.71 55.96 85.69

Glove 96.10 95.36 93.71 80.47 80.23 93.54 66.23 56.71 86.52

Fasttext 97.63 97.21 94.32 82.69 83.05 96.32 68.33 58.06 89.37

Bi-LSTM with attention Word2Vec 95.91 95.06 92.98 78.86 76.26 91.87 66.32 56.23 86.15

Glove 96.51 95.78 94.21 79.52 75.66 91.45 66.82 56.78 86.93

Fasttext 97.81 97.54 94.85 82.24 82.57 95.69 68.73 59.24 89.83

The results in italics indicate the highest values
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datasets for the SLU task. There are a few variants of the
ATIS corpus, but in this paper, we follow the ATIS corpus
used in [18, 52]. The ATIS corpus comprises of utterances
of people making flight reservations. There are 4978 ut-
terances in the training set of the corpus. The test set
comprises 893 utterances. There are 17 distinct intent
classes in the corpus. Flight represents about 70% of the
dataset hence making the corpus highly skewed. There are
three dialogue acts in the corpus, such as Question,
Command and Statement. There are 127 distinct slots in
the dataset.

TRAINS DatasetAlthough for SLU, there are many datasets,
e.g. Cortana Data [13] and Bing Query Understanding
Dataset [71], they are non-public. For building a robust
spoken dialogue system, it is essential to capture the dia-
logue act (DA), intent and slots present in a human con-
versation. To be able to find DA, intent and slots of a real
and natural utterance in a conversation, we manually an-
notate the TRAINS corpus. TRAINS corpus is a part of the
TRAINS project. The corpus is a collection of problem-
solving dialogues. The dialogues involve two speakers:
one speaker plays the role of a user and has a specific goal
to achieve, and another speaker plays the role of the system
by acting as a planning assistant. Three annotators with
post-graduate exposure were assigned to annotate this cor-
pus with dialogue acts, intent and slot. We obtain an inter-
annotator score of more than 80%, which may be consid-
ered a strong agreement. For dialogue systems, the tag-set
used in our annotation comprises of the basic tags present
in any dialogue annotated corpus. The labels for intent and
slot were designed by going through the corpus in detail

and by capturing the different intentions present in every
utterance. The dataset comprises of 12 intents and 32 slots.
There are 5355 utterances in the training set and 1336
utterances in the test set.

FRAMES Dataset The corpus consists of 1369 human-human
dialogues. Each dialogue has an average of 15 turns. The
corpus is a collection of multi-domain dialogues dealing with
hotel bookings. There are 20,006 utterances in the training set
and 6598 utterances in the test set. The dataset has been man-
ually annotated with 24 intents and 136 slots.

Training Details

We use the python-based neural network package, Keras4 for
the implementation. In our work, we use one layer of Bi-
LSTM/Bi-GRU, followed by an MLP. We fix the number of
neurons on the Bi-LSTM/Bi-GRU layer to be 200.

The model uses a 250-dimensional word embedding. We
use ReLU activations for the intermediate layers of our model
and softmax activation for the output layer. Dropout [56] is a
very efficient regularization technique to avoid over-fitting of
the network. We use 15% dropout and ‘Adam’ optimizer [32]
for regularization and optimization. Model parameters are up-
dated using the categorical cross-entropy. Table 3 lists the
different parameters that we experimented with and the final
chosen parameters of the proposed model.

In this section, we present the details of evaluation
results on three datasets. We also provide a comparison
of our multi-task attention model with the baseline

Table 6 Results of multi-task models with different deep learning layers

Model # layers ATIS TRAINS FRAMES

DA
(accuracy)

Intent
(accuracy)

Slot
(F1 score)

DA
(accuracy)

Intent
(accuracy)

Slot
(F1 score)

DA
(accuracy)

Intent
(accuracy)

Slot
(F1 score)

Bi-GRU 1 90.16 92.86 90.78 75.76 76.84 92.50 63.10 51.32 81.43

2 92.71 93.09 91.89 76.38 79.44 94.44 64.41 52.96 82.21

3 97.15 96.89 94.11 81.67 81.75 96.18 66.49 55.82 85.33

Bi-LSTM 1 93.94 92.61 92.63 75.93 77.08 92.96 63.91 54.97 83.48

2 94.13 94.33 93.01 77.58 80.35 94.86 64.74 55.79 84.12

3 97.41 97.53 94.48 82.33 82.11 96.45 67.47 56.37 85.50

Bi-GRU with attention 1 94.13 94.91 94.01 77.31 80.69 90.11 66.34 57.19 87.30

2 95.35 95.37 94.88 80.63 81.03 94.53 67.95 58.73 88.52

3 98.45 98.86 97.83 84.05 84.92 98.65 70.15 60.33 91.95

Bi-LSTM with attention 1 95.16 94.87 95.19 76.99 78.13 89.28 68.58 58.14 88.39

2 95.92 95.41 96.04 79.54 79.71 93.50 69.26 60.93 89.01

3 98.63 99.06 98.11 83.83 84.88 98.78 71.31 62.43 92.72

The results in italics indicate the highest values
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models. The effectiveness of our multi-task model has
also been shown in contrast to individual models and

pipeline models. Moreover, we provide a comparison of
our model against the state-of-the-art approaches. In the

Table 8 Results of multi-task model with various pipeline models

Approach Task ATIS TRAINS FRAMES

Dialogue act
(accuracy)

Intent
(accuracy)

Slot
(F1
score)

Dialogue act
(accuracy)

Intent
(accuracy)

Slot
(F1
score)

Dialogue act
(accuracy)

Intent
(accuracy)

Slot
(F1
score)

Bi-LSTM
with
attention

Multi-task model:
DAC, ID, SF

98.63 99.06 98.11 83.83 84.88 98.78 71.31 62.43 92.72

Pipeline model:
DAC→ ID, ID → SF

96.54 97.99 97.21 81.13 82.11 96.40 67.45 59.04 86.54

Pipeline model:
DAC→ MTM (ID

and SF)

96.54 98.32 97.65 81.13 82.63 96.88 67.45 59.63 87.09

Pipeline model:
MTM (DAC and ID)

→ SF

97.11 98.41 97.26 81.64 82.55 96.73 68.21 59.42 86.71

Pipeline model:
MTM (DAC and SF)

→ ID

97.23 98.04 97.51 81.55 82.36 96.54 68.03 59.17 86.99

Pipeline model:
DAC→ ID, DAC,

ID → SF

96.54 97.99 97.33 81.13 82.11 96.66 67.45 59.04 86.60

Bi-GRU
with
attention

Multi-task model:
DAC, ID, SF

98.45 98.86 97.83 84.05 84.92 98.65 70.15 60.33 91.95

Pipeline model:
DAC→ ID, ID → SF

95.57 96.42 96.17 81.99 82.85 96.97 64.34 57.48 85.63

Pipeline model:
DAC→ MTM (ID

and SF)

95.57 96.88 96.61 81.99 83.38 97.25 64.34 57.93 86.32

Pipeline model:
MTM (DAC and ID)

→ SF

96.45 96.63 96.45 82.26 83.40 97.13 65.84 57.81 85.73

Pipeline model:
MTM (DAC and SF)

→ ID

96.72 96.79 96.55 82.31 83.27 97.33 65.47 57.66 85.91

Pipeline model:
DAC→ ID, DAC, ID→ SF

95.57 96.42 96.21 81.99 82.85 97.11 64.34 57.48 85.69

The results in italics indicate the highest values

Table 7 Results of multi-task model vs individual models

Model Task ATIS TRAINS FRAMES

Dialogue
act
(accuracy)

Intent
(accuracy)

Slot
(F1 score)

Dialogue act
(accuracy)

Intent
(accuracy)

Slot
(F1 score)

Dialogue act
(accuracy)

Intent
(accuracy)

Slot
(F1 score)

Bi-LSTM
with attention

Only DAC 96.54 – – 81.13 – – 67.45 – –

Only ID – 97.12 – – 80.74 – – 58.91 –

Only SF – – 97.23 – – 94.34 – – 86.47

MTM 98.63 99.06 98.11 83.83 84.88 98.78 71.31 62.43 92.72

Bi-GRU
with attention

Only DAC 95.57 – – 81.99 – – 64.34 – –

Only ID – 96.83 – – 81.03 – – 57.25 –

Only SF – – 96.62 – – 95.13 – – 85.33

MTM 98.45 98.86 97.83 84.05 84.92 98.65 70.15 60.33 91.95

The results in italics indicate the highest values
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literature [8–10, 34, 37, 63, 72], the authors have used
accuracy as an evaluation metric to model the perfor-
mance of intent detection and dialogue act classification
tasks while F1 score is used to evaluate the performance
of the slot filling task. Hence, we report accuracy as the
performance measure for dialogue act classification and
intent detection tasks while F1 score is reported as the
performance measure for the slot filling task.

Results

Character embeddings are known to capture the semantic
information of infrequent and out-of-vocabulary words. To
capture character-level features, we used a convolutional
neural network to obtain the character feature representa-
tion. The results of the multi-task models with character
embeddings as input are given in Table 4. Though the
use of character embeddings does not help in achieving
better performance, it helps in capturing the semantic rep-
resentation of the unknown words.

To capture the word-level semantic information, we use
three pre-trained word embedding models, i.e. Glove,
Fasttext and word2vec. Experimental results by employing
these embeddings only as input to the multi-task model are
shown in Table 5. From the table, it can be seen that the model

using Fasttext embeddings as input outperforms the other
models using Glove and word2vec embeddings as input.
Hence, in further experiments, we only use Fasttext as the
word embedding input in all the models.

To provide both character-level and word-level features,
we combine both character embeddings and word embed-
dings and feed the combined representation as input to our
deep learning models. In Table 6, we show the results of using
different deep learning layers using both character and word
embeddings as input. From the table, it is evident that the
model with 3 RNN layers outperforms the other models.
Hence, we use stacked RNN layers to learn the utterance rep-
resentation for all the tasks of SLU.

Individual Tasks vs Multi-task To analyse the performance of
our proposed multi-task model, we implemented individual
models for all the three tasks, i.e. dialogue act classification
(DAC), intent detection (ID) and slot filling (SF). Table 7
shows the performance of individual models with respect to
the multi-task model. The individual models have been imple-
mented similarly as the multi-task model, with the only differ-
ence being that each model performs only one task. From the
table, we can easily infer that the multi-task model performs
better than the individual models as the representations
learned by one task help in another, thereby improving the
performance of all the tasks simultaneously.

Pipeline vs Multi-task The multi-task model has the flexi-
bility of performing all the tasks together and therefore
saves time and complexity as there would not be any
individual model for each task. But to perform these
tasks, one can take the pipelined approach as discussed
above. In Table 8, we present the results of different
pipelined approaches for performing the SLU tasks of

Table 9 Comparison of proposed multi-task model with state-of-the-art models

Model ATIS TRAINS FRAMES

Intent
(accuracy)

Slot
(F1 score)

Intent
(accuracy)

Slot
(F1 score)

Intent
(accuracy)

Slot
(F1 score)

Attention BiRNN
[37]

98.21 95.98 62.35 82.66 60.20 85.84

Attention encoder-decoder NN
[38]

98.43 95.87 80.61 94.41 61.30 88.63

Bi-GRU
[72]

98.32 96.89 79.85 94.67 59.88 87.95

Bi-model with decoder
[63]

98.99 96.89 81.41 95.29 60.17 88.36

Slot-gated
[10]

94.10 95.20 75.66 81.44 59.42 78.36

Proposed Bi-GRU with attention 98.86 97.83 84.92 98.65 60.33 91.95

Proposed Bi-LSTM with attention 99.06 98.11 84.88 98.78 62.43 92.72

The results in italics indicate the highest values

Table 10 Confusion matrix for dialogue act classification (DAC) on
ATIS dataset

Statement Question Command

Statement 217 0 1

Question 0 277 0

Command 7 1 390
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dialogue act classification, intent detection and slot filling.
From the evaluation results, we can see that multi-task
setting helps in improving the performance of each task.
The main reason for the multi-task approach to outper-
form the different pipelined approaches is that in a
multi-task approach, information is shared between the
tasks, unlike the pipelined approach where information
sharing is one-way. The error propagation is also handled
well in the proposed multi-task model than the pipelined
models.

Comparison with Previous Approaches SLU tasks are vital for
every dialogue systems. In most of the existing models, intent
detection and slot filling have been performed together. To
analyse the effectiveness of our proposed approach, we com-
pare it with the existing approaches. In Table 9, we present the
results of the existing state-of-the-art approaches for intent
detection and slot filling along with our proposed approach.
It can be seen that our model outperforms the previous ap-
proaches for both the tasks of intent detection and slot filling

for all the three datasets. Though there is a slight improvement
for the intent detection task compared to the previous ap-
proaches for slot filling, we see more than 1% increase in
accuracy in comparison to the previous approaches. We do
not show have not the comparison with respect to dialogue
act classification task because there has not been any prior
work to the best of my knowledge on these datasets for DAC.

Error Analysis

To get an idea where our system fails, we perform a detailed
error analysis of our best-performing multi-task model.

For the ATIS dataset, our proposed model performs quite
well for the DAC task. However, there have been some errors
where the statements have been misclassified as commands
and vice versa. The confusion matrix for dialogue act classi-
fication on the ATIS dataset is given in Table 10. For example,
‘Please find a flight from Las Vegas to Michigan’ was incor-
rectly classified as ‘Statement’whereas it should be labelled as
‘Command’.

Table 11 Confusion matrix for
intent detection of ATIS dataset Correct-

estimated
a b c d e f g h i j k l m n o p q

a. Flight 624 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b. Flight_time 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

c. Airfare 1 0 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0

d. Aircraft 1 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0

e. Ground_
service

0 0 0 0 36 0 0 0 0 0 0 0 0 0 0 0 0

f. Airport 1 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0

g. Airline 1 0 0 0 0 0 38 0 0 0 0 0 0 0 0 0 0

h. Distance 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0

i. Abbreviation 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0

j. Ground_fare 0 0 1 0 1 0 0 0 0 6 0 0 0 0 0 0 0

k. Quantity 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0

l. City 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0

m. Flight_no 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0

n. Capacity 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0

o. Meal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0

p. Restriction 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

q. Day_name 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 12 Confusion matrix for
dialogue act classification (DAC)
on TRAINS dataset

Greeting Statement Question Acknowledge Command

Greeting 21 1 0 1 0

Statement 0 511 16 31 8

Question 0 46 132 7 2

Acknowledge 2 55 3 434 2

Command 0 26 3 1 34
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Our detailed analysis further reveals that the intent errors
are due to the embedding of prepositional phrases inside the
noun phrase. The confusion matrix for the intent detection
task on the ATIS dataset is given in Table 11.

In ATIS dataset, for example, the phrase ‘Airfare of the
flight from Texas to Chicago’, where the prepositional phrase
suggests the utterance to be ‘flight’ whereas the intent class is
misclassified by the headword of the noun phrase (airfare in
this case). Some errors were also encountered due to incorrect
annotation. Certain utterances in the ATIS dataset are ambig-
uous and also ill-formulated, such as ‘What’s the airfare for a
taxi to the Chicago airport?’. In this case, the word ‘airfare’
implies the intent class to be ‘Airfare’, whereas the actual
intent class should be ‘Ground Service’. In case of slot filling
task, there have been cases where the slot tags have been
incorrectly labelled as null tags. These happened mainly due
to the less number of slot tags in comparison to the null tags.
Few tags such as ‘B-city_name’ have been miss-labelled as
‘B-fromloc.city_name’ due to less number of instances of ‘B-
city_name’ in the training data. Let us consider the following

utterance ‘What is the ground transportation from Denver
airport to downtown’. Here, the word ‘Denver’ is incorrectly
tagged as ‘B-fromloc.city_name’ whereas it should have been
‘B-city_name’. In another example, ‘Which airport is closest
to Montreal Quebec’, the word ‘Quebec’ is miss-labelled as
‘I-city_name’whereas the actual tag is ‘B-state_name’. This is
because the tag ‘B-state_name’ has less representation in the
data.

The relatively low accuracies for DAC and intent classifi-
cation in the TRAINS dataset are mainly due to the ill-
formulated sentences. The intents of many sentences are to-
wards the end of the sentence and are not clearly stated. For
example, ‘So from Corning to Bath how far is that’ has been
misclassified as ‘Statement’ whereas it should have been a
‘Question’. Also, the intent for this sentence has been
misclassified to be ‘City’ while it should have been
‘Distance’. We perform quantitative analysis for both DAC
and intent detection in the form of confusion matrices in
Tables 12 and 13, respectively. In another example, ‘Why do
not they take the trucks from Avon’ has been incorrectly clas-
sified as ‘Item’ whereas it should have been classified as
‘Vehicle’. In the utterance, ‘before Avon we could we actually
pick up those two boxcars which are at Bath’ was
misclassified as ‘Question’ but the correct DAC label is
‘Statement’. The slot result of the TRAINS dataset is high as
the number of slots is less and also because the slots have easy
patterns, which are learned by the model very well.

In case of FRAMES dataset, the confusion matrices for
dialogue act classification and intent detection are demonstrat-
ed in Tables 14 and 15, respectively. From Table 14, we can
analyse that the major confusion takes place between the DAC
labels ‘offer, suggest’, ‘request, suggest’ and ‘inform, request
and suggest’. For example, ‘Would any packages to Mos
Eisley be available if I increase my budget to 2500’ has been
misclassified as ‘Inform’ but the correct label should be
‘Request’. Similarly, in the utterance ‘Would you be interested
in Calgary’ has been misclassified as ‘Offer’, but the correct
label is ‘Suggest’. Due to the long length of utterances, many

Table 14 Confusion matrix for
dialogue act classification (DAC)
on FRAMES dataset

Correct-
estimated

a b c d e f g h i j

a. Affirm 127 22 0 7 4 0 2 0 0 8

b. Confirm 21 170 18 0 0 15 12 2 5 3

c. Greeting 14 12 297 63 7 37 3 0 0 45

d. Inform 12 25 52 2057 7 18 49 305 221 95

e. Negate 0 0 10 0 26 36 0 0 0 29

f. No-result 7 20 0 0 102 156 0 0 0 31

g. Offer 0 0 18 0 0 0 453 20 127 0

h. Request 0 8 0 18 0 0 67 796 123 0

i. Suggest 0 0 0 9 0 0 14 52 133 0

j. Switch-frame 0 26 0 13 0 57 19 0 3 390

Table 13 Confusion matrix for intent detection of TRAINS dataset

Correct-
estimated

a b c d e f g h i j k l

a. Capacity 20 0 0 0 0 0 1 0 0 0 0 0

b. City 0 23 0 0 0 0 1 0 0 1 0 3

c. Confirm 0 0 58 0 9 0 0 0 4 10 0 3

d. Deliver 0 0 0 1 0 0 0 0 0 0 0 0

e. Distance 0 0 5 2 366 0 13 0 2 12 0 0

f. Engine 0 0 0 0 1 224 4 0 0 0 0 0

g. Greet 0 1 1 0 19 20 198 15 1 7 0 0

h. Item 0 0 1 0 0 0 1 7 0 3 0 0

i. Other 0 0 0 0 1 0 1 0 57 6 0 0

j. Place 0 0 2 0 11 0 0 1 7 156 0 4

k. Time 0 0 0 0 0 0 0 0 1 5 0 0

l. Vehicle 0 0 1 0 2 0 1 0 9 0 0 11
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times the intent of the utterance is expressed in the latter part
of the utterance causing misclassification. For example, ‘Wow
that is very good I am definitely keeping that one in mind, do
you have anything in Frankfurt’ is misclassified as ‘Other’,
but the actual label should be ‘package’. In this work, we also
handle single intents in an utterance; hence, the utterances
having multiple intents cause the misclassification. For exam-
ple, the utterance ‘When would you like to travel and how

many people will you be’ is incorrectly classified as
‘no_of_ppl’ whereas in the dataset it has been labelled as
‘date’. Some misclassification also occurs due to less repre-
sentation of some intent labels in the dataset. For example,
‘Do you prefer a 3.5 star hotel or a 4 star hotel’ has been
incorrectly labelled as ‘rating’ but the original intent label for
this utterance is ‘hotel’. The slot filling results for this dataset
are not very highmainly because the number of tags is in huge

Table 15 Confusion matrix for intent detection of FRAMES dataset

Correct-estimated a b c d e f g h i j k l m n o p q r s t u v w x

a. Amenity 243 0 1 6 1 5 10 0 0 1 0 1 0 0 0 0 0 2 0 0 0 0 1 3

b. Availability_info 1 141 2 5 0 1 3 0 0 1 2 0 0 0 1 0 0 0 0 0 0 0 0 8

c. Book 0 1 241 6 0 1 2 1 0 0 1 0 0 1 0 0 6 0 5 0 0 0 1 0

d. Budget 1 1 3 447 5 3 9 4 2 8 19 1 4 28 2 6 25 21 0 1 3 0 6 2

e. Provide_budget 0 0 2 4 138 2 7 0 3 1 1 0 1 1 0 0 0 0 1 0 1 0 1 0

f. City 2 4 9 7 15 1258 2 9 11 9 7 2 5 7 12 11 6 25 1 7 8 3 4 2

g. Date 14 4 64 60 6 29 521 1 3 23 11 2 8 0 3 2 18 0 7 11 3 7 13 5

h. Departure 1 0 1 6 0 0 15 252 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

i. Destination 0 0 0 34 1 2 2 0 240 1 1 1 0 0 0 0 0 2 0 7 0 0 0 0

j. Duration 3 2 11 17 2 9 21 0 1 170 39 0 2 5 2 0 4 0 1 0 1 0 2 2

k. Flight 0 10 0 12 0 1 2 0 0 7 366 0 0 4 0 0 35 0 0 0 0 0 0 6

l. Greet 1 2 4 19 0 0 8 1 0 1 2 28 0 0 0 0 0 0 0 0 0 0 0 8

m. Hotel 0 0 1 4 4 0 1 0 0 2 2 1 43 0 1 0 1 2 0 0 0 0 2 0

n. Provide_hotel 0 0 1 4 0 2 1 0 0 0 1 0 0 10 0 0 0 0 0 0 0 0 0 0

o. No_of_ppl 1 3 0 7 2 2 8 0 0 3 1 1 0 0 98 1 0 0 1 0 0 0 1 0

p. Other 0 0 0 0 1 0 2 0 0 2 1 0 0 0 0 20 6 0 0 0 0 0 4 0

q. Package 0 0 7 8 0 1 3 0 0 2 7 0 0 0 0 3 448 0 0 0 0 3 2 0

r. Price 1 0 1 18 1 4 1 0 1 1 2 0 0 0 0 0 0 85 1 0 0 0 0 1

s. Provide_date 0 0 3 1 0 0 1 0 0 0 0 0 0 0 5 0 0 5 122 0 0 0 0 0

t. Provide_flight 0 2 2 12 0 6 7 0 6 0 0 0 0 0 0 0 0 1 0 123 1 0 1 0

u. Provide_info 0 0 1 7 0 7 8 0 2 3 0 0 0 0 0 0 0 0 0 1 5 0 2 0

v. Provide_trip 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 7 0 0 0 0 32 5 0

w. Rating 0 0 5 5 0 0 4 0 1 6 9 0 0 1 1 4 34 0 0 0 0 6 80 0

x. Trip 0 4 1 3 0 0 3 0 0 0 5 15 0 0 0 0 0 0 0 0 0 0 0 97

(a) DAC Attention visualization (b) Intent Attention visualization
Fig. 4 Attention visualization for the multi-task model
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number and some slot tags have very less representation in the
dataset.

To check the effectiveness of our multi-task model, we
analyse the errors of the individual models as well. For exam-
ple, the utterance ‘How much is the Porto Alegre package for
economy’ was incorrectly classified as ‘package’ by the indi-
vidual intent model but in the multi-task model, this utterance
has been correctly classified as ‘price’ with the help of slot
labels. In another example, in the utterance ‘Business or
economy’, the slot labels ‘B-flight_class’ help in correct intent
detection which is ‘flight’. This utterance was incorrectly clas-
sified by the individual models. Similarly, intent detection has
helped in slot filling task when both are modelled together in
the multi-task setup. For example, the slot label for the word
‘Denver’ in the utterance ‘What is the airfare for economy
class from Denver ’ was correct ly tagged as ‘B-
fromloc.city_name’ whereas in the individual slot model, it
is misclassified as ‘B-city_name’ due to the help of the intent
label ‘airfare’.

In Fig. 4, we show the attention visualizations for both the
task of dialogue act classification and intent detection. From
Fig. 4a, we can see that by using attention, the model has
shown improvement by focusing on the inputs that help in
identifying the correct dialogue act of the sentence.
Similarly, from Fig. 4b, we see that incorporating attention

to our proposed model has helped by focusing on the input
to detect the true intents of the utterances. In Figs. 5 and 6, we
present the attention visualizations of the individual models
and the pipeline model (where, DAC->ID − >SF), respective-
ly. It is evident from the visualizations that the proposedmulti-
task model shown in Fig. 4 can attend the information correct-
ly. Hence, it increases the performance of the model. In con-
trast, the pipeline and individual models are unable to focus on
the correct information and give equal importance to all the
words in an utterance which confuses the model and lowers
the performance of the individual and pipeline models.

Statistical Significance Test

A statistical hypothesis test named Welch’s t test [65] is con-
ducted at the 5% (0.05) significance level to verify whether
the improvement in our model is significant or not. This is
done to show that the best accuracy obtained by our proposed
method is statistically significant and has not occurred by
chance. For the statistical test on all the dataset, the perfor-
mance metric (accuracy) is produced by 20 consecutive runs
of each algorithm. To establish the statistical significance of
our method, we calculated the p values produced byWelch’s t
test for comparison of two groups.

(a) DAC Attention visualization (b) Intent Attention visualization
Fig. 5 Attention visualization for the individual models

(a) DAC Attention visualization (b) Intent Attention visualization
Fig. 6 Attention visualization for the pipeline models
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Among these two groups, the first one corresponds to the
accuracies produced by our best proposed multi-task model,
and then another group corresponds to the accuracies pro-
duced by the other baseline and hierarchical models. The t test
is a null hypothesis test that determines whether two sets of
data are significantly different or not.

H0 : λ1 ¼ λ2 ¼ λ3 ð14Þ

On the contrary, the alternative hypothesis (H1 ) is that
there are significant differences between the average accura-
cies obtained by any of the two groups.

H0 : λ1 ¼ λ2 ¼ λ3 ð15Þ

On the contrary, the alternative hypothesis (H1 ) is that
there are significant differences between the average accura-
cies obtained by any of the two groups.H1 : ∃α;β : α≠β⇒λα≠λβ ð16Þ
Where λk is the average accuracy of kth algorithm. Now the
differences between the average accuracies are calculated by
the following t statistic formula:

t ¼ χ1−χ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
1

n1
þ σ2

2

n2

s ð17Þ

where χi, σ2
i and ni are the mean, variance and size of the ith

sample, respectively. The p value is the probability, under the
assumption of the null hypothesis (H0) and the smaller p value
is strong evidence against the null hypothesis H0ð Þ.

For the statistical test on all the datasets, we execute the
experiment 20 times. Table 16 reports p values produced by
Welch’s t test. All the p values reported in Table 16 are less
than 0.05 (5% significance level). Hence, the better perfor-
mance brought about with our approach is statistically
significant.

Conclusion and Future Work

In this paper, we have proposed a multi-task approach for
dialogue act classification, intent detection and slot filling,

which are the primary tasks in SLU. For the multi-task model,
we use Bi-LSTM and Bi-GRU to learn the representations of
the sequence shared by all the tasks. The multi-task model
exhibits advantages over individual models. On the ATIS
dataset, our model outperforms the state-of-the-art approaches
on intent detection and slot filling tasks, while it performs
considerably well for DAC as well. On the TRAINS dataset,
our model has shown good performance on the slot filling task
while for DAC and intent detection, it has performed relative-
ly well. By using combined word embeddings, it further helps
our model to identify the dialogue acts, intents and slots
correctly.

In our future work, we plan to incorporate syntactic and
semantic information into our model. We want to expand the
scale of our dataset and use more dialogue datasets, which can
be useful for building robust dialogue systems and help in
SLU research.
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