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Abstract

Word embeddings learned using the distribu-
tional hypothesis (e.g., GloVe, Word2vec) are
good at encoding various lexical-semantic re-
lations. However, they do not capture the emo-
tion aspects of words. We present a novel
retrofitting method for updating the vectors of
emotion bearing words like fun, offence, an-
gry, etc. The retrofitted embeddings achieve
better inter-cluster and intra-cluster distance
for words having the same emotions, e.g., the
joy cluster containing words like fun, happi-
ness, etc., and the anger cluster with words
like offence, rage, etc., as evaluated through
different cluster quality metrics. For the down-
stream tasks on sentiment analysis and sar-
casm detection, simple classification models,
such as SVM and Attention Net, learned using
our retrofitted embeddings perform better than
their pre-trained counterparts (about 1.5% im-
provement in F1-score) as well as other bench-
marks. Furthermore, the difference in perfor-
mance is more pronounced in the limited data
setting.

1 Introduction

Word embedding models inspired from the distri-
butional hypothesis (Harris, 1954) have one major
limitation: they mix semantic similarity with other
types of semantic relatedness (Hill et al., 2015). For
instance, consider cheap and expensive. Though
opposite in meaning, the distributional vectors of
these words are similar since they occur in nearly
identical contexts. This is problematic for many
applications such as text simplification, dialogue
state tracking, etc. To address this, researchers have
proposed various models that leverage knowledge
resources to improve word embeddings. At a high
level, these models are categorized into two types:
Joint specialization models (Yu and Dredze, 2014;
Liu et al., 2015); and Retrofitting (post-processing)
models (Faruqui et al., 2015; Mrkšić et al., 2016).
Joint specialization models typically modify the

word pair GloVe RETripletGBal
(angry, offence) 0.2339 0.3924
(angry, enjoy) 0.3400 0.2950
(fun, closeness) 0.2232 0.3688
(fun, miserable) 0.3105 0.2812

Table 1: Cosine similarity between words from same
and different emotion categories: pre-trained GloVe vs.
embeddings retrofitted by our method RETripletGBal

optimization objective of distributional models by
integrating external knowledge into the objective
function. In contrast, retrofitting models first gener-
ate training data from knowledge resources in the
form of constraints and then modify the pre-trained
embeddings in a post-processing step so that they
respect the constraints. These approaches focus
mainly on constraints from relations such as syn-
onymy, antonymy, hypernymy, etc., that are present
in WordNet, Paraphrase database, etc.

While pre-trained embeddings and their
retrofitted versions are good at encoding various
lexico-semantic relations, they do not consider the
emotion content of words. For example, consider
words such as angry and offence that evoke
anger emotion and words such as fun and enjoy

eliciting joy. Table 1 shows cosine similarity as
computed using pre-trained GloVe embeddings.
Even though angry and offence evoke the same
emotion (anger), their cosine similarity is lower
than that between angry and enjoy, a pair of
words eliciting different emotions, pointing to
the shortcomings of existing embedding models.
Recently, a few attempts have used affective
lexicons (Khosla et al., 2018; Seyeditabari et al.,
2019) or task-dependent distant supervision (Tang
et al., 2016; Agrawal et al., 2018) to induce
emotion embeddings. While they work well for
some tasks, they do not generalize well across
tasks and have not been tested extensively for
intrinsic quality.



Emotion anger joy sadness fear anticipation surprise trust disgust
#words 543 651 1153 772 623 318 1197 1024

Table 2: EmoLex statistics: number of words annotated with Plutchik’s eight basic emotion categories

In this work, we present a novel retrofitting
method to learn emotion enriched embeddings.
For knowledge, it relies on word-level emotion
annotations available in the NRC word-emotion
association lexicon (known as EmoLex). The cen-
tral idea is: if words wa and wp are associated
with the same emotion category t and word wn

is not associated with t, then wa is semantically
closer to wp than wn in the context of the emo-
tion category t. This can be stated as an inequality
constraint: simt(wa, wp) > simt(wa, wn). Such
emotion inequality constraints containing word
triplets (wa, wp, wn) are generated for all emotion
categories present in EmoLex. We use these con-
straints as training data to learn a non-linear trans-
formation function that maps original word vectors
to a vector space respecting these constraints. The
transformation function is learned in a similarity
metric learning setting using a multi-layer feed-
forward network.

The embeddings retrofitted using our method
achieve better clustering for emotion bearing words.
For the downstream tasks on sentiment analysis and
sarcasm detection, they perform better than their
pre-trained counterparts and other benchmarks,
with significant gains in limited data setting. The
main contributions of this work are:

1. A novel retrofitting method to learn emotion
enriched embeddings in a similarity metric
learning setting (Section 3).

2. A detailed evaluation of word embeddings for
their emotion content using clustering experi-
ments (Section 4.1).

3. A detailed evaluation on sentiment analysis
and sarcasm detection showing the efficacy of
our retrofitting method (Section 4.2).

2 Constraints from NRC EmoLex

A large body of work has focussed on under-
standing and modelling human emotions. For in-
stance, Plutchik’s wheel of emotions (Plutchik,
1980), Ekman’s model (Ekman, 1992), Parrot’s
tree-structured emotions (Parrott, 2001), etc. The
model proposed by Plutchik arranges emotions in

circles with the length of radius indicating the inten-
sity of emotions. It proposes eight basic or primary
emotions: joy, trust, fear, surprise, sadness, disgust,
anger, and anticipation.

Various lexical resources have been proposed
in the literature to capture the emotion aspect of
words, e.g. (Mohammad, 2018a,b). In this work,
we focus on NRC EmoLex (Mohammad and Tur-
ney, 2013). It contains a list of English words and
their associations with Plutchik’s eight basic emo-
tions (Plutchik, 1980). Since words are ambiguous
in their meaning and may evoke multiple emotions,
each word in EmoLex has been associated with a
set of emotions. For example, playful is associ-
ated with three emotion categories: trust, surprise
and joy. Table 2 shows the total number of words
annotated with each emotion category1.

We obtain a set of inequality constraints from
EmoLex in the form of triplets. Each triplet con-
tains three words (wa, wp, wn) in which we refer to
wa, wp and wn as the anchor, positive and negative
words, respectively. The corresponding inequality
constraint is: similarity between wa and wp shall
be greater than the similarity between wa and wn,
by at least a margin m. The margin m is set in the
range [0, 2] corresponding to a minimum versus
maximum separation on cosine distance. For ex-
ample, consider the following word-emotion pairs
in EmoLex: (lonely, sadness), (playful, joy),
and (sorrow, sadness). With lonely as the anchor
word, sorrow can be considered the positive word
since both these words belong to the same emo-
tion category sadness. The word playful is then
considered as a negative word since it is annotated
with a different emotion category joy. This gives
rise to the following constraint in the context of
sadness category: simsadness(lonely, sorrow) >
simsadness(lonely, playful) + msadness. Such
constraints are obtained in the context of all the
eight emotion categories by considering each word
from the corresponding emotion category as the
potential anchor and then generating the positive
and negative words.

1EmoLex contains emotion and sentiment annotations for
14,182 words. Out of these, it has a total of 4,463 emotion
bearing words i.e. words that are marked with at least one
emotion category.



3 Retrofitting Method

Our goal is to learn a transformation function that
maps pre-trained word embeddings to a vector
space that respects the emotion inequality con-
straints. As explained earlier, an inequality con-
straint is created using a word triplet (wa, wp, wn)
and the corresponding emotion category-specific
margin m. Thus, a natural way to create training
data for this task is to generate a set of four tu-
ples (wa, wp, wn,m) using all possible inequality
constraints. However, training data generation us-
ing all inequality constraints has a drawback. We
first explain this drawback and ways to mitigate
it, followed by our retrofitting model to learn the
transformation function.

3.1 Training: Batch of triplets To Batch of
words

Let’s define the set of triplets that satisfy inequality
constraints (hence zero loss) as easy triplets, and
conversely, the set of triplets that do not satisfy
the constraints (hence leading to non-zero loss) as
active triplets. The constraint generation method
described in Section 2 produces O(n3) triplets (n
= #words in EmoLex), which by construction leads
to training data explosion. Moreover, many of
these triplets may trivially satisfy the inequality
constraint (i.e., easy triplets) in pre-trained input
vector space. In fact, the set of active triplets keeps
on changing as the training progress, and just after
a few batch updates in stochastic gradient descent,
a majority (> 99%) of the triplets become easy
triplets resulting in zero loss. The gradients from
these inactive triplets start vanishing at this point,
leading to considerably slow training.

The stagnant-training problem described above
is well studied in the computer vision community,
where triplet loss has been successfully applied in
metric learning settings for applications such as
face verification (Schroff et al., 2015), person re-
identification (Hermans et al., 2017), etc. Various
approaches for selecting the right set of triplets (re-
ferred as triplet mining or sampling) are broadly
categorized into offline (Gordo et al., 2016) and
online mining (Hermans et al., 2017). In this work,
we focus only on online mining as it generally
leads to better training convergence than the offline
approach. In online mining, we first sample a mini-
batch consisting only of raw images (words in our
case). The set of active triplets is then generated
on-the-fly from the mini-batch. Various policies to

sample active triplets from a given batch include
BatchHard, BatchHardNegative, and BatchAll. For
a given anchor image a from class X , the Batch-
Hard (BH) policy selects the hardest positive image
p (farthest from a in terms of distance metric) from
among the rest of the images of X in the batch. It
then selects the hardest negative image n (closest
to a in terms of distance metric) from the set of
images belonging to classes other than X . The
BatchHardNegative (BHN) policy relaxes positive
image mining by considering all possible in-batch
positive images p and then selects the hardest neg-
ative n. The BatchAll (BA) policy considers all
possible in-batch positive images and in-batch neg-
ative images for the given anchor a and then selects
active triplets from the complete set.

In a nutshell, to mitigate the stagnant-training
problem, instead of sampling a mini-batch of
triplets from a huge set created offline, we first
sample mini-batch of individual words and then
generate triplets from the mini-batch on-the-fly us-
ing online triplet mining policies.

3.2 Retrofitting model

Our retrofitting model takes pre-trained word em-
beddings as input and updates them using a non-
linear transformation function T(xw) such that
the emotion aspects of words, as induced by the
inequality constraints, are respected. The transfor-
mation function is learned in a similarity metric
learning setting. Figure 1 shows the architecture
for learning our retrofitting model.
1. Training data generation: A training instance
for our model consists of a word and its emotion
category. The data generation component samples
words from EmoLex to create a mini-batch b of
size n for training. We experiment with two vari-
ants: (1) Uniform variant samples an equal number
of words from all the eight emotion categories;
(2) Weighted variant, on the other hand, samples
words from a category proportional to the number
of words annotated with that category in Emolex.
2. Transformation function: We take the d-
dimensional pre-trained embeddings of words
present in the mini-batch b as input and pass
them through the transformation function to com-
pute retrofitted embeddings, i.e., xtw = T(xw).
This function is realized using a multi-layer feed-
forward neural network with a corresponding set
of network weights WT .
3. Triplet mining: The retrofitted embeddings



Figure 1: Architecture for our retrofitting model

computed by T(xw) are passed to the triplet mining
component, which samples the set of active triplets
A from batch b according to the selected online
triplet mining policy.
4. Loss function: Active triplets obtained from
the triplet mining component are used to compute
triplet loss from the mini-batch b. It is defined in
terms of a margin based hinge loss function,

Lh =
∑
A

(
dist(Mcwa

xtwa
,Mcwa

xtwp
)

−dist(Mcwa
xtwa

,Mcwa
xtwn

) +margin
)
+

(1)
Here, dist is a cosine-distance function; (x)+ =
max(0, x); and margin is a hyper-parameter,
set in [0, 2]. In Emolex, a word may be
tagged with multiple emotion categories e.g.
lonely is tagged with both sadness and anger.
Thus, while generating sadness related constraints
from the word lonely (e.g. the constraint in
(lonely, sorrow, playful)), we need a way to ex-
tract the sadness aspect. Similarly, when generating
anger related constraints, we need to consider the
anger aspect. To account for this, we first project
the retrofitted embeddings to an emotion category-
specific vector space using a linear transformation
matrix Mcwa

∈ Rd×d; cwa ∈ {1, 2, .., 8} (learned
jointly with T). The dist function in Eq. 1 is then
applied to the projected retrofitted embeddings.
Vector Space Preservation: Pre-trained embed-
dings contain useful semantic relations between
words as captured by the distributional hypothe-
sis. The transformation function learned by our
model should preserve these relations while also
respecting the emotion inequality constraints. To
address this, we use a regularization term which pe-
nalizes vector space transformations that drastically
change the topology of input vector space, similar
to (Mrkšić et al., 2016; Glavaš and Vulić, 2018). It
measures the Euclidean distance between the pre-

trained vector xi and its transformed version T(xi)
for all words present in batch b,

Lv =
∑
w∈b
‖xw − T(xw)‖2 (2)

The final loss function used by our model is then:
L = Lh+λvLv, where λv is a hyper-parameter that
determines how strictly the topology of original
vector space is preserved. The loss function also
includes weight decay for parameters WT and M .

Since the retrofitting function T(xw) is formu-
lated as a representation learning problem (similar-
ity metric learning setting), it can be used to trans-
form pre-trained embeddings of all words present
in a given vocabulary post training.

4 Experimental Results

To evaluate our retrofitting method, we experi-
mented with 300-dimensional pre-trained embed-
dings in GloVe2 (Pennington et al., 2014) and
Word2vec3 (Mikolov et al., 2013). Due to space
constraints, we discuss only GloVe results here
(Word2vec results are present in Appendix B). As
explained earlier, we used triplet constraints ex-
tracted from EmoLex to learn retrofitted embed-
dings. We refer to our method as RETriplet here-
after. Although we report the complete hyper-
parameter grid search details in Appendix A, the
hyper-parameter λv for the vector space preserva-
tion loss in Eq. 2 needs special attention. Setting
the right value for λv is extremely important to
learn a meaningful retrofitting model. If we set
it very high, RETriplet may not focus on the in-
equality constraints in triplet loss, thereby learning
retrofitted embeddings nearly identical to their pre-
trained version. Conversely, a low value of λv may
produce embeddings that largely satisfy emotion

2https://nlp.stanford.edu/data/glove.42B.300d.zip
3https://code.google.com/archive/p/word2vec/



constraints but may not preserve the topology of
input vector space, possibly leading to degraded
performance on downstream tasks. To account
for this trade-off, we devise the following scheme
and select two configurations: (1) We use adjusted
rand index (ARI, a clustering evaluation metric,
described in Section 4.1) to measure the quality
of retrofitted embeddings and select the configura-
tion that gives the highest value for ARI (referred
as RETripletG); (2) we compute the average co-
sine distance between pre-trained and retrofitted
embeddings for words in EmoLex and filter config-
urations having distance < 0.15. We then choose
the configuration with the highest ARI from the
filtered list (referred as RETripletGBal).

Retrofitting approaches proposed in the literature
use attract and repel constraints, extracted from
WordNet, Paraphrase database, etc., to update pre-
trained embeddings. The attract constraints pull
similar (e.g., synonyms, hypernyms, etc.) word
pairs close together. While the repel constraints
push non-similar (e.g., antonyms) word pairs away
from each other. We compare RETriplet with the
following,
Counterfit (Mrkšić et al., 2016): It defines the loss
function as a weighted sum of terms that brings at-
tract word pairs closer and pushes repel word pairs
apart. It also includes a vector space regularization
term.
Attract-Repel (AR) (Mrkšić et al., 2017): The
counterfit method updates embeddings of attract
and repel words without considering their relations
to other words. AR addresses this problem by per-
forming context-sensitive vector updates. For each
word in attract pairs, it finds the closest (in terms of
cosine distance) in-batch word to generate negative
examples (conversely farthest for repel words). It
then uses these negative examples to form a hinge
loss function for context-sensitive updates.
Post-specialization: The methods described
above locally update vectors of only those words
that are present in constraints (i.e., seen words),
whereas vectors for all other words remain intact.
To address this, post-specialization methods use
retrofitted embeddings of seen words to learn a
global specialization function which then updates
vectors of unseen words. We use the generative
adversarial network architecture proposed by Ponti
et al. (2018) for post specialization with AR as the
local method (referred to as AR+PS).

We also learn emotion enriched embeddings us-

ing the methods described above by extracting at-
tract and repel constraints from EmoLex. Two
words annotated with the same emotion category
in EmoLex are added to the attract set, e.g. (angry,
offence) since both angry and offence are marked
with the anger category. In contrast, two words,
when annotated with different emotion categories,
are added to the repel set, e.g. (fun, miserable)
since fun is marked with joy and miserable with
sadness. The generated attract and repel sets are
then used to learn retrofitted embeddings. They
are referred by appending +EL to the retrofitting
method, e.g., AR+EL for embeddings retrofitted
using AR with EmoLex constraints.

We also compare our method with the following
emotion enriched embeddings: (1) EWE (Agrawal
et al., 2018): It first creates noisy emotion labelled
data using distant supervision and then applies re-
current neural network to learn emotion embed-
dings; (2) Aff2vec (Khosla et al., 2018): It appends
valence (V), arousal (A) and dominance (D) val-
ues of words as present in Warriner’s VAD lexicon
(Warriner et al., 2013) to the counterfitted GloVe
embeddings, resulting in 303-dimensional affec-
tive embeddings; (3) EEArmin (Seyeditabari et al.,
2019): It applies counterfit method directly on the
(word, emotion) pairs in EmoLex; (4) SentiEmbs
(Yu et al., 2017): embeddings refined for sentiment
using valence values present in Warriner’s lexicon.

4.1 Clustering Experiments

Since our main objective is to investigate word em-
beddings for their emotion content, it is natural to
ask, do words that evoke the same emotion have
similar embeddings? In other words, are words
with similar emotion content clustered together in
the vector space? To study this, we extract all
words present in EmoLex and their emotion labels
to create a dataset for clustering. The embeddings
of words are then used as features to perform K-
means clustering with the number of means (k)
set to 8. Since the true labels are available, we
apply various external cluster validity indices to
measure clustering quality. In particular, we use
adjusted rand index (ARI), Fowlkes Mallows score
(FMS), adjusted mutual information score (Adjust-
edMIS), V-measure, and entropy (refer Scikit-learn
user guide). In addition to good cluster quality,
retrofitted embeddings shall also preserve the topol-
ogy of pre-trained vector space. To quantify this,
we compute the average cosine distance between



Embeddings ARI↑ FMS↑ AdjustedMIS↑ V-measure↑ Entropy↓ VDist↓
GloVe 0.0456 0.1542 0.0863 0.0888 1.8092 0
counterfit 0.0897 0.1969 0.1634 0.1657 1.6404 0.1740
AR 0.0749 0.1802 0.1479 0.1502 1.6717 0.0977
AR+PS 0.0853 0.1911 0.1607 0.1630 1.6444 0.1257
counterfit+EL 0.1530 0.2532 0.1953 0.1976 1.5680 0.0308
AR+EL 0.2071 0.3126 0.3966 0.3984 1.1594 0.3068
AR+PS+EL 0.1567 0.2689 0.2579 0.2600 1.4495 0.2029
EWE 0.0556 0.1630 0.1083 0.1108 1.7605 0.0085
Aff2vec 0.0824 0.1877 0.1574 0.1598 1.6517 NA
EEArmin 0.3764 0.4566 0.5501 0.5514 0.7856 1.0152
SentiEmbs 0.0009 0.2974 0.0135 0.0176 1.9817 0.4329
RETripletGBal 0.0951 0.2000 0.1639 0.1662 1.6373 0.0946
RETripletG 0.1616 0.2602 0.3031 0.3050 1.3271 0.4445

Table 3: External cluster validity indices (with k=8) for pre-trained GloVe and its retrofitted versions (↓: lower val-
ues are better; ↑: higher values are better) - Overall, RETripletGBal and counterfit+EL provide substantially good
clustering while preserving the topology of pre-trained vector space. The embeddings in red are not desirable as
they drastically change the pre-trained vector space (high VDist) and may not perform well on affective end-tasks.

pre-trained and retrofitted embeddings for words
in EmoLex. It is referred to as VDist (lower values
are better).

As shown in Table 3, the scores for the pre-
trained GloVe baseline are lowest across all clus-
tering indices. This indicates that there is a
scope of improvement for injecting emotion con-
tent into pre-trained embeddings. The embed-
dings from pair-wise retrofitting methods with syn-
onymy and antonymy constraints (i.e., counterfit,
AR, AR+PS) reasonably improve clustering qual-
ity while maintaining a fairly good VDist (< 0.18).
When used with the attract and repel constraints
from EmoLex (+EL setting), both AR+EL and
AR+PS+EL embeddings achieved extremely good
clustering. However, their VDist is very high,
pointing to the fact that they did not maintain
semantic relations present in GloVe. The EWE
embeddings perform poorly on clustering indices
as they are identical to their pre-trained version
(VDist=0.0085). The SentiEmbs embeddings do
not provide good clustering since they are opti-
mized only for coarse-grained sentiments. On the
other hand, the EEArmin embeddings have com-
pletely overfitted for clustering, with extremely
poor VDist. Though Aff2vec embeddings achieve
reasonably good clustering, we could not compute
VDist due to the three extra dimensions appended
for VAD. The embeddings in counterfit+EL and
RETripletGBal provide the right balance overall
with substantially good cluster quality along with

low values for VDist. The counterfit+EL embed-
dings, however, do not perform well on down-
stream tasks, as reported later in Table 5.

Figure 2 shows t-SNE plots for EmoLex words
using pre-trained GloVe, RETripletGBal, and RE-
TripletG, marking the median point for each emo-
tion category. These points are very close to each
other for pre-trained GloVe as it only uses the distri-
butional hypothesis to learn embeddings, not con-
sidering the emotion content of words. On the other
hand, RETripletG (selected based only on cluster-
ing quality) provides extremely good separation but
at the expense of losing semantic relations present
in GloVe. RETripletGBal embeddings not only pro-
vide reasonably good separation but also preserve
the topology of the input vector space. The cosine
similarity values computed using RETripletGBal
are well-calibrated for emotion content, as evident
for the exemplar pairs in Table 1.

4.2 Evaluation on Downstream tasks
We evaluate emotion enriched embeddings on two
affective end-tasks: (1) Sentiment analysis using bi-
nary (SST2) and graded (SST5) Stanford sentiment
treebank, and tweet messages from SemEval 2017
(task 4A); (2) Sarcasm detection using sit-com ut-
terances in Mustard++. Table 4 reports statistics
for these datasets. Similar to EWE (Agrawal et al.,
2018), we use a probing framework (Conneau et al.,
2018; Eichler et al., 2019) to evaluate embeddings
for their performance on the downstream tasks. In
particular, we apply two classification models: sup-



Task Dataset #class size #token Type Vocab Source

Sentiment
analysis

SST2 2 9613 162783 sentence 176301 (Socher et al., 2013)
SST5 5 11855 199120 sentence 196311 (Socher et al., 2013)
SemEval 3 61854 1174626 tweet 230052 (Rosenthal et al., 2017)

Sarcasm
detection

Mustard++ 2 1202 14219 utterance 26321 (Ray et al., 2022)

Table 4: Dataset statistics for downstream tasks (subscript in Vocab indicate minimum frequency threshold)

(a) Pre-trained GloVe

(b) RETripletGBal embeddings

(c) RETripletG embeddings

Figure 2: t-SNE plots for emotion bearing words

port vector machine (SVM), and attention network
(AttnNet). The embeddings of tokens present in
a given sentence/utterance/tweet are averaged to
compute input features for SVM. Whereas the to-
ken embeddings as a sequence are passed as input
to an attention layer followed by softmax to com-
pute cross-entropy loss for AttnNet.

Table 5 reports the micro F1-scores for SVM
and AttnNet. The pre-trained GloVe embeddings
seems to be a hard baseline to beat on the senti-

ment analysis task. While the pair-wise retrofitting
methods (counterfit, AR, AR+PS) have been shown
to improve tasks such as dialogue state tracking,
text simplification, etc., they have not been ex-
tensively tested for sentiment analysis. Surpris-
ingly, embeddings from these methods could not
beat the baseline even though they are updated to
respect the synonymy and antonymy constraints.
When retrofitted using attract and repel constraints
from EmoLex, their (+EL variants) performance
degraded even further. This degradation is partly
attributable to the in-batch sampling of negative
examples. Unlike synonym constraints where dis-
tinct word pairs are not interrelated, word pairs in
Emolex attract constraints are interrelated due to
their emotion labels. For example, consider in-
batch attract pairs such as (enjoy, fun), (happy,
thankful), and (loving, delightful), having the com-
mon emotion label joy. While generating negative
examples for enjoy, pairs such as (enjoy, happy)
and (enjoy, delightful) may be inappropriately con-
sidered as candidates, leading to spurious training
data. The EWE embeddings trained using distant
supervision are nearly identical to their pre-trained
version (VDist=0.009), leading to no improvement
in end-task. Though retrofitted for emotions, both
Aff2vec and EEArmin embeddings could not beat
the pre-trained baseline, possibly due to drastic
changes to the topology of input vector space (high
VDist). SentiEmbs, though optimized for senti-
ments, unexpectedly could not perform well on any
datasets. RETripletGBal embeddings learned us-
ing our method achieved the highest F1-score for
both SVM and AttnNet on the sentiment analysis
task. For the sarcasm detection task (Mus++ in
Table 5), the embeddings learned using our method
performed better than their pre-trained counter-
parts (about 1.5% improvement in F1-score) and
achieved the highest F1-score with SVM.

4.2.1 Limited data experiments
To evaluate embeddings in a low resource setting,
we sample datasets of various sizes, such as 10%,



Embeddings SVM AttnNet
SST2 SST5††† SemEval††† Mus++ SST2 SST5††† SemEval††† Mus++

GloVe 0.8034 0.4122 0.6131 0.5333 0.7705 0.4072 0.6375 0.5125
counterfit 0.7996 0.4181 0.6236 0.5105 0.7419 0.4005 0.6274 0.5375
AR 0.8029 0.3846 0.5782 0.5063 0.721 0.3937 0.635 0.4833
AR+PS 0.8018 0.4041 0.6031 0.4979 0.7853 0.4204 0.6306 0.5417
counterfit+EL 0.7985 0.4032 0.6112 0.5021 0.7326 0.3842 0.6391 0.5125
AR+EL 0.7902 0.405 0.607 0.4979 0.7348 0.3923 0.6365 0.5042
AR+PS+EL 0.7628 0.3842 0.5711 0.4979 0.7721 0.3624 0.6171 0.4875
EWE 0.7974 0.402 0.6049 0.5523 0.7738 0.4068 0.6237 0.5292
Aff2vec 0.7831 0.3893 0.5725 0.523 0.7381 0.4023 0.6241 0.5457
EEArmin 0.7644 0.3805 0.5604 0.5397 0.76 0.3928 0.6226 0.5458
SentiEmbs 0.7397 0.3633 0.5511 0.5356 0.6985 0.3543 0.5409 0.5125
RETripletGBal 0.816 0.4339 0.6305 0.5542 0.7946 0.4267 0.6405 0.5292
RETripletG 0.7705 0.3946 0.6101 0.5667 0.7787 0.3973 0.6288 0.4792

Table 5: Micro F1-scores for SVM and AttnNet with various embeddings as input (Bold+Underline: highest;
Bold: next highest); †††: Wilcoxon’s signed rank test with α = 0.5 indicates RETripletGBal is better than GloVe

Figure 3: Data size vs. micro F1-score for Pre-trained
GloVe and RETripletGBal in limited data setting

30%, etc., from the original sentiment analysis
datasets. We then compare pre-trained GloVe with
RETripletGBal in terms of micro F1-score across
the data sizes. As we can see in Figure 3, RE-
TripletGBal performs significantly better than pre-
trained GloVe in a low data regime (< 60% data).
The difference in performance reduces nearly af-
ter 80% data size. This points to the fact that the
external knowledge from EmoLex as captured by
our retrofitting method helps improve the end-task,
especially in the limited data scenario.

5 Related Work

Large language models with contextualized word
embeddings (e.g., BERT and its variants) have
lately received a lot of attention in the NLP commu-
nity. Nonetheless, their static counterparts are still

actively explored, e.g., combining static and contex-
tualized embeddings to improve end-tasks (Alharbi
and Lee, 2021; Alghanmi et al., 2020), inducing
knowledge bases (Dufter et al., 2021), bilingual
lexicon induction (Zhang et al., 2021), etc. In this
work, we focus on static word embeddings that are
learned primarily using the distributional hypoth-
esis. A major limitation with these embeddings is
that they do not differentiate semantic similarity
from other types of relatedness (Hill et al., 2015).
This problem is addressed by borrowing semantic
relations from resources such as WordNet, Para-
phrase Database, etc., in the form of constraints.
These constraints are then used by joint special-
ization (Yu and Dredze, 2014; Liu et al., 2015) or
retrofitting models (Faruqui et al., 2015; Mrkšić
et al., 2016; Shah et al., 2020) to improve word
embeddings. These models, however, focus mainly
on synonymy, antonymy, and hypernymy relations.
Recently, a few attempts, such as Aff2vec from
Khosla et al. (2018) and emotion embeddings from
Seyeditabari et al. (2019), incorporate knowledge
present in affective lexicons to learn emotion en-
riched embeddings.

The contrastive learning approach similar to our
work has recently been applied to learn transformer
based sentence embeddings in SBERT (Reimers
and Gurevych, 2019) and zero-shot image classi-
fication in CLIP (Radford et al., 2021). However,
these methods are not specialized to learning emo-
tion enriched embeddings.

There is a large body of work that focuses on



learning task-specific affective embeddings. These
methods first use distant supervision to create a
noisy labelled dataset and then use it to update
word embeddings or learn them from scratch. For
instance, sentiment-aware embeddings using tweet
data (Tang et al., 2014, 2016); affective embed-
dings using tweet emojis (Felbo et al., 2017); emo-
tion enriched embeddings using product reviews
data (Agrawal et al., 2018). Since embeddings
learned from these methods are tied to the dataset
used for distant supervision, they may not work
well for other related affective end-tasks. Moreover,
they are not very accurate due to noisy labelling.

The emotion-enriched embeddings learned by
our method are not only accurate compared to the
methods described above, as evident from the clus-
tering experiments, they also work well on the re-
lated affective end-tasks.

6 Summary and Future work

We present a novel retrofitting method to learn emo-
tion enriched embeddings using triplet constraints
from EmoLex. These constraints are used as train-
ing data to learn a retrofitting function in a sim-
ilarity metric learning setting. The embeddings
learned by our method perform better than their
pre-trained counterparts and other benchmarks in
both intrinsic clustering evaluation and the extrin-
sic downstream tasks in sentiment analysis and
sarcasm detection. As future work, we plan to ex-
tend our triplet constraint-based approach to other
resources such as VAD lexicon (Warriner et al.,
2013; Mohammad, 2018a). We also plan to de-
velop a similar approach for contextualized word
embeddings.
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retrofitting of distributional word vectors. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 34–45, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Albert Gordo, Jon Almazán, Jérôme Revaud, and Di-
ane Larlus. 2016. Deep image retrieval: Learning

https://aclanthology.org/C18-1081
https://aclanthology.org/C18-1081
https://doi.org/10.18653/v1/2020.wnut-1.5
https://doi.org/10.18653/v1/2020.wnut-1.5
https://aclanthology.org/2021.wanlp-1.39
https://aclanthology.org/2021.wanlp-1.39
https://aclanthology.org/2021.wanlp-1.39
https://aclanthology.org/2021.wanlp-1.39
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/2021.naacl-main.186
https://doi.org/10.18653/v1/2021.naacl-main.186
https://doi.org/10.18653/v1/D19-3022
https://doi.org/10.18653/v1/D19-3022
https://doi.org/10.1080/02699939208411068
http://www.aclweb.org/anthology/N15-1184
https://doi.org/10.18653/v1/D17-1169
https://doi.org/10.18653/v1/D17-1169
https://doi.org/10.18653/v1/D17-1169
https://doi.org/10.18653/v1/P18-1004
https://doi.org/10.18653/v1/P18-1004
https://doi.org/10.1007/978-3-319-46466-4_15


global representations for image search. In Com-
puter Vision - ECCV 2016 - 14th European Con-
ference, Amsterdam, The Netherlands, October 11-
14, 2016, Proceedings, Part VI, volume 9910 of
Lecture Notes in Computer Science, pages 241–257.
Springer.

Zellig Harris. 1954. Distributional structure. Word,
10(23):146–162.

Alexander Hermans, Lucas Beyer, and Bastian Leibe.
2017. In Defense of the Triplet Loss for Person
Re-Identification. arXiv preprint arXiv:1703.07737,
abs/1703.07737.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
SimLex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665–695.

Sopan Khosla, Niyati Chhaya, and Kushal Chawla.
2018. Aff2Vec: Affect–enriched distributional
word representations. In Proceedings of the 27th
International Conference on Computational Linguis-
tics, pages 2204–2218, Santa Fe, New Mexico, USA.
Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. Cite
arxiv:1412.6980Comment: Published as a confer-
ence paper at the 3rd International Conference for
Learning Representations, San Diego, 2015.

Quan Liu, Hui Jiang, Si Wei, Zhen-Hua Ling, and
Yu Hu. 2015. Learning semantic word embeddings
based on ordinal knowledge constraints. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1501–1511,
Beijing, China. Association for Computational Lin-
guistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems -
Volume 2, NIPS’13, pages 3111–3119, USA. Curran
Associates Inc.

Saif M. Mohammad. 2018a. Obtaining reliable hu-
man ratings of valence, arousal, and dominance for
20,000 english words. In Proceedings of The An-
nual Conference of the Association for Computa-
tional Linguistics (ACL), Melbourne, Australia.

Saif M. Mohammad. 2018b. Word affect intensities. In
Proceedings of the 11th Edition of the Language Re-
sources and Evaluation Conference (LREC-2018),
Miyazaki, Japan.

Saif M. Mohammad and Peter D. Turney. 2013. Crowd-
sourcing a word-emotion association lexicon. Com-
putational Intelligence, 29(3):436–465.
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A Training details

This section details the hyper-parameters in our
retrofitting method and the best combinations
selected thereof. The transformation function
T(xw) in RETriplet is implemented using a multi-
layer feed-forward neural network. The hyper-
parameters are:- number of hidden layers: {2, 3, 4},
size of hidden layer: {300, 400, 500}, activations:
{tanh,ReLU}, dropout: 0.2 and L2 regulariza-
tion: 0.0005. We use Adam (Kingma and Ba,
2014) optimization algorithm with, learning rate:
{0.001, 0.0005} and batch size: {64, 128, 256}.
We experiment with two data generation schemes
described earlier: Uniform and Weighted. For
the hinge loss function in Eq. 1, we use co-
sine as the distance metric with two margin
values, i.e. {0.2, 0.6}. The margin is set to
the same value for all emotion categories. For
triplet mining, during initial experiments, we ob-
served that both the BatchHard and BatchAll
mining policies performed equally well, with
BatchAll having better convergence during initial
epochs. Hence, we primarily experimented with
the BatchAll mining policy. The hyper-parameter
for vector space preservation loss λv is varied
as {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5}.
We set aside 10% words in EmoLex for validation
and use early stopping with patience 10. For ex-
perimentation, we used CPU machines with 64GB
RAM and 20 core CPUs. Each configuration on an
average took 80 minutes to run.

For both GloVe and Word2vec, we select two
configurations to generate retrofitted embeddings.
One configuration is selected only on the basis of
clustering quality metric (ARI). Whereas, the sec-
ond configuration takes vector space preservation
into account in addition to the clustering quality.
Table 6 reports these configurations.
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GloVe Word2vec
hyperparameter RETripletGBal RETripletG RETripletWBal RETripletW
#layers 2 3 2 3
#hidden units 300 300 300 200
activation ReLU ReLU ReLU ReLU
dropout 0.2 0.2 0.2 0.2
L2-regularization 0.0005 0.0005 0.0005 0.0005
batch-size 128 128 128 128
learning rate 0.0005 0.0005 0.0005 0.0005
data generation Weighted Uniform Weighted Weighted
triple mining BatchAll BatchAll BatchAll BatchAll
λv 0.5 0.1 0.7 0.4

Table 6: Selected hyper-parameter configurations for retrofitted embeddings (1) GloVe:- RETripletG has the best
ARI; RETripletGBal has the best ARI with VDist < 0.15 (2) Word2vec:- RETripletW has the best ARI; RE-
TripletWBal has the best ARI with VDist < 0.15

B Experimental results for Word2vec

Table 7 reports clustering experiments for
Word2vec pre-trained baseline and their retrofitted
versions. Table 8 reports results for sentiment anal-
ysis and sarcasm detection tasks for SVM and At-
tention network with Word2vec as the base embed-
dings.



Embeddings ARI↑ FMS↑ AdjustedMIS↑ V-measure↑ Entropy↓ VDist↓
Word2vec 0.0553 0.1641 0.1019 0.1044 1.7753 0.0
counterfit 0.0762 0.1814 0.1495 0.1518 1.6682 0.1803
AR 0.0794 0.186 0.1538 0.1561 1.6601 0.2556
AR+PS 0.0913 0.2051 0.159 0.1613 1.6559 0.1326
counterfit+EL 0.1628 0.2618 0.2029 0.2051 1.5507 0.0232
AR+EL 0.2008 0.3066 0.39 0.3917 1.1729 0.37
AR+PS+EL 0.1228 0.2527 0.3349 0.3369 1.3078 0.1931
EWE - - - - - -
Aff2vec 0.0914 0.1978 0.1567 0.1591 1.6548 NA
EEArmin 0.3655 0.4468 0.5495 0.5507 0.7964 0.9986
SentiEmbs 0.0007 0.3000 0.0085 0.0126 1.9896 0.4382
RETripletWBal 0.1493 0.2545 0.2086 0.2109 1.5448 0.1371
RETripletW 0.1768 0.2764 0.2784 0.2804 1.3885 0.3633

Table 7: External cluster validity indices for pre-trained Word2vec and its retrofitted versions (↓: lower values
are better; ↑: higher values are better) - Overall, RETripletWBal and counterfit+EL provide substantially good
clustering while preserving the topology of pre-trained vector space. The embeddings in red are not desirable as
they drastically change the pre-trained vector space (high VDist) and may not perform well on affective end-tasks.
*EWE embeddings not available for Word2vec.

Embeddings SVM AttnNet
SST2 SST5 SemEval Mus++ SST2 SST5 SemEval Mus++

Word2vec 0.8144 0.4262 0.6209 0.5481 0.7985 0.4136 0.6342 0.525
counterfit 0.8127 0.4281 0.6298 0.5063 0.7408 0.4023 0.6277 0.5125
AR 0.8018 0.409 0.5995 0.5105 0.7842 0.3787 0.6307 0.5083
AR+PS 0.8023 0.4176 0.5995 0.5397 0.7924 0.4249 0.6281 0.5667
counterfit+EL 0.816 0.4262 0.6245 0.5272 0.7567 0.3778 0.6385 0.5458
AR+EL 0.8127 0.4208 0.6243 0.5314 0.7776 0.3697 0.6306 0.5375
AR+EL+PS 0.7968 0.3959 0.6012 0.523 0.7452 0.4072 0.6186 0.5125
EWE - - - - - - - -
Aff2vec 0.8166 0.407 0.6119 0.5146 0.7414 0.3692 0.6299 0.575
EEArmin 0.771 0.3887 0.5964 0.5523 0.7479 0.3566 0.6197 0.5542
SentiEmbs 0.7567 0.3656 0.5716 0.5649 0.7205 0.3661 0.5462 0.4958
RETripletWBal 0.8221 0.438 0.6323 0.5523 0.8051 0.419 0.6323 0.5792
RETripletW 0.7979 0.4145 0.6153 0.5105 0.7979 0.3982 0.6307 0.5

Table 8: Micro F1-scores for SVM and AttnNet with various embeddings as input: Experiments with Word2vec
as baseline (Bold+Underline: highest; Bold: next highest) *EWE embeddings not available for Word2vec
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