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Abstract
Spoken language is different from the written
language in its style and structure. Disfluen-
cies that appear in transcriptions from speech
recognition systems generally hamper the per-
formance of downstream NLP tasks. Thus, a
disfluency correction system that converts dis-
fluent to fluent text is of great value. This pa-
per introduces a disfluency correction model
that translates disfluent to fluent text by draw-
ing inspiration from recent encoder-decoder
unsupervised style-transfer models for text.
We also show considerable benefits in perfor-
mance when utilizing a small sample of 500
parallel disfluent-fluent sentences in a semi-
supervised way. Our unsupervised approach
achieves a BLEU score of 79.39 on the Switch-
board corpus test set, with further improve-
ment to a BLEU score of 85.28 with semi-
supervision. Both are comparable to two com-
petitive fully-supervised models.

1 Introduction

Disfluencies are disruptions to the regular flow
of speech, typically occurring in conversational
speech. They include filler pauses such as uh and
um, word repetitions, irregular elongations, dis-
course markers, conjunctions, and restarts. For
example, the disfluent sentence “well we’re actu-
ally uh we’re getting ready” has its fluent form as,
“we’re getting ready”. Here, the words highlighted
in green, blue and red refer to discourse, filler and
restart disfluencies, respectively.

Disfluencies in the text can alter its syntactic and
semantic structure, thereby adversely affecting the
performance of downstream NLP tasks such as in-
formation extraction, summarization, translation,
and parsing (Charniak and Johnson, 2001; Johnson
and Charniak, 2004). These tasks also employ pre-
trained language models that are typically trained
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to expect fluent text. This motivates the need for
disfluency correction systems that convert disflu-
ent to fluent text. Prior work has predominantly
focused on the problem of disfluency detection (Za-
yats et al., 2016; Wang et al., 2018; Dong et al.,
2019). Inspired by recent work on unsupervised
machine translation and style-transfer models for
text, we propose an unsupervised encoder-decoder
based model to tackle the problem of disfluency cor-
rection. Our model does not require access to a par-
allel corpus of disfluent and fluent sentences. We
also show a semi-supervised variant of our model
that uses a small amount of parallel disfluent-fluent
text and significantly improves performance. To
our knowledge, this is the first work to use state-
of-the-art unsupervised models for the task of dis-
fluency correction. Our main contributions are as
follows:

• We cast the problem of disfluency correc-
tion as one of translation from disfluent to
fluent text and we propose an unsupervised
transformer-based encoder-decoder model for
disfluency correction.

• We compare and contrast an unsupervised
and semi-supervised approach for disfluency
correction, where the latter has access to a
small amount of parallel text. We also imple-
ment fully-supervised methods as a skyline
and show how our models come very close
in performance to these approaches, which
are very resource-intensive and require large
amounts of parallel text.

• We show detailed ablation analyses across dis-
fluency types and present a qualitative study
of disfluency corrections that our model can
achieve.
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Figure 1: Illustration of (a) Style transfer model modified to use type embedding drawn from a pretrained CNN
classifier. (b) Conditioning on domain embeddings in the transformers’ decoder. Pred(i) and Input(i) are the
decoder’s prediction and input to the decoder at the ith time-step respectively.

2 Related work

Current literature has primarily focused on disflu-
ency detection in both speech and text in fully
supervised settings (Wang et al., 2016; Georgila
et al., 2010; Zayats et al., 2014; Tran et al., 2019;
Wang et al., 2018; Bach and Huang, 2019; Zay-
ats et al., 2016; Lou and Johnson, 2020a). The
grammatical error correction (Omelianchuk et al.,
2020) approach does not perform well on the dis-
fluency correction tasks. In most cases, simply
removing disfluencies from an utterance can ren-
der the sentence ill-formed. More meaningful and
syntactically well-formed utterances are generated
by performing automatic disfluency removal from
speech (Kaushik et al., 2010; Lou and Johnson,
2020b) and text (Wang et al., 2010; Honal and
Schultz, 2005; Hassan et al., 2014). With the pop-
ularity of end-to-end spoken translation systems,
several works translate fluent utterances from dis-
fluent speech (Salesky et al., 2018; Ansari et al.,
2020; Fukuda et al., 2020) or disfluent text (Cho
et al., 2013; Saini et al., 2020; Cho et al., 2016).
Most of these approaches work in a supervised set-
ting or mitigate the lack of parallel disfluent-fluent
text via data augmentation, model design, incorpo-
rating domain knowledge of the language, or using
multi-lingual NMT. (Salesky et al., 2019) proposes
a system for conversational speech translation with
the joint removal of disfluencies.

3 Our Approach

We draw inspiration from unsupervised neural ma-
chine translation models (Lample et al., 2017) and
style transfer models (He et al., 2020) to design
the disfluency correction model illustrated in Fig-

ure 1a. It consists of a single encoder and a single
decoder, used to translate in both directions, i.e.,
from disfluent to fluent text and vice-versa. The
decoder is additionally conditioned using a domain
embedding to convey the direction of translation,
signifying whether the input to the encoder is a
fluent or disfluent sentence. More details about our
framework are described below.

3.1 Unsupervised Disfluency Correction
Figure 1a shows the two directions of translation.
The model obtains latent disfluent and latent flu-
ent utterances from the non-parallel fluent and dis-
fluent sentences, respectively, which are further
reconstructed back into fluent and disfluent sen-
tences. We employ a backtranslation-based objec-
tive, followed by reconstruction for both domains,
i.e., disfluent and fluent text. For every mini-batch
of training, soft translations for a domain are first
generated (denoted by x̄ and ȳ in Figure 1a), and
are subsequently translated back into their origi-
nal domains to reconstruct the mini-batch of input
sentences. The sum of token-level cross-entropy
losses between the input and the reconstructed out-
put serves as the reconstruction loss.

Borrowing from prior work on unsupervised
style transfer model (He et al., 2020), the decoder
is conditioned on a domain embedding that spec-
ifies the direction of translation. In this work, we
employ two types of embeddings: A vanilla binary
domain embedding that takes a bit as input to indi-
cate whether the input text is fluent or disfluent and
a classifier-based domain embedding. The latter
is obtained from a trained standalone CNN-based
classifier (Kim, 2014) that predicts the disfluency
type of a disfluent input sentence. (Here, we as-



sume that disfluency type labels are available for
the disfluent sentences in our training data.) The
classifier’s penultimate layer acts as our classifier
embedding, which is further used to condition the
decoder. We hypothesize that additional informa-
tion about disfluency types via the classifier-based
embedding might help guide the process of disflu-
ency correction better.

Furthermore, similar to the noise models adopted
by (He et al., 2020; Lample et al., 2017), a ran-
domly sampled noisy version of every sentence in
the input mini-batch is fed to the model, forcing
it to behave like a denoising auto-encoder. We
use noise perturbations (Lample et al., 2017) in
the form of word-shuffle(α), word-blank(β) and
word-dropout(γ) operations.

We explore two choices to implement our
encoder-decoder modules: 1) BiLSTM-based
(Bahdanau et al., 2015) and 2) Transformer-
based (Vaswani et al., 2017). For the BiLSTM
model, as proposed by (He et al., 2020), the BOS
vector, i.e., the input to the decoder at the first time-
step, is replaced by the domain embeddings. In the
Transformer model, this conditioning needs to be
carefully done. Figure 1b illustrates how we condi-
tioned the transformer-based decoder. Dimension-
ality reduced word embedding is concatenated with
the domain embedding DE at every time-step(t) to
form the input for the decoder.

3.2 Semi-Supervised Disfluency Correction

Our unsupervised disfluency correction model can
be easily fine-tuned using small amounts of par-
allel text, when available, lending itself to semi-
supervised learning. The encoder-decoder mod-
ules are initialized using the unsupervised train-
ing described in the previous section and further
fine-tuned with a supervised cross-entropy loss us-
ing small amounts of parallel disfluent-fluent text.
We do not use domain embeddings during semi-
supervised training; the inference is done as in the
unsupervised model, i.e., with domain embeddings.

4 Experiments and Results

In this work, we use the Switchboard corpus (God-
frey et al., 1992) that includes telephonic conversa-
tions and their disfluency annotations (Schriberg,
1994; Zayats et al., 2014). We create a 70:15:15
train, test, and validation split. The train set con-
tains 110,964 sentences, whereas validation and
test sets have 11,889 disfluent-fluent sentence pairs.

Model BLEU METEOR
Dev Test Dev Test

Disfluent 70.98 71.53 57.02 57.19

US (BiLSTM) 61.26 62.64 48.31 49.13
US (Transformer) 78.72 79.39 56.59 57.25

SS (Transformer) 83.85 85.28 57.77 58.35

Seq2Seq 87.23 88.08 56.65 59.36
BART 89.27 90.08 62.17 63.01

Table 1: BLEU and METEOR scores on the Switch-
board dev and test sets. US and SS represent our unsu-
pervised and semi-supervised approaches, respectively.

4.1 Implementation Details

Our BiLSTM model uses a single layer of recurrent
units of hidden size 750 with max-pooling over a
window size of 5. The noise perturbation parame-
ters, α, β, γ were tuned on the validation set and
set to 0. The model was trained for 15 epochs with
10 for annealing, using mini-batches of size 32,
with Adam optimizer (Kingma and Ba, 2015) and
a learning rate 0.01 linearly scheduled with the rate
of decrements of 0.5. Empirically, we also found
it essential to allow gradients to pass through the
backtranslations to generate meaningful sentences.

The transformer model uses 8 attention heads,
word embedding and domain embedding dimen-
sionalities of 1024 and 512. The noise pertur-
bation parameters, α, β, γ are set as 3, 0.2, 0.1.
Adam optimizer is used with an initial learning
rate of 0.00001, with a linear scheduler and 10
warm-up steps. We used mini-batches of size 32.
Dropout (Gal and Ghahramani, 2016) and label-
smoothing (Szegedy et al., 2016) values were 0.3
and 0.1, respectively.

4.2 Results

Table 1 shows BLEU and METEOR scores be-
tween the gold fluent and the disfluency cor-
rected output from five different models. We
train two fully supervised skylines, based on
Seq2Seq (Sutskever et al., 2014) and BART (Lewis
et al., 2019), to compare against our approaches.
The BLEU score using original disfluent text as the
hypothesis is 71.53. The two supervised skylines
use 55K pairs of parallel disfluent-fluent sentences
during training and yield up to 90 BLEU score. In
comparison, the unsupervised approach yields up
to 80 BLEU scores without any parallel data. Fine-
tuning the unsupervised model with a small parallel
corpus containing only 554 pairs (i.e. two orders
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Figure 2: BLEU scores vs. Input lengths.

of magnitude smaller than the complete set of 55K
pairs) significantly bridges this gap and yields up to
85 BLEU score. In terms of METEOR, the score
using original disfluent text as the hypothesis is
57.19. The difference between unsupervised and
supervised approaches is much smaller, indicating
that with respect to the adequacy or content preser-
vation, these approaches perform at par. These
results also show that the last few additional BLEU
points (i.e., the difference between BART and SS)
come at a high cost with having to create a large
parallel corpus.

We obtain 77.34 and 77.97 BLEU on the dev
and test sets using binary embeddings, respectively,
whereas the disfluency-type classifier embedding
yields 78.72 and 76.90 on the dev and test sets.
The classifier embeddings do marginally improve
performance. However, the BLEU scores obtained
using the binary embeddings are almost compa-
rable, which shows that our proposed model can
effectively use even non-parallel text without any
disfluency type labels.
Sentence Length: Figure 2 shows BLEU scores as
a function of maximum sentence length on the test
set. The BLEU score is highest for the utterances
smaller than ten tokens; on longer sentences, the
BLEU scores drop. This trend is uniform across
all models. Our transformer-based model signifi-
cantly outperforms the BiLSTM-based model on
utterances of all lengths. Interestingly, our semi-
supervised approach is very similar in performance
to the fully supervised approach for smaller (<10
token) utterances.
Semi-supervised Learning: Table 2 shows the
performance when our unsupervised model is fine-
tuned with varying amounts of parallel text.

#Sentences Percentage(%) Dev Test

0 (Unsupervised) 0 78.72 79.39

554 1 83.85 85.28
2774 5 84.67 86.03
5548 10 84.98 86.12

13870 25 85.88 87.04
27741 50 86.10 87.90
55482 100 87.16 88.22

Table 2: Effect of fine-tuning with a varying amount
of supervised parallel corpus to fine-tune our model
trained in unsupervised manner; in effect, results of
semi-supervised training.

Set
US

BiLSTM
US

Trans.
SS

Trans.
Seq2Seq BART

all
Dev 61.26 78.72 84.10 87.23 89.27
Test 62.64 79.39 85.28 88.08 90.08

Conj
Dev 62.68 80.17 84.65 87.63 88.98
Test 63.60 80.18 86.24 89.13 89.79

filler
Dev 56.96 76.86 81.01 85.01 87.41
Test 58.45 77.47 82.16 85.92 88.59

restart
Dev 53.76 72.39 78.13 82.24 84.99
Test 54.92 73.06 79.52 82.84 85.60

disc
Dev 53.84 71.91 81.05 84.64 87.52
Test 55.39 73.19 82.30 85.93 88.57

edit
Dev 49.06 63.20 78.28 82.86 85.45
Test 52.51 64.35 80.60 85.82 87.13

aside
Dev 37.07 48.56 41.25 53.98 53.88
Test 37.25 45.71 51.65 56.37 55.68

Table 3: Disfluency type specific BLEU scores. (Trans.:
Transformer, conj: conjunctions and disc: discourse
disfluencies).

By having access to only 554 parallel pairs (i.e.,
1% total pairs), the performance improves by an im-
pressive 5.89 BLEU on the test set. While BLEU
improvements are a monotonically increasing func-
tion of the amount of parallel text, we see a trend
of diminishing returns soon after the 1% mark.
Performance Across Disfluency Types: Intu-
itively, certain types of disfluencies (e.g., fillers) are
easier to correct than others (e.g., edits). Table 3 re-
ports the BLEU scores from all our models across
disfluency types. Conjunctions and discourse dis-
fluencies mark the easy end of the correction spec-
trum, while edits and asides mark the problematic
end. (Edits are also hard to correct because of the
lack of training data.)
Qualitative Analysis: Table 4 shows examples
using five different models along with correspond-
ing disfluent and fluent sentences. All five models
can remove simpler disfluencies (e.g., fillers and



Disfluent BART Seq-to-Seq US(Bi-LSTM) US(Trans.) SS Fluent

disc.,
filler

so uh been a
different turn

been a
different turn

been a
different turn

been a
different turn

been a
different turn

been a
different turn

been a differ-
ent turn

conj.,
rep.

but i i i find
this whole

i find this
whole

i find this
whole

anyway i
find it all

i find this
whole

i find this
whole

i find this
whole

restart it’s you’re
you’re taking
words and
developing a
picture in
your mind

you’re taking
words and
developing a
picture in
your mind

you’re taking
words and
developing a
picture in
your mind

it’s you’re
taking
chicken and
tobacco
words in a
mind

it’s taking
words and
developing
and a picture
in your mind

it’s taking
words and
developing a
picture in
your mind

you’re taking
words and
developing
a picture in
your mind

conj.,
disc.,
restart

and then you
you know
you had i
think you
had to pick it
by by by the
end of the
second you
had to pick
some sort of
major

then you
think you
had to pick it
by the end of
the second
you had to
pick some
sort of major

you had to
pick it by by
the end of
the second
you had to
pick some
sort of major

then you
think you
had i think
you had to
pick it by by
the end of
the second
you had to
pick some
sort of major

then you had
to pick some
sort of major

you had to
pick of it by
the end of
you had to
pick some
major

by the end
of the sec-
ond you had
to pick some
sort of major

aside i forgot
sally’s last
name
anyway it’s a
couple

i forgot
sally’s last
name
anyway it’s a
couple

i forgot seen
last name
anyway it’s a
couple

gosh i forgot
last name it’s
a couple of
years

i forgot
wordstart
last name
anyway it’s a
couple

i forgot harry
name
anyway it’s a
couple

it’s a couple

Table 4: Analysis of generated text across all models. (disc.: Discourse; conj.: Conjunction; rep.:repetition US:
Unsupervised; SS: Semi-supervised; Trans.: Transformer.)

discourse) in shorter sentences. Conjunctions and
repetitions are removed by all models except the
unsupervised BiLSTM model. The third example
shows how the transformer model is much better
than the BiLSTM model in terms of content re-
tention and adequacy. It also highlights the better
fluency of the semi-supervised model than the un-
supervised model. The fourth example illustrates
the increased complexity due to the presence of
multiple disfluency types(conjunction, discourse,
restart) in a single utterance. The fifth example il-
lustrates a case of an aside, which is difficult for all
models. It shows how even the supervised models
fail to detect the disfluent phrase ”i forgot sally’s
last name anyway”.

5 Conclusion

We propose an unsupervised disfluency correction
model drawing motivation from prior work on un-
supervised machine translation and style transfer.
We investigate two kinds of domain embeddings
for our model. We also present a semi-supervised

disfluency correction approach. We finetune our
model using only about 500 parallel sentences,
which comes very close in performance (based on
BLEU scores) to a state-of-the-art, fully supervised
system.
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