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Abstract

Timely generation of radiology reports and di-
agnoses is a challenge worldwide due to the
enormous number of cases and shortage of
radiology specialists. In this paper, we pro-
pose a Knowledge Graph Augmented Vision
Language BART (KGVL-BART) model that
takes as input two chest X-ray images- one
frontal and the other lateral- along with tags
which are diagnostic keywords, and outputs a
report with the patient-specific findings. Our
system development effort is divided into 3
stages: i) construction of the Chest X-ray KG
(referred to as chestX-KG), ii) image feature
extraction, and iii) training a KGVL-BART
model using the visual, text, and KG data.
The dataset we use is the well-known Indi-
ana University Chest X-ray reports with the
train, validation, and test split of 3025 in-
stances, 300 instances, and 500 instances re-
spectively. We construct a Chest X-Ray knowl-
edge graph from these reports by extracting
entity1-relation-entity2 triples; the triples get
extracted by a rule-based tool of our own. Con-
structed KG is verified by two experienced ra-
diologists (with experience of 30 years and 8
years, respectively). We demonstrate that our
model- KGVL-BART- outperforms State-of-
the-Art transformer-based models on standard
NLG scoring metrics. We also include a quali-
tative evaluation of our system by experienced
radiologist (with experience of 30 years) on
the test data, which showed that 73% of the
reports generated were fully correct, only 5.5%
are completely wrong and 21.5% have impor-
tant missing details though overall correct. To
the best of our knowledge, ours is the first sys-
tem to make use of multi-modality and domain
knowledge to generate X-ray reports automati-
cally.

1 Introduction

Medical imaging techniques are widely used in
hospitals across the world. The detailed informa-

tion extracted from medical images is crucial for
proper diagnosis and treatment. An experienced
and skilled radiologist is required to prepare an ac-
curate full text diagnostic report. However, due to
a lack of experts, many reports contain indecisive
findings, forcing patients to undergo further tests
involving pathology or other advanced imaging
methods. In addition, the time consuming process
of full text radiology report generation is one of the
biggest challenges. All over the world, the ratio of
radiologists to patients is very low. The ratios in the
US, China, and India are 1:10,000, 1:14,772, and
1:100,000 respectively (Arora, 2014). Given the
huge number of cases and the shortage of radiology
experts, timely report generation and diagnosis is a
huge challenge worldwide.

In the case of a chest ailment, X-rays produce
images of chest organs like, lungs, spinal bones,
heart, airways, and blood vessels. These images
help doctors ascertain an exact findings such as
pneumonia, collapsed lung, emphysema, cancer,
broken ribs, etc. Manual examination of X-ray im-
ages for a large number of patients can be time
consuming, leading to delays. Human errors may
further add to the challenges. This prompted the
researchers to use deep learning models capable of
automated report generation to address the above
mentioned challenges. With deep learning based
automatic report generation, the reports can be gen-
erated with minimal delay and free from any human
errors. Large-scale pre-trained language models
have recently expanded into multimodality learn-
ing, improving representations by combining visual
and semantic features (Cho et al., 2021; Sollami
and Jain, 2021; Mustafa et al., 2022). However,
progress in adapting language models toward con-
ditional Natural Language Generation (NLG) is
limited to image and text modalities. The Natural
Language Processing (NLP) community is mov-
ing towards transformer-based models. The major-



ity of NLP research today produces better results
by tweaking an already-trained transformer model
across a large corpus. This prompts us to research
pre-trained transformers like BART that have gen-
erative capabilities while conditioning them on vi-
sual, textual, and KG data. This study introduces
the KGVL-BART conditioned transformer-based
model, which, produces a comprehensive report
given an X-ray image, tags associated with X-ray
image.)), and chest X-ray KG. We train our model
using the publicly accessible Indiana University
chest X-ray dataset (referred to as IU-XRay) (Fis-
cher et al., 2022). The encoder accepts input from
tags, images, and KG in three different modalities.
We create embeddings for each of these modalities
before sending input to the multimodal encoder.
We compare our quantitative findings to earlier
transformer-based models. Furthermore, we pro-
vide qualitative analysis on test set by a radiologist.

Problem Statement: Design a system that gen-
erates a structured patient-specific report from radi-
ology images, image tags and domain knowledge.
The input to the system is

• two chest X-ray images- one frontal and the
other lateral

• tags

The output of the system is

• radiology report with patient-specific findings

Domain knowledge comes from the Knowledge
Graph.

Our contributions are:

1. A knowledge-enhanced BART-based Vision-
Language Model which we call KGVL-BART
and which generates chest X-ray reports with
accuracy better than SoTA.

2. Chest X-ray knowledge graph created from
IU Chest X-ray reports.

3. Demonstration of the fact that multi-modality
helps in radiology report generation; we use
both the image and its tags plus triples from
the knowledge graph.

2 Fundamental Definitions

Vision-Language Model: Vision-Language mod-
els are the deep learning models that learn both
vision and language modalities together.
Tags: Tags are the diagnostic keywords (e.g., left

lung, pulmonary atelectasis, hernia, pneumonia,
etc.) associated with X-ray image.
Findings: The findings section in radiology reports
is the clinical description of abnormalities and nor-
malities observed on radiology image.
Impression: The impression section in radiology
reports is the summary of findings section.
Knowledge Graph: Paulheim (2017) defines
Knowledge Graph (KG) as "A knowledge graph (i)
mainly describes real-world entities and their inter-
relations, organized in a graph, (ii) defines possible
classes and relations of entities in a schema, (iii)
allows for potentially interrelating arbitrary entities
with each other and (iv) covers various topical do-
mains."
Knowledge Graph Embeddings (KGEs): Knowl-
edge graph embeddings represent the entities and
relations in lower-dimensional vectors.
KG-Grounding: The KG grounding is the pro-
cess of extracting the subgraph (referred to as
grounded KG) from domain-specific KG (in our
case chestX-KG). A grounded KG is a subgraph
from the chestX-KG whose nodes represents tags
present in the input tag set plus additional relevant
nodes.

3 Related Work

Researchers (Jing et al., 2017; Zhang et al., 2017;
Yuan et al., 2019) studied the issue of automatic
report generation. Their research looked into the
visual attention given to recurrent decoders and
convolution-recurrent architectures (CNN-RNN)
that were first introduced by Vinyals et al. (2015)
on image captioning. Transformers, attention-only
based models that have replaced recurrent mod-
els in the NLP community (Vaswani et al., 2017;
Devlin et al., 2018). Several attempts have been
made in the medical field to create medical reports
from the corresponding images. Most authors use
multilabel image captioning to produce X-ray re-
ports, and they subsequently use those captions
as textual features. The IU-Xray dataset’s chest
X-ray images were used to generate the first struc-
tured report using tags predicted by a CNN-RNN
model (Shin et al., 2016). In (Wang et al., 2017b), a
system for generating natural reports for the Chest-
Xray14 dataset, employing private reports, was pre-
sented. This framework used a non-hierarchical
CNN-LSTM architecture and focused on seman-
tic and visual aspects. The IU-Xray dataset was
created by Jing et al. (2017) to generate radiology



reports automatically.
There is a lot of research performed in NLG

on multimodal constraints. NLG models based
on transformers (Sollami and Jain, 2021) propose
a model called MAnTiS, Multimodal Adaptation
for Text Synthesis, as a general method for mul-
timodal conditionality. In this method, separator
tokens are used to separate each modality type, and
modality-specific encoders are used to encode each
modality type. Liu et al. (2021) contend that pre-
trained language models and textual concepts by
themselves are insufficient to give enough data for
generative commonsense reasoning. They supply
the ConceptNet KG as input to the transformer
model for generative commonsense reasoning in
addition to text input. Liu et al. (2020) proposes a
Knowledge-enabled Bidirectional Encoder Repre-
sentation from Transformers (K-BERT). Since the
parameters of all pre-trained BERT models are the
same, K-BERT can load any of them. Additionally,
K-BERT can easily integrate domain knowledge
into the models by giving them access to a KG with-
out prior training. Xing et al. (2021) propose KM-
BART to conduct the task of Visual Commonsense
Generation (VCG) by integrating visual features in
pretrained BART model.

4 Methodology

As shown in the figure 1, the model architecture
consists of six major components, namely, KG
grounding, KG embedding, image embedding, text
embedding, encoder, and decoder. The KG ground-
ing module extracts the grounded KG from the
chestX-KG. Grounded KG includes all of the nodes
in the input tag set and their significant neighbors.
The KG embedding module converts the grounded
KG into vector form using the KGE technique.
The image feature extractor module generates the
feature vectors for input chest X-ray images. To
compute the text features, we use the BART text
encoder method. The encoder and decoder are
multilayer transformers. This section explains all
components in detail.

4.1 Knowledge Graph Grounding

The KG grounding module extracts the small sub-
graph from chestX-KG for each report in the
dataset, given a tag set as input. First, it adds all en-
tities from chestX-KG that are present in the input
tag set, and then it adds their significant neighbors.

The algorithm focuses on first finding the most

appropriate path in chestX-KG from tag entities to
the root of chestX-KG and then adding neighbor
nodes that are connected with DefaultPropertyOf
(default property of entities) relation. The follow-
ing are the steps to extract grounded KG:

• Find all possible candidate paths from a
matched entity to the root node.

• Find the most appropriate top five paths by
ranking based on the precision and recall of
entities in the input tag set and entities in all
possible candidate paths.

• We consider all paths, including those with
matched entities that are absent from the se-
lected top-ranking path.

• Instead of adding all neighbors of input tag
entities, we add only significant entities that
are default properties or default descriptors of
input entities.

Our proposed method reduces noise by adding only
significant nodes to grounded KG. We propose a
context-aware KG grounding algorithm to select
M triples from the chestX-KG for an entity candi-
date. The pseudocode of this algorithm is shown
as follows.

Algorithm 1: KG Grounding

Input : K: Tags
G(V, E) : chestX-KG

Output :Grounded KG
1 Find all candidate paths in G(V, E) that includes the

node with input concept
2 path-dict -> initialize
3 for each path in possible candidate-paths do
4 Precision = K∩Allentitiesinpath

No.ofconceptsinK

5 Recall = K∩Allentitiesinpath
No.ofnodesinpath

6 F − score = 2∗Precision∗Recall
Precision+Recall

7 add path-dict -> (path:F-score)
8 end
9 Sort path-dict in descending order of F-score

10 Get top 5 paths
11 for each path in top-5-paths do
12 if len(set(K) - set(path)) > 0 then
13 Add all triplets from that path in grounded

KG triple set
14 for each node in path do
15 Find all neighbors of node with

default-property relation
16 Add all triples of form (neighbor,

DefaultPropertyOf, node) in
grounded KG triple set

17 end
18 end
19 end
20 Return grounded KG triplets set.



Figure 1: The architecture of our proposed KGVL-BART model. KGVL-BART has six important components: KG
grounding, KG Embedding, image embedding, text embeddings, encoder, and decoder.

4.2 Knowledge Graph Embeddings

Knowledge Graph Embedding methods embed the
components of a KG, including entities and rela-
tions, into continuous vector spaces. The chestX-
KG is represented in low dimensional vector space
using KGE. There are different techniques used
for KG embeddings like TransR, TransH, TransE,
TransD, etc, (Wang et al., 2017a). For simplicity
and concreteness, in this work, we primarily con-
sider the TransE (Bordes et al., 2013) model due to
its state-of-the-art performance.

4.3 Text Embedding

The input embeddings in KGVL-BART are made
of two separate embeddings, token embeddings and
position embeddings. To get the final text embed-
ding, we add the vectors of token embeddings and
position embeddings.

4.3.1 Token Embeddings
Tokens are nothing but a word or part of a word.
The textual encoder uses the vocabulary offered
by large-cnn BART, and the token embedding is
consistent with BART. Using a trainable lookup
table, we transform each token in the input tag set
into an embedding vector of dimension d.

In order to create these token embeddings, a
method called BART tokenizer is used to tok-
enize the text. Input tag set T is tokenized as
{t1, t2, ..., t|t|} and encoded as learned embedding

et = {et1 , et2 , ..., et|t|}. For a token tn, its em-
bedding is etn ∈ Rd, where d is the dimension
of the token embeddings. The encoder, decoder,
and language modeling head (Press and Wolf,
2016) all share the embedding parameters. Due to
the permutation-invariance of the attention layers,
BART learns positional embeddings for absolute
token positions and adds them to the token embed-
dings (Vaswani et al., 2017; Devlin et al., 2018).

4.3.2 Positional Embeddings
Position embeddings represent the position of the
word within that sentence that is encoded into a
vector. We must introduce some information about
the relative or absolute location of the tokens in the
sequence because our model lacks recurrence and
convolution and hence cannot use the sequence’s or-
der. To do this, we augment the token embeddings
at the base of the encoder and decoder stacks with
positional embeddings. The positional encodings
and token embeddings have the same dimension d
allowing the token and positional embeddings to
be added together. The text embeddings are the
sum of the token embeddings and the positional
embeddings, i.e., etp = et + ep, where ep is the
positional embeddings.

4.4 Image Embedding

For image feature extraction, we use three differ-
ent methods: i) Pretrained CheXNet (Rajpurkar



et al., 2017) model (referred to as CheXNet), ii) Pre-
trained ResNet-152 model (referred to as ResNet-
152), and iii) Fine-tuned ResNet-50 for multilabel
image classification on NIH chest-xray dataset (re-
ferred to as NIH-ResNet). We extract the image
embeddings from each of these models, and we
train KGVL-BART separately for these methods.
In this section, we give details about the pretrained
ResNet-152 feature extractor.

We extract the embedding form of the final
fully connected layer of the pre-trained ResNet-152
model (He et al., 2016). We transform images using
the same parameters as during pretraining, which
include resizing, center cropping, and normalizing.
We project the image feature vector through a linear
layer with a learnable weight matrix W ∈ RN∗d

onto the language model embedding space d.
To get the final input embeddings, we sum up

the text and image embeddings. In addition to the
original vocabulary of BART, for images, we use
<img> and </img> to indicate the start and the end
of visual embeddings, respectively. Multimodal
Feature Augmentation is done by adding image
feature vector with the text feature vector to gener-
ate a single feature vector, i.e., etv = etp + ev.

4.5 Encoder
The encoder uses two modalities—image and text,
and text generation is conditioned on grounded KG.
According to the figure 1, the KG enhanced en-
coder layer sits above the visual-textual encoder
layer and is intended to enhance the visual-text
representation {etv1 , etv2 , ...., etvn} by taking the
KG structure into account. We use a graph atten-
tion layer to incorporate graph representations into
the input encoding process. It uses explicit rela-
tions to help the model learn intra-concept rela-
tions more effectively. Formally, the grounded KG
embedding, as well as the output visual-textual
embeddings from the visual-textual encoder, are
combined by the KG-augmented encoder to update
the visual-textual token representation. Our self-
attention layer and fully-connected layer with resid-
uals make up the stack of m transformer blocks that
make up our bidirectional multimodal encoder.

4.6 Decoder
The decoder uses the text embedding module at the
bottom layer to encode the text. The decoder in
our model is also a multi-layer transformer. Our
decoder is auto-regressive and unidirectional. We
skip over a detailed explanation of these modules

because our textual transformers are the same as
those used in BART (Lewis et al., 2019; Vaswani
et al., 2017).

5 Experiments

The datasets, evaluation metrics, and baselines used
for the training and evaluation of the KGVL-BART
model are covered in detail in this section.

5.1 Dataset
We use the IU Chest X-ray dataset to train our
model (Demner-Fushman et al., 2016). There are
3825 patient reports in this dataset. 7430 chest X-
ray images from the front and sides contribute to
this dataset. Each patient report contains two types
of tags: MTI tags and manual tags from MESH1

and RadLex2. Each report has three parts: an im-
pression, which is a title or summary of the report;
findings, which contain the report in detail; and
manual tags. We use MESH tags (text) as one of
the input to train our model. We concatenate im-
pressions and findings and use it as target to train
our model. IU Chest X-ray dataset includes normal
and abnormal study reports. There are total 3825
reports out of which 1379 are normal and 1646
are abnormal. The dataset is balanced with respect
to normal and abnormal reports. Additionally, we
chose 500 samples at random to serve as the test set.
Our split is 3025 for training, 300 for validation,
and 500 for testing. Table 1 shows the samples
from the IU-Chest X-ray dataset.

Table 1 shows an example from the dataset that
we are using to train KGVL-BART model.

5.1.1 Chest X-ray Knowledge Graph
(chestX-KG)

Nodes in our knowledge graph represent all nec-
essary information, like findings, observations,
anatomy, properties, and modifiers related to the or-
gan. We define eight logical relations to construct
chestX-KG. i) PartOf : It represents the relation
between anatomy and sub-anatomy, ii) TypeOf : It
represents the relation between similar type of en-
tities, iii) ModifierOf : It denotes the descriptors
of findings, anatomical locations, properties, etc.,
iv) ObservationOf : It denotes the clinical observa-
tions observed for a particular finding, v) Default-
ObservationOf : It denotes the observation that is
associated by default with a particular anatomical

1https://www.nlm.nih.gov/mesh/qualifiers_
scopenotes.html

2https://radlex.org/

https://www.nlm.nih.gov/mesh/qualifiers_scopenotes.html
https://www.nlm.nih.gov/mesh/qualifiers_scopenotes.html
https://radlex.org/


Frontal Image Lateral Image Tags Target

Osteophyte, thoracic ver-
tebrae, multiple, small,
Thickening, pleura, apex,
bilateral, Lung, hyperdis-
tention, mild

Impression: No acute cardiopulmonary abnormality. Findings: The
cardiomediastinal silhouette and pulmonary vasculature are within nor-
mal limits. There is no pneumothorax or pleural effusion. There are no
focal areas of consolidation. Cholecystectomy clips are present. Small
T-spine osteophytes. There is biapical pleural thickening, unchanged
from prior. Mildly hyperexpanded lungs.

normal Impression: No acute cardiopulmonary findings. Findings: Heart
size and mediastinal contour are within normal limits. There is no
focal airspace consolidation or suspicious pulmonary opacity. No
pneumothorax or large pleural effusion. Mild degenerative change of
the thoracic spine.

Pulmonary Atelectasis,
base, Spondylosis, tho-
racic vertebrae, Arthritis,
cervical vertebrae

Impression: Basilar atelectasis. No confluent lobar consolidation or
pleural effusion. Findings: The cardiac contours are normal. XXXX
basilar atelectasis. The lungs are clear. Thoracic spondylosis. Lower
cervical XXXX arthritis.

Calcified Granuloma,
lung, upper lobe, right

Impression: No acute cardiopulmonary process. Findings: The car-
diomediastinal silhouette is within normal limits for size and contour.
The lungs are normally inflated without evidence of focal airspace
disease, pleural effusion, or pneumothorax. Stable calcified granuloma
within the right upper lung. No acute bone abnormality.

Table 1: Samples from the IU Chest X-ray dataset. We use frontal images, lateral images, and tags as input to our
model and target text as a concatenation of impression and findings columns from the IU Chest X-ray dataset. In
this table, we show only the columns we use to train the KGVL-BART model.

Figure 2: Chest X-ray KG constructed by extracting triplets from the free-text chest X-ray reports. Constructed KG
is verified by radiologists. Only a portion of the entire KG is displayed due to space limitations.

location or particular finding. vi) PropertyOf : It
denotes the relation between entities (anatomical
entities, finding entities, observation entities, etc.)
and their properties., vii) DefaultPropertyOf : It
denotes the property that exist by default with par-
ticular anatomical location or particular finding.,
and viii) FoundIn: It denotes the relation between
findings and corresponding anatomical location.

We use a rule-based and pattern-based approach

to extract the triples from the IU X-ray text report
corpus. After extracting triples from text-report cor-
pus we construct hierarchical KG with chest as root
node and children represents its parts or associated
findings. More details about radiology KG con-
struction is given in paper (Kale et al., 2022). The
constructed KG is verified by two radiologists who
are involved in this research work. Figure 2 shows
the part of chestX-KG that we have constructed.



5.2 Training

Three different techniques are used to extract the
features from the frontal and lateral X-ray images:
i) Pretrained CheXNet model, ii) Pretrained Resnet-
152 model, and iii) Fine tuned Resnet-50 for multi-
label image classification on the NIH chest X-ray
dataset3 (Wang et al., 2017b).

We have trained the KGVL-BART model for
each of these image embeddings separately and
also provided quantitative results. To implement
the TransE model for KG embeddings, we use the
open-source OpenKE4 tool. The chestX-KG con-
tains 106 nodes and 126 triples.

5.3 Pretraining Setup

For model pretraining we use ConceptNet KG
(Speer et al., 2017) and common sense generation
dataset (Lin et al., 2020). For pretraining, we do
not use images. At the time of pretraining, we are
not adding image features to text features. We use
byte-pair encoding for tokenization, with a maxi-
mum length of 32 for the encoder and 64 for the
decoder. We set the learning rate to 0.00001 and
used AdamW with β1 = 0.9, β2 = 0.98 for opti-
mization. We set the batch size to 60. We trained
the KGVL-BART for 10 epochs, and the gradients
are accumulated every 6 steps. We apply dropout
with a probability of 0.1 to avoid over-fitting. While
inferencing, we use beam search with beam size 5
and a length penalty of factor 0.6.

5.4 Training Setup

We propose our own algorithm for KG-grounding
tasks. We construct grounded KGs for each report
tag set. We use pretrained weights to initialize the
KGVL-BART model. We train our model on the
IU Chest X-ray dataset.

We use byte-pair encoding for tokenization with
a maximum length of 300 for the encoder and 500
for the decoder. We set the learning rate to 0.00001
and used AdamW with β1 = 0.9, β2 = 0.98 for
optimization. We set the batch size to 18. We
trained the KGVL-BART for 15 epochs, and the
gradients are accumulated every 6 steps. We apply
dropout with a probability 0.1 to avoid over-fitting.
We use beam search with beam size 5 and length
penalty with factor 0.6 while inferencing. DGX
A100-SXM-80GB GPU server takes approximately

3https://www.kaggle.com/datasets/
nih-chest-xrays/data

4https://github.com/thunlp/OpenKE

15 minutes for a single epoch.

6 Evaluation

We evaluate our model by automatic metrics and
human evaluation as well. For automatic evaluation
we use word-overlap metrics. Manual evaluation is
performed by two radiologists.

6.1 Quantitative Evaluation

We compare the performance of KGVL-BART
model with previous state-of-the-art conditional
transformer text generation models, i) the CNN-
RNN model (Vinyals et al., 2015), ii) CDGPT2
for visual input only, text input only, and for both
visual and text inputs (Alfarghaly et al., 2021). Fol-
lowing other conventional generation tasks, we use
several widely-used automatic metrics to automat-
ically assess the performance, such as BLEU (Pa-
pineni et al., 2002), ROUGE (Lin, 2004) and ME-
TEOR (Banerjee and Lavie, 2005), which mainly
focus on measuring n-gram similarities. We have
evaluated other NLG metrics like BLEURT (Sel-
lam et al., 2020) and BERTScore (Zhang et al.,
2019). Table 2 shows the NLG metrics score of
generated X-ray reports by KGVL-BART and base-
line models vs. gold standard X-ray reports. Eval-
uation is done on a test dataset. We have added
ablation study, which shows that knowledge infu-
sion improves the report generation. Last row in
table 2 shows the results of our model by removing
KG augmented layer from it.

Even though the dataset is balanced with respect
to normal and abnormal reports, However, multiple
organ findings are included in a single report; if
at least one organ is found to be abnormal, the
report is classified as abnormal. Findings for the
other organs are normal, despite the fact that this
is classified as an abnormal report. As a result, our
model may be overly focused on widely reported
normal findings. Hence, we have added evaluation
metrics only to abnormal studies as well. Table 3
shows the NLG metrics for abnormal studies. For
evaluation, we consider abnormal studies from the
test set. Our results show that our model is capable
of generating better reports than SoTA models for
abnormal findings as well.

6.2 Qualitative Evaluation

This section provides qualitative analysis by a radi-
ologist having experience of thirty years. Access
to images and the ground-truth reports was given

https://www.kaggle.com/datasets/nih-chest-xrays/data
https://www.kaggle.com/datasets/nih-chest-xrays/data
https://github.com/thunlp/OpenKE


Method
Automatic Evaluation Metrics

Bleu-1 Bleu-2 Bleu-3 Bleu-4 Rouge-L Meteor chrF++ BLUERT BERTScore

CNN-RNN (Vinyals et al., 2015) 0.316 0.211 0.140 0.095 0.267 0.159 - - -
CDGPT2-vis-only (Alfarghaly et al., 2021) 0.340 0.209 0.138 0.091 0.281 0.153 - - -
CDGPT2-sem-only (Alfarghaly et al., 2021) 0.357 0.224 0.151 0.103 0.275 0.149 - - -
CDGPT2 (Alfarghaly et al., 2021) 0.387 0.245 0.166 0.111 0.289 0.164 0.370 0.460 0.888
CNN-TRG (Pino et al., 2021) 0.273 - - - 0.352 - - - -
KGVL-BART (CheXNet) 0.326 0.139 0.080 0.050 0.340 0.387 0.453 0.473 0.892
KGVL-BART (NIH-ResNet) 0.324 0.144 0.090 0.060 0.355 0.390 0.467 0.468 0.889
KGVL-BART (ResNet-152) 0.423 0.256 0.194 0.165 0.444 0.500 0.543 0.526 0.909
Our model (without KG layer/ResNet-152) 0.341 0.188 0.142 0.119 0.351 0.376 0.424 0.478 0.892

Table 2: Results on whole test set (abnormal + normal studies): BLEU, ROUGE and METEOR score of generated
X-ray reports by previous transformer-based models and our KGVL-BART models vs. gold standard X-ray reports.
The best results are in bold font, and the second best is underlined.

Method
Automatic Evaluation Metrics

Bleu-1 Bleu-2 Bleu-3 Bleu-4 Rouge-L Meteor

CDGPT2 (Alfarghaly et al., 2021) 0.273 0.090 0.034 0.013 0.267 0.316
KGVL-BART (CheXNet) 0.308 0.123 0.073 0.049 0.314 0.359
KGVL-BART (NIH-ResNet) 0.299 0.119 0.067 0.046 0.309 0.352
KGVL-BART (ResNet-152) 0.388 0.207 0.139 0.108 0.397 0.458

Table 3: Results on abnormal studies from test set: BLEU, ROUGE and METEOR score of generated X-ray reports
by previous transformer-based models and our KGVL-BART models vs. gold standard X-ray reports. The best
results are in bold font, and the second best is underlined.

to the radiologist to evaluate the automatically-
generated reports. The radiologist classified the
generated reports into accurate (report with most
of the vital information), missing details (reports
with no false information but missing some vital
details), and false predictions (report with false
information and overall incorrect diagnosis). We
have provided 200 random samples from the test
dataset and their corresponding generated reports
for qualitative analysis. Qualitative evaluation by
the radiologist shows that 73% of the reports gener-
ated were fully correct, only 5.5% are completely
wrong and 21.5% have important missing details
though overall correct. Further, these random sam-
ples were classified into normal and abnormal re-
ports. For normal studies 95.6% of the reports gen-
erated were fully correct, 4.40% have important
missing details though overall correct and 0% false
reports. For the abnormal cases, the model could
generate 54.13% of the reports correctly, 35.78%
missing details, and 10% had false reports. Table 4
contains the results of the qualitative analysis. The
reports classified as missing details by the radiol-
ogist also contain useful information that can be
used to speed up the report writing process. Overall
results are promising however, there is still a scope
for improvement. The results show that the model
is a bit biased towards normal cases, which is often

the case with medical datasets as it lacks neces-
sary details to describe the different irregularities
present in the image.

Method Samples Accurate Missing Details False

All(500) 73.00% 21.50% 05.50%
Ours Normal(183) 95.60% 04.40% 00.00%

Abnormal(317) 54.13% 35.78% 10.00%

All(500) 61.60% 28.20% 10.20%
CDGPT2 Normal(201) 99.00% 00.00% 01.00%

Abnormal(299) 36.50% 47.10% 16.40%

Table 4: Results of generated reports, manually evalu-
ated by radiologist. Manual evaluation is done on the IU
X-RAY dataset. Best results are shown in a bold face.

7 Summary, Conclusion and Future work

We introduce KGVL-BART a knowledge-enhanced
Vision Language model to generate X-ray reports
from chest X-ray images and tags. We develop
a knowledge graph called chestX-KG, which is
verified by two experienced radiologists. Overall
the reports generated are accurate. Our approach to
constructing grounded KGs is relatively noise-free
since it considers only entities in the hierarchical
path from tag set entities to the root node of the
knowledge graph and only adds neighbors with
"default" properties. Experimental results show
the efficacy of our method and its superiority over
SoTA.



       Normal

The lungs are clear. Heart size is normal. No 
pneumothorax, pleural effusion, or focal airspace 
disease. Bony structures appear intact.

The cardiomediastinal silhouette is within normal 
limits. No pneumothorax or pleural effusion. No acute 
bony abnormalities.

     Abnormal
Heart size is normal. There are densely 
calcified mediastinal and right hilar lymph 
xxxx which suggest prior histoplasmosis 
exposure. No consolidating airspace disease is 
seen within the lungs. No pleural effusion or 
pneumothorax. No convincing acute bony 
findings.

Lungs are clear bilaterally. Specifically, no evidence 
of focal consolidation, pneumothorax, or pleural 
effusion.. Calcified right hilar lymph xxxx noted. 
Cardio mediastinal silhouette is unremarkable. 
Visualized osseous structures of the thorax are 
without acute abnormality. Stable enlargement of the 
cardiac silhouette, consistent with calcification. 
Aortic calcifications noted. No acute bony 
abnormality identified.

       Normal

Lungs are clear bilaterally. There is no focal 
consolidation, Pleural effusion, or 
pneumothoraces. Cardiomediastinal silhouette is 
within normal limits. xxxx are unremarkable.

Normal heart size and mediastinal contours. No focal 
airspace consolidation. no pneumothorax or pleural 
effusion. No acute bony abnormalities.

     Abnormal
Heart size is normal. No pneumothorax or 
pleural effusions. There is an 8 mm calcified 
nodule in the left midlung. There is also a 7 
mm calcified nodule near the left hilum. 
Hyperexpanded lungs consistent with chronic 
obstructive pulmonary disease.

There are low lung volumes. the lungs are otherwise 
clear. There is a calcified left hilar lymph node and left 
midlung granuloma. No focal airspace consolidation to 
suggest pneumonia. No pleural effusion or 
pneumothorax. Normal heart size. No acute bony 
abnormality.

       Abnormal

Heart size is moderately enlarged. The 
mediastinum are within normal limits. there is 
no pleural effusion or pneumothorax. There is 
suspected right lower lobe airspace opacity 
demonstrated on the lateral study. There is a 
fracture of superior sternotomy unchanged.

There is stable eventration of the right hemidiaphragm. 
There is no focal lung consolidation. Heart size is 
within normal limits. No pneumothorax or pleural 
effusion. No acute bony abnormalities.

          Ground Truth                                                  Generated by KGVL-BART Model

Accurate

Missing 
Details

 False

Figure 3: Examples of ground truth and reports generated by KGVL-BART (ResNet-152). The first slot shows the
instance of accurate prediction by the KGVL-BART model for normal and abnormal cases. Abnormal findings
are highlighted in blue. The second slot shows the example of partially correct predictions by the KGVL-BART
model for normal and abnormal cases. Details that are present in ground truth but missing in the predicted report is
highlighted in red. The third slot shows the example of false predictions by the KGVL-BART model for abnormal
case. For normal case model does not generate false report.

Our future work consists in training our model
on the much larger MIMIC-CXR (Johnson et al.,
2019) dataset. We would also like to expand the
scope of our work to CT, MRI, etc.

Limitations

The IU Chest X-ray and the MIMIC-CXR datasets
are publicly available that links chest X-ray images
with text radiology reports. The IU Chest X-ray
dataset available for general use and the MIMIC-
CXR dataset has restricted access. Annotating med-
ical reports requires domain experts’ knowledge,
and it is costly. Medical data is likewise subject
to strict privacy regulations and is governed, for
example, by the Health Insurance Portability and
Accountability Act (HIPAA). Therefore, only a
small amount of data is accessible to the general
(research/corporate/industry) use.

There are many more sentences in this dataset

describing normalities than abnormalities. As a
result, most machine learning models are biased
to produce normal reports more frequently than
abnormal ones. Given the scarcity of examples,
abnormalities are more challenging to find.

Ethics Statement

IU Chest X-ray dataset’s authors used appropriate
techniques to de-identify the text reports. Data is
anonymized; hence our model will not disclose
information about the patient’s identity.
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