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Abstract

A noun compound is a sequence of contigu-
ous nouns that acts as a single noun, although
the predicate denoting the semantic relation be-
tween its components is dropped. Noun Com-
pound Interpretation is the task of uncover-
ing the relation, in the form of a preposition
or a free paraphrase. Prepositional paraphras-
ing refers to the use of preposition to explain
the semantic relation, whereas free paraphras-
ing refers to invoking an appropriate predi-
cate denoting the semantic relation. In this
paper, we propose an unsupervised methodol-
ogy for these two types of paraphrasing. We
use pre-trained contextualized language mod-
els to uncover the ‘missing’ words (preposition
or predicate). These language models are usu-
ally trained to uncover the missing word/words
in a given input sentence. Our approach uses
templates to prepare the input sequence for the
language model. The template uses a special
token to indicate the missing predicate. As the
model has already been pre-trained to uncover
a missing word (or a sequence of words), we
exploit it to predict missing words for the input
sequence.

Our experiments using four datasets show that
our unsupervised approach (a) performs com-
parably to supervised approaches for preposi-
tional paraphrasing, and (b) outperforms super-
vised approaches for free paraphrasing. Para-
phrasing (prepositional or free) using our un-
supervised approach is potentially helpful for
NLP tasks like machine translation and infor-
mation extraction.

1 Introduction

Noun compounds- contiguous sequences of nouns-
are common linguistic constructs. A compound is
called compositional if the meaning of the com-
pounds can be derived from the meaning of its
components. The component nouns are related

through a semantic relation that is constituents de-
pendent. For instance, ‘student protest’ and ‘univer-
sity protest’ are protests. However, the student(s)
are AGENT (doer of an event), whereas university
is LOCATION of the protest.

The task of identifying such relations between
the components of a noun compound is called noun
compound interpretation (NCI). Such interpreta-
tion can help a wide variety of NLP tasks, like
machine translation (Baldwin and Tanaka, 2004;
Paul et al., 2010; Balyan and Chatterjee, 2015),
question answering (Ahn et al., 2005), text entail-
ment (Nakov, 2013), and semantic parsing (Tratz,
2011). For instance, to translate the English noun
compound ‘cow milk’ to Hindi, a machine transla-
tion system needs to generate the postposition kA
(of ) in addition to translating the individual nouns.
The correct translation of the compound is ‘gāya ka
dūdha’ (lit. ‘cow -of milk’; ‘milk of cow’). Without
understanding the underlying relation, a machine
translation system might fail.

Interpretation via abstract labels (representing se-
mantic relations) is popular in the literature. Given
a noun compound, the task is to assign an abstract
label from a predefined set, e.g., ‘student protest’:
PROTESTER. Past work has proposed a wide va-
riety of inventories for semantic relations (Levi,
1978; Warren, 1978; Lauer, 1995; Nastase and Sz-
pakowicz, 2003; Ó Séaghdha, 2007; Rosario et al.,
2001; Barker and Szpakowicz, 1998; Vanderwende,
1994; Tratz and Hovy, 2010; Fares, 2016; Ponkiya
et al., 2018a); however, there is no community
agreed standard inventory.

Interpretation can be done via paraphrasing as
well. Here, one can use extract words (along with
component nouns) to paraphrase a noun compound,
e.g., ‘student protest’: ‘protest by student’, ‘protest
held by students’, etc. The paraphrase reveals the
underlying relation. A simpler version of para-
phrasing, also known as prepositional paraphras-
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ing, uses only a preposition to paraphrase a noun
compound. A set of 8 prepositions by Lauer (1995)
is widely used for prepositional paraphrasing, and
the task is to identify a preposition which can para-
phrase the given noun compound.

Another way of paraphrasing, also known as free
paraphrasing, allows any word(s) for paraphras-
ing. One can use multiple paraphrases to represent
the semantic relation collectively. This is a more
complex and challenging task.

In this paper, we show how contextualized lan-
guage models can be used for unsupervised para-
phrasing of noun compounds. Specifically, we pro-
pose two unsupervised approaches for paraphrasing
of noun compounds: one for prepositional para-
phrasing and another for free paraphrasing. We use
contextualized language models and feed template
to generate possible paraphrases. Our results show
that the proposed unsupervised approach gives re-
sults comparable to supervised systems for prepo-
sitional paraphrasing and outperforms supervised
approaches for free paraphrasing.

2 Related Work

2.1 Prepositional Paraphrasing

Lauer (1995) used 8 prepositions for paraphras-
ing: about, at, for, from, in, of, on and with. They
argue that the 8 prepositions are sufficient to para-
phrase any compound except two categories: cop-
ula and verb-external arguments. In some NLP
tasks, prepositions are sufficient to convey the
meaning. For instance, Paul et al. (2010) proposed
a system that first uncovers a preposition from the
English noun compound before translating it to
Hindi.

The problem tackled was to classify a given noun
compound into one of these prepositions such that
the assigned preposition can paraphrase that com-
pound. For example, a baby chair is a chair for a
baby, and reactor waste is waste from a reactor.

Lauer’s approach is attractive and simple. It
yields prepositions representing paraphrases di-
rectly usable in NLP applications. However, it is
also problematic, since mapping prepositions with
constituent nouns as inputs to abstract relations
is hard, e.g., in, on, and at, all can refer to both
LOCATION and TIME.

Lauer (1995) and Lapata and Keller (2004) gave
unsupervised approaches to prepositional para-
phrasing of noun compounds. Both approaches
used frequencies of patterns in a large corpus of

the Web. Girju (2007) trained various classifiers
for the task and observed that SVM performs the
best.

Recently, Ponkiya et al. (2018b) have proposed
an LSTM-based system which encodes nouns com-
pounds and their candidate prepositional para-
phrases such that encoding of a noun compound
is the most similar to the encoding of its correct
prepositional paraphrase. The system was trained
in two steps: (1) distant supervision: prepared a
large dataset by annotating noun compounds auto-
matically, and trained the system on the dataset; (2)
the distant supervision system was further trained
on manually annotated data. The authors evaluated
both systems. We use these systems as our baseline
to compare the performance of our approach.

The general idea of probing the seman-
tic/commonsense knowledge residing in language
models has been recently explored by Petroni et al.
(2019) and Bouraoui et al. (2020). Both the ap-
proaches use different templates for different rela-
tions, whereas we use a single pattern for a classi-
fier. Bouraoui et al. (2020) propose a supervised
approach. They use masking-objective to find tem-
plates, and train a classifier for each relation. On
the other hand, our approach is entirely unsuper-
vised.

2.2 Free Paraphrasing

Nakov (2008) argue that noun compounds are best
characterized by the set of all possible paraphras-
ing verbs that can connect the target nouns, with
associated weights, e.g., malaria mosquito can be
represented as follows: carry (23), spread (16),
cause (12), transmit (9), etc. The numbers in the
parentheses indicate the number of human annota-
tors who proposed the respective verb. These verbs
are directly usable as paraphrases, and using mul-
tiple of them simultaneously yields an appealing
fine-grained semantic representation.

The authors of the present paper collected multi-
ple possible paraphrases for noun compounds us-
ing crowd-sourcing. They used human subjects
(recruited through Amazon Mechanical Turk Web
Service) to get paraphrasing verbs. For a noun
compound 〈noun1 noun2〉, they asked the partici-
pants to propose at least three paraphrasing verbs
(optionally followed by a preposition) as shown
below:

“noun1 noun2” is a “noun2 that . . . noun1”

An example (as shown in 1) was also provided for
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the participants’ reference.

(1) The compound neck vein can be para-
phrased as follows:

‘a vein that nourishes the neck’
‘a vein that runs along the neck’
‘a vein that comes from the neck’
‘a vein that enters the neck’
‘a vein that emerges from the neck’
etc.

Following Nakov (2008)’s footsteps, Task-9 of
SemEval-2010 (Hendrickx et al., 2009) proposed
the following simple problem:

Given a noun compound and a list of paraphras-
ing verbs, (a participating system needs to) pro-
duce aptness scores that correlate well (in terms
of relative ranking) with the held out human
judgments.

For the task, the training dataset contains 250
noun-noun compounds, and at least 50 AMT work-
ers provided paraphrases for each compound. The
test dataset consisted of 388 noun compounds, and
at least 57 workers provided paraphrases for each
compound.

For official evaluation in the shared task, Spear-
man rank correlation (ρ) was used to evaluate rel-
ative ordering. Additionally, Pearson correlation
(r) and cosine similarity were also used to check
correlation strength between scores provided by a
participating system and human scores.

SemEval-2013 Task-4 (Hendrickx et al., 2013)1

proposed the following task (free paraphrases of
noun compounds):

Task: Given a noun-noun compound, such as
air filter, (the participating systems are asked
to) produce an explicitly ranked list of free para-
phrases, as in the following example:

1 ‘filter for air’
2 ‘filter of air’
3 ‘filter that cleans the air’
4 ‘filter which makes air healthier’
5 ‘a filter that removes impurities from the air’
. . .

The task is different from the SemEval-2010
Task-9 in mainly three ways: (a) the restriction on
the paraphrases was relaxed, (b) instead of ranking,
a participating system needs to generate and rank

1https://www.cs.york.ac.uk/
semeval-2013/task4

the paraphrases, and (c) the task performed by a
participating system is the same as that of human
annotators. Compared with the dataset for the pre-
vious task, the dataset for this new task have a far
greater range of variety and richness.

Human annotators were recruited through AMT
(Amazon Mechanical Turk) to prepare a dataset for
the task. The annotators were asked to provide free
paraphrases for each noun compound. Identical
paraphrases were merged to compute their frequen-
cies, and sorted by their frequencies. The training
set contains 174 noun-noun compounds with 4,255
unique paraphrases (24.5 paraphrases on average).
The test set includes 181 noun-noun compounds
with 8,216 unique paraphrases (45.4 paraphrases
on average).

For evaluation, the predicted paraphrases for a
test example were ranked, and then the overall
scores were computed by matching predicated para-
phrase with the reference paraphrases. The match-
ing was done in two ways: based on whether mul-
tiple generated paraphrases can be matched with
a reference paraphrase or not. A simple baseline
for the task used a fixed set of prepositional para-
phrases in a fixed order. None of the four proposed
systems (submitted by three teams) beat the base-
line in both evaluation techniques.

All three participating systems (Van de Cruys
et al., 2013; Surtani et al., 2013; Versley, 2013)
were supervised. Van de Cruys et al. (2013) used a
distributional model to extract word features, which
were then used to train a maximum-entropy clas-
sifier. The classifier predicted a probability distri-
bution over a set of paraphrases. A threshold was
used to decide whether the paraphrases should be
included in the final output or not. A higher thresh-
old value resulted in fewer paraphrases, where a
lower threshold value generated more paraphrases.
It was observed that using only features of the head
noun (the second word in a compound) performs
better than when using feature vectors of both com-
ponent nouns.

Surtani et al. (2013) used a corpus-based co-
occurrence probability in predicting paraphrases.
The prepositional paraphrases are quite frequent
and well covered. To handle sparsity, they used
prepositional paraphrase to predict a semantic rela-
tion, and then, selected verbs that mostly co-occur
with that relation.

Versley (2013) retrieved mutually more similar
compounds from training data, extracted templates

https://www.cs.york.ac.uk/semeval-2013/task4
https://www.cs.york.ac.uk/semeval-2013/task4
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and fillers from paraphrases of the similar com-
pounds. The templates were weighted by its fre-
quency and similarity its deriving noun compound
with test noun compound. The final generated para-
phrases were ranked using a language model and
MaxEnt model.

Recently, Shwartz and Dagan (2018) proposed a
semi-supervised method by formulating paraphras-
ing as a multi-task learning objective. The authors
first generated 250 most likely paraphrases using a
neural model, and then re-ranked the paraphrases
using an SVM.

3 Background

With the introduction of the Transformer networks
(Vaswani et al., 2017), pre-trained language mod-
els have become a key component in advancing the
state-of-the-art for many NLP tasks. BERT (De-
vlin et al., 2019), a transformer-based encoder, has
advanced the state-of-the-art for various NLP tasks.
For pre-training, BERT uses two self-supervised
objectives: next sentence prediction (NSP), and
masked language model (MLM). For NSP, BERT
is trained to predict whether the second text seg-
ment follows the first text segment. This is hy-
pothesized to improve BERT’s understanding of
the relationship between two text sentences. For
MLM, given the input token sequence, a portion of
tokens are replaced by a special symbol [MASK],
and the model is trained to recover the original
tokens from the corrupted version. This allows
representations to be conditioned on the left and
right context. Note that BERT predicts plausible
words for each [MASK] token independently. The
success of BERT inspired many variants such as
training on domain/application specific corpus (Lee
et al., 2020; Beltagy et al., 2019; Huang et al., 2019;
Alsentzer et al., 2019; Adhikari et al., 2019; Lee
and Hsiang, 2019), training on monolingual cor-
pora (Pires et al., 2019), incorporating knowledge
graph in the input (Zhang et al., 2019), etc.

BERT requires a task-specific output layer. So,
one needs to modify BERT’s architecture to adapt
it for a new task. Recent text-to-text models, such
as T5 (Raffel et al., 2019) and BART (Lewis et al.,
2019), use encoder-decoder architectures which
share output layer for all tasks effectively eliminat-
ing the requirement to modify architecture for a
new task. These models convert all NLP problems
into a text-to-text format, i.e., input and output for
any NLP task (including classification task) are

sequences. A text-to-text model can generate a
variable length span for a single masked token be-
cause of encoder-decoder architecture. We use the
T5 model to generate free paraphrases for noun
compounds.

4 Our Approach

Our approach benefits from the MLM objective of
contextualized language models. We use templates
to rephrase a noun compound. The template uses a
mask-token2 to indicate the missing word(s). We
feed the phrase to a pre-trained model and ask it
to predict the missing word(s), which can replace
the mask-token. We use BERT and RoBERTa to
uncover a single word and T5 to uncover variable-
length sequences. We use the Transformers library
(Wolf et al., 2019, v2.8)3 for the experiments.

4.1 Prepositional Paraphrasing

For prepositional paraphrasing, we need to predict
the preposition inside the noun compound. We
use BERT (and RoBERTa) to uncover the missing
preposition. We use a template-based approach
to prepare input for BERT. The template uses
[MASK] token in place of the preposition. The
following example illustrates the procedure:

1. Input: apple juice

2. Template: w1 w2 ⇒ w2 [MASK] w1

apple juice⇒ “juice [MASK] apple”

3. BERT input: “juice [MASK] apple”
BERT predicts the missing word along with
the model confidence for that word from the
vocabulary.

word score
of 19.61 %
from 1.41 %
and 1.01 %
with 0.66 %
for 0.60 %
on 0.59 %

. . .

4. We select a preposition with the highest score
as the correct preposition.

‘apple juice’→ of

BERT assigns a score for each vocabulary word.
The score indicates the likelihood of the word to

2Different models represent the mask token differently,
like [MASK], <MASK>, MASK 1 , <extra id 0>, etc.

3https://huggingface.co/transformers

https://huggingface.co/transformers
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replace [MASK] token. We use scores of the 8
prepositions of our interest, and predict a preposi-
tion with the highest score as the correct preposi-
tion.

We use three patterns as templates. Table 1
shows the patterns with their realizations as BERT
input. Pattern 1 is obtained from Ponkiya et al.
(2018b), where the input to paraphrase encoder is
similar and does not use articles. Pattern 2 pro-
vides context to Pattern 1. So, if BERT captures
the semantics of a noun compound, it should help
preposition uncovering. Pattern 3: Without the use
of articles, we found that w1 and/or w2 was treated
as verbs in some cases. For instance, for “student
protest is protest student”, a model predicted

‘##ing’ as a top choice. Adding articles in the pat-
tern provides the clue that w1 and w2 should be
considered as nouns.

We observed that ‘a’/‘an’ in input to BERT does
not make much difference. This is because the
MLM (masked language model) has been trained
in such a way. During masking of tokens, after
selecting 15% token randomly, MLM (a) replaces
80% of the chosen tokens with [MASK] token, (b)
replaces 10% of chosen tokens in input sequence
with a random token, and (c) and keeps 10% of
chosen as it is.

4.2 Free Paraphrasing

For free paraphrasing of a noun compound, we
need to generate multiple paraphrases and rank
them. The paraphrases are of arbitrary lengths.
Therefore, we need to generate an arbitrary number
of words for each noun compound. We cannot use
BERT based simple approach for free paraphrases.
We use T5 model to generate such paraphrases.

We use a template to prepare input for T5. The
template uses <extra id 0> token (mask token in
T5) to indicate a blank to be filled by T5. T5 pre-
dicts plausible k (a hyperparameter) sequences for
the blank. The following example illustrates the
procedure:

1. Input: club house

2. Template: w1 w2 ⇒ “A w1 w2 is a w2

<extra id 0> the w1. </s>”
club house ⇒ “A club house is a house
<extra id 0> the club. </s>”

3. T5 input: “A club house is a house
<extra id 0> the club. </s>”
T5 generated the following sequences (for

k = 10):
“<extra id 0> for <extra id 1>. A”
“<extra id 0> of <extra id 1> . A”
“<extra id 0> for <extra id 1>. <extra id 2>”
“<extra id 0> for <extra id 1> house .”
“<extra id 0> owned by <extra id 1> .”
“<extra id 0> of <extra id 1> . <extra id 2>”
“<extra id 0> owned by <extra id 1> house”
“<extra id 0> that belongs to <extra id 1>”
“<extra id 0> of <extra id 1> house.”
“<extra id 0> in <extra id 1> . A”

4. For each generated sequence, extract words
between <extra id 0> and <extra id 1>,
and use them to generate a candidate para-
phrase for the given noun compound.

“house for a club”
“house of a club”
“house for a club”
“house for a club”
“house owned by a club”
“house of a club”
“house owned by a club”
“house that belongs to a club”
“house of a club”
“house in a club”

5. Grouping similar paraphrases, and ranking
them based on the frequencies, we get
(rank:paraphrase):

1 “house of a club”
1 “house for a club”
2 “house owned by a club”
3 “house that belongs to a club”
3 “house in a club”

As most paraphrases require up to 4 extra words,
we set a maximum length for T5 output (step 3 in
the above example) to 6. We assign the same rank
to paraphrases with similar frequencies.

5 Experiments

In this section, we discuss the datasets, evaluation
metrics used in our experiments.

5.1 Datasets
For Prepositional paraphrasing, Lauer (1995),
Girju et al. (2005) and Ponkiya et al. (2018b) have
reported preposition annotated noun compound
datasets.4 Noun compounds in these datasets have
been annotated with Levi’s eight prepositions.

Lauer (1995)’s dataset is very small (282 exam-
ples). Girju et al. (2005)’s dataset is not available

4The datasets: http://www.cfilt.iitb.ac.in/
nc-dataset

http://www.cfilt.iitb.ac.in/nc-dataset
http://www.cfilt.iitb.ac.in/nc-dataset
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Pattern BERT Input

1. w2 w1 [CLS] w2 [MASK] w1 [SEP]
2. w1 w2 means w2 w1 [CLS] w1 w2 means w2 [MASK] w1 [SEP]
3. a w1 w2 is a w2 the w1 [CLS] a w1 w2 is a w2 [MASK] the w1 [SEP]

Table 1: Patterns and their realizations for preposition uncovering. (〈w1 w2〉 is a noun compound)
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Lauer (1995)
Girju (2007)
Ponkiya et al. (2018b)

Figure 1: Noun compound distribution (per preposi-
tion) in three datasets for prepositional paraphrasing.

in the public domain, but Ponkiya et al. (2018b)
have created a dataset (805 examples) from the
cross-lingual dataset of Girju (2007). The dataset is
highly skewed – 85% examples covered by a single
preposition of. Ponkiya et al. (2018b) also anno-
tated noun compounds (919 examples) from Kim
and Baldwin (2013)’s dataset with prepositions.
Figure 1 shows distributions of prepositions for the
above-mentioned three datasets. Please note that
each noun compound in the above three datasets
has been annotated with a single preposition.

For each dataset, Ponkiya et al. (2018b) used
25% of examples for testing. We used the same
test splits to test our system. So, our results are
directly comparable.

For free paraphrasing, we use SemEval-2013
Task-4 dataset.5 The dataset contains train and test
sets. The dataset provides a list of paraphrases for
each noun compound. The paraphrases are ranked
in order of preference. Table 2 shows the statistics
of the dataset.

Figure 2 shows the histogram for the number
of paraphrases per noun compound. The number
of paraphrases for most noun compounds in the
training set ranges from 15 to 35. The same for
the test goes from 35 to 60. So, we expect higher
precision for the test set (as a generate paraphrase

5Dataset available at https://www.cs.york.ac.
uk/semeval-2013/task4/index.php%3Fid=
data.html

Total Min / Max / Avg

Trial/Train (174 NCs)
Paraphrases 6,069 1 / 287 / 34.9
Unique Paraphrases 4,255 1 / 105 / 24.5

Test (181 NCs)
Paraphrases 9,706 24 / 99 / 53.6
Unique Paraphrases 8,216 21 / 80 / 45.4

Table 2: Statistics of the trial and test sets from
SemEval-2013 Task-4 dataset. (Total: number of para-
phrases provided by human annotators with and with-
out duplicates; Min / Max / Avg: the minimum / max-
imum / average number of paraphrases per noun com-
pound.)
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Figure 2: Distribution of paraphrase count in train and
test part of SemEval-2013 Task-4 datasets.

would highly likely match with a reference para-
phrase) and higher recall on the training set (as a
system need not generate verity of paraphrases).

5.2 Evaluation metrics

5.2.1 Prepositional Paraphrasing

The recent work by Ponkiya et al. (2018b) have
reported weighted precision, recall and f-score for
their experiments. So, we use the same metrics to
evaluate our systems. These values are weighted
values in proportion to the number of test-examples
for each preposition.

https://www.cs.york.ac.uk/semeval-2013/task4/index.php%3Fid=data.html
https://www.cs.york.ac.uk/semeval-2013/task4/index.php%3Fid=data.html
https://www.cs.york.ac.uk/semeval-2013/task4/index.php%3Fid=data.html
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Dataset → Lauer (1995) Girju (2007) Ponkiya et al. (2018b)
Approach ↓ P R F P R F P R F
Distance supervision (Ponkiya et al., 2018b)
NC-FFN 40.85 38.03 31.15 74.72 80.69 77.52 63.00 66.96 63.97
NC-LSTM 50.84 45.07 40.66 76.86 74.26 75.50 62.32 65.65 63.09

Distance supervision + supervised fine-tuning (Ponkiya et al., 2018b)
NC-FFN 43.97 40.85 40.09 74.20 86.14 79.72 64.91 67.39 64.40
NC-LSTM 48.72 46.48 46.21 84.74 88.61 85.13 73.50 72.17 71.27
BERT-base
Pattern-1 71.80 53.52 48.95 87.38 80.69 83.80 69.30 70.00 68.60
Pattern-2 55.92 46.47 41.26 86.25 81.18 83.16 73.01 72.60 70.69
Pattern-3 41.47 43.66 36.14 88.73 74.25 79.86 66.59 66.95 66.15

BERT-large
Pattern-1 64.85 52.11 46.62 86.39 77.22 81.47 67.86 66.52 65.19
Pattern-2 61.41 47.88 42.44 83.68 78.71 80.79 68.16 67.82 65.40
Pattern-3 51.32 45.07 35.91 86.01 75.74 80.02 67.74 65.65 65.59
RoBERTa-base
Pattern-1 50.82 38.02 26.74 79.28 77.22 78.15 45.89 53.47 46.94
Pattern-2 55.57 52.11 47.95 83.11 57.92 66.99 65.39 63.04 63.47
Pattern-3 43.30 47.88 41.51 83.83 67.32 74.26 64.48 63.04 63.48

RoBERTa-large
Pattern-1 50.78 33.80 25.79 79.33 69.30 73.96 53.72 56.08 51.94
Pattern-2 51.78 47.88 43.28 87.02 72.27 78.58 72.98 72.60 72.21
Pattern-3 56.06 56.33 51.74 88.30 72.77 79.12 68.36 67.39 67.32

Table 3: Prepositional Paraphrasing: Comparison of performance of our system (BERT and RoBERTa) with LSTM-
based (NC-LSTM) and feed-forward neural network based (NC-FNN) systems on different datasets (P: Precision;
R: Recall, F: F-score)

5.2.2 Free Paraphrasing

For a test noun compound, a system needs to gener-
ate a list of paraphrases in order of preference. The
task uses two ways to match paraphrases: isomor-
phic matching and non-isomorphic matching.6

Isomorphic scoring maps each system gener-
ated paraphrase (in order of given preference) to an
(unmapped) reference paraphrase one by one each.
The system’s paraphrases are matched 1-to-1 with
reference paraphrases on a first-come first-matched
basis, so ordering can be crucial. The final score
is the sum of all system paraphrases, normalized
with the maximum score for the reference list.

The isomorphic scoring mechanism requires a
system to produce the full set of paraphrases. It
rewards a system for accurately reproducing the
paraphrases suggested by human judges, reproduc-
ing as many of these as possible, and in much the
same order. So, it rewards both precision and recall.
Isomorphic scoring was used as an official score by
SemEval-2013 Task-4 for ranking of participating
system.

Non-isomorphic scoring scores each system
paraphrase with respect to the best match from the

6We use an evaluation script (scorer) provided by the task.

reference dataset, and averages these scores over-
all system paraphrases. Non-isomorphic matching
rewards only precision. More than one system gen-
erated paraphrases are allowed to match with a ref-
erence paraphrase. So, the ordering of a system’s
paraphrases is not important.

Non-isomorphic scoring rewards a system for
accurately reproducing the top-ranked reference
paraphrases. A system generating only one top-
ranked reference paraphrase will achieve a perfect
non-isomorphic score.

6 Results and Analysis

6.1 Prepositional Paraphrasing
We use BERT and RoBERTa to uncover the prepo-
sition. We compare the performance of our system
with two systems used by Ponkiya et al. (2018b):
(a) feed-forward neural-network (hereafter NC-
FFN), and (b) LSTM-based sequence encoders
(hereafter NC-LSTM).

Table 3 shows that NC-RoBERTa (our system
with RoBERTa model) outperforms supervised NC-
FFN and NC-LSTM on two datasets. For the third
dataset, NC-BERT (our system with BERT model)
outperforms non-tuned (only distant supervision)
models and fine-tuned NC-FFN. However, our un-
supervised approach slightly under-performs com-
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pared to the fine-tuned NC-LSTM (supervised).
For NC-BERT, the precision score is higher than

the respective recall score. For NC-RoBERTa, pre-
cision and recall scores are mostly similar. We also
tried combining scores from different models (base
and large models) and different patterns. Overall
results were similar. We have not observed im-
provement compared to the three patterns. So, we
did not include them in this paper.

We expected Pattern-2 and Pattern-3 to perform
better than Pattern-1 Pattern-2, respectively, as they
provide more context (§4.1). The performance of
NC-RoBERTa is as expected on all three datasets.
However, we see a reverse trend for NC-BERT.

We analyzed the performance of the patterns
on Ponkiya et al. (2018b)’s dataset using BERT-
base and RoBERTa-large models. The dataset was
prepared by annotating noun compounds from Kim
and Baldwin (2005)’s dataset with prepositions.
For every example, we have a semantic relation
from Kim and Baldwin (2005) and a preposition
from Ponkiya et al. (2018b).

We observe that the major reason behind pattern-
3 underperforming compared to pattern-2 is: the
correct preposition of predicted by pattern-2, but
pattern-3 predicted for. Some examples are (using
BASE-base model):

• PURPOSE relation: approval process,
takeover plan, merger agreement, and release
term.
• PRODUCT relation: petroleum refinery, and

gas industry.
• SOURCE relation: pulp price, and government

plan.

Out of 230 test samples, 22 are of such kind
(pattern-2 correctly predicted of ; pattern-3 pre-
dicted: for) for BASE-base. This degrades the
precision of for (from 75.86 for pattern-2 to 57.14
for pattern-3) and recall of of (from 92.97 to 71.09).
We have observed similar case with RoBERTa-
large model.

This observation is in line with preposition-
vs-relation mapping observed by Ponkiya et al.
(2018b, see Table 2).

6.2 Free Paraphrasing

T5 comes in five versions: small, base, large, 3B,
and 11B with 60 million, 220 million, 770million,
3 billion, and 11 billion parameters, respectively.
We have experimented with small, base and large
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Figure 3: Performance of T5-based system for different
value of k (number of paraphrases to generate) on train
and test sets of SemEval-2013 Task-9 dataset.

T5 models. However, the small model performed
better. So, we report results for the small version
of T5 model.

To understand the impact of the number of gen-
erated paraphrases over scores, we evaluate our
system by generating a varying number of para-
phrases (k). When a system generates a smaller set
of paraphrases, the generated paraphrases match
with highly ranked in the reference, resulting in a
higher non-isomorphic score. However, a smaller
set might not cover all reference paraphrases. So,
the isomorphic score takes hit. With the increase
in the number of generated paraphrases, more para-
phrases from the reference list were matched, hence
isomorphic score increases. However, newly gener-
ated paraphrases were matched with high-ranking
reference paraphrase, resulting in a decrease in non-
isomorphic score.

The average number of paraphrases (per com-
pound) is lower in the train set than in the test set.
So, as explained earlier (§5.2.2, ref. Figure 2), the
non-isomorphic score is higher for the test set, and
the isomorphic score is higher for the training set.

We compare the performance of our T5-based
system (hereafter NC-T5) with previously reported
results (ref. Table 4). For a smaller value of k
(number of sequences generated by T5), generated
paraphrases mostly matched top-ranked reference
paraphrases, resulting in a higher non-isomorphic
score. With an increase in k, the system gener-
ated diverse paraphrases, helps isomorphic score.
For k = 80 to 100, our system beats the recently
reported results (by Shwartz and Dagan (2018)).
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Method isom. n-isom.

SFS (Versley, 2013) 23.1 17.9
IIITH (Surtani et al., 2013) 23.1 25.8
MELODI (Van de Cruys et al., 2013) 13.0 54.8
SemEval 2013 Baseline 13.8 40.6
Shwartz and Dagan (2018) 28.2 28.4
Our system (T5-base model)
k = 1 2.87 80.14
k = 2 4.11 76.59
k = 3 5.39 72.87
k = 4 6.20 68.77

...
k = 80 28.47 30.47
k = 85 28.74 30.12
k = 90 29.24 29.81
k = 95 29.46 29.53
k = 100 29.68 29.24

Table 4: Results of the proposed method and the base-
lines on the SemEval-2013 Task-4. (isom: isomorphic
score, n-isom: non-isomorphic score)

NC-T5 generates quite a good quality set of para-
phrases. However, the reference list does not have
matching paraphrases. For example, Example 2
lists some of the system-generated paraphrases for

“pay policy”. All examples, marked with dagger-
sign (†), have a partial matching (score ≤ 25%),
while the rest of the listed paraphrases do not have
a match.

(2) “policy on pay” †

“policy defines pay”
“policy covering pay”
“policy governing pay”
“policy covers pay”
“policy deals with pay”
“policy describes pay”
“policy involving pay”
“policy designed to protect pay” †

“policy designed to cover pay” †

“policy designed for pay” †

“policy applicable to pay” †

“policy to protect pay” †

“policy used to cover pay” †

“policy used to pay pay” †

“policy used to protect pay” †

“policy focuses on pay” †

The dataset has many reference paraphrases
where new words appear at the beginning (e.g.,
‘pay policy’ → “corporate policy on pay”) or at
the end of a paraphrase (e.g., ‘operating system’→

“system controls operating of computer”). However,
our system allows extra words only between the
component nouns.

7 Conclusion and Future Work

A noun compound can be paraphrased using the
components nouns along with the predicate. The
predicate indicates the semantic relation between
the component nouns. We use a simple pattern
for generating the predicate using a fixed pattern,
i.e., w1 w2 → ‘w2 <extra-words> w1’. One
can exploit recent pre-trained language models to
uncover the connecting extra-words for paraphras-
ing. These language models have been trained
with one of the training objective being uncovering
the missing words. In this paper, we propose an
approach that performs noun compound paraphras-
ing by using these pre-trained models to uncover
the missing extra words. Our approach uses these
pre-trained models as is without any task-specific
training or fine-tuning. Our approach is tested for
both prepositional paraphrasing and free paraphras-
ing of noun compounds on various datasets. With
simple patterns, our approach gives results closer
to supervised systems for prepositional paraphras-
ing and outperforms supervised systems for free
paraphrasing.

In the future, we will investigate whether fine-
tuning the language models would lead to better
paraphrasing. We will also study the setting where
context is crucial for correct paraphrasing. We be-
lieve that given this approach is language-agnostic,
it should work for other languages too. So we will
also verify this belief holds for other languages.
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Padó, Marco Pennacchiotti, Lorenza Romano, and
Stan Szpakowicz. 2009. SemEval-2010 task 8. In
Proceedings of the Workshop on Semantic Evalua-
tions: Recent Achievements and Future Directions
- DEW ’09, pages 94–99. Association for Computa-
tional Linguistics.

Iris Hendrickx, Preslav Nakov, Stan Szpakowicz, Zor-
nitsa Kozareva, Diarmuid O Séaghdha, and Tony
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