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Abstract

We introduce a Bayesian model, BayesANIL,
that is capable of estimating uncertainties as-
sociated with the labeling process. Given a
labeled or partially labeled training corpus
of text documents, the model estimates the
joint distribution of training documents and
class labels by using a generalization of the
Expectation Maximization algorithm. The
estimates can be used in standard classifi-
cation models to reduce error rates. Since
uncertainties in the labeling are taken into
account, the model provides an elegant mech-
anism to deal with noisy labels. We provide
an intuitive modification to the EM iterations
by re-estimating the empirical distribution in
order to reinforce feature values in unlabeled
data and to reduce the influence of noisily la-
beled examples. Considerable improvement
in the classification accuracies of two popu-
lar classification algorithms on standard la-
beled data-sets with and without artificially
introduced noise, as well as in the presence
and absence of unlabeled data, indicates that
this may be a promising method to reduce the
burden of manual labeling.

1. Introduction

Text classification has been studied extensively for
information retrieval and other knowledge manage-
ment applications. Some commonly used supervised
techniques in the literature for text classification are
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näıve Bayes (Lewis, 1998; McCallum & Nigam, 1998),
support vector machines (Joachims, 1998), k-nearest
neighbor (Yang, 1999) and maximum entropy (Nigam
et al., 1999).

The task of text classification is hampered by the lack
of large amounts of correctly-labeled examples. The
generation of training data is typically achieved by
manual assignment of class labels to documents by
experts. Manual annotations inherently exhibit a cer-
tain level of approximation or uncertainty. When faced
with the challenge of selecting a class label from a set
of similar or confusing class labels for a document, the
expert often chooses a class label that seems the most
plausible. It is desirable that a supervised learning
algorithm accounts for the approximation involved in
manual labeling by using an estimate of the uncer-
tainty with which a document was labeled.

The tedious and uncertain nature of manual labeling
further aggravates the requirement for large amounts
of labeled data by classifiers in order to generalize
well. This has resulted in considerable amount of re-
search on methods that learn with a very small num-
ber of labeled instances along with large amounts of
unlabeled data (Nigam et al., 2000; Ando & Zhang,
2004). An important issue to be addressed while de-
signing learning algorithms that generalize from a very
small number of labeled examples is how to account
for features that are poorly represented in the la-
beled training examples but are prominent in the unla-
beled examples. Probabilistic latent semantic indexing
(Hofmann, 1999) performs unsupervised smoothing of
words, based on their co-occurrence under common
aspects or concepts. It is however tailored to informa-
tion retrieval task and seems less appropriate for text
classification. Feature smoothing techniques such as
Laplace, Lidstone and Jeffrey-Perks smoothing (Grif-
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fiths & Tenenbaum, 2001) take away some probabil-
ity mass from seen features and distribute this mass
amongst unseen features. However, these methods do
not account for the empirical distribution of features
in unlabeled documents.

In many scenarios, it is easy to generate a labeled
dataset with some amount of noise in the labeling. For
instance, this can be achieved by querying the Web or
some document collection. A practical text learning
algorithm needs to be resilient to such noisy labeling.
Recently, Lee and Liu (2003) modeled the problem of
learning from a mixture of positive and unlabeled ex-
amples as a two-class learning problem with noisy neg-
ative examples. They use weighted logistic regression
along with an estimate for the proportion of noise, to
learn the separation of positive and negative classes.
In practice, the proportion of noise in the labeled col-
lection can be approximated by the proportion of noise
in a random sample from the collection.

Brodley and Friedl (1996) and Domingos (1999) have
proposed methods of wrapping a filter or a meta-
learner around a standard classifier. The former uses
the filter to make the native classifier immune to mis-
labeled training instances by iteratively removing the
training instances that can be potentially misclassified
under many models. However, this method cannot
counter the issues arising from the ambiguous labeling
of training documents. The latter meta-learner makes
the learning algorithm cost-sensitive when applied to
data-sets with imbalanced classes.

In this paper, we present BayesANIL, a Bayes
Network-based model that is capable of dealing with
approximate, noisy or incomplete labeling of text doc-
uments. BayesANIL imposes a multinomial näıve
Bayes model on the documents and learns a joint prob-
ability distribution, Pr(d, z), between document ids d
and the class labels z. Pr(d, z) indicates how well each
document d fits into the class z, thus effectively provid-
ing a way of relabeling the documents. This is because
Pr(d) is an estimate of how correctly the document
was labeled. We show in the later sections that these
probabilities can be used by standard classifier learn-
ers such as näıve Bayes and SVM to learn more accu-
rate classifiers. Given an estimate of the proportion of
noise, our model can counter the occurrence of class
noise (Brodley & Friedl, 1996). We also show that
our model can be used in a labeled/unlabeled setting.
In this setting, we illustrate how BayesANIL folds in
feature evidence from unlabeled documents, while si-
multaneously labeling the unlabeled documents. This
is especially important, given that the features are of-
ten poorly represented in the labeled set.

The layout of the rest of the paper is as follows.
In Section 2, we describe the role of BayesANIL in
a classification setting. Section 3 describes in de-
tails the BayesANIL model and associated algorithms
for parameter estimation. Section 4 suggests how
BayesANIL could be used in conjunction with existing
classification algorithms. We finally present experi-
mental results in Section 5 and our conclusions and
future work in Section 6.

2. A Model for Learning

2.1. Notation

We consider input space D of documents. D is a ran-
dom variable that takes on values d in the set D. We
let Z denote the space of class labels and let Z denote
a random variable that takes on values z from Z. The
document collection consists of a set of labeled doc-
uments represented by 〈d, z〉 and a set of unlabeled
documents. In our setting, we use this document col-
lection with noisy or incomplete labels to train stan-
dard classifiers. Each document is composed of words
that belong to a vocabulary space W. W is a random
variable which takes on values w from the vocabulary
W. We have used lower-case alphabets, d, w and z
as indices into the document collection D, vocabulary
set W and set of class labels Z respectively. For e.g.,
Pr(w, d′, z) denotes the joint probability of the word
indexed by w, the document with id d′ and the class
label indexed by z.

2.2. Role of BayesANIL

We propose BayesANIL as an intermediary between
the document collection and the classifier learning al-
gorithm. BayesANIL interacts with the collection re-
questing for instances 〈d, z〉. BayesANIL uses these
instances to learn the distribution Pr(d, z) ∀{d, z} ∈
D × Z. In practice, the class labels associated with
the documents may be approximate or even noisy.
BayesANIL accounts for approximate and noisy label-
ing by estimating the degree to which the document
d belongs to the associated class label z. In addition
to learning from labeled instances from D, BayesANIL
is also capable of learning from a collection of labeled
and unlabeled documents from D.

Once BayesANIL completes the estimation of param-
eter, the classifier learner gets tuples of 〈d, z〉 from
the document collection and requests BayesANIL for
an estimate of Pr(d, z). The classifier learner can use
the Pr(d, z) estimates while learning the classification
function. For instance, Pr(d, z) can be used as a mea-
sure of support for the assignment of label z to d and
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Figure 1. The Role of BayesANIL in text classification.

to weigh the instance 〈d, z〉 during training.

3. The BayesANIL Model

We assume a model for generation of data, given by
the Bayesian Network Z → D → W (also shown in
figure 1). An implication of the model is that, unlike
the traditional näıve Bayes generative model, a class
generates document instances, each of which is a bag of
words. The Bayesian assumption in the model implies
that

Pr(w|d, z) = Pr(w|d) (1)

We compute Pr(W = w|D = d) (abbreviated as
Pr(w|d)) as the fraction of times word w occurs across
all words in document d. The Bayesian assumption
also implies that a class is independent of each word
given the document, i.e. Pr(z|d, w) = Pr(z|d). We
treat the Pr(w|d) and 〈d, z〉 as observables and esti-
mate the parameters Pr(d, z) based on the observa-
tions.

3.1. Parameter Estimation

We estimate the model parameters Pr(d, z), by max-
imizing a log-likelihood objective function - the log of
the likelihood of observing N pairs of word-class ids,
〈wn, zn〉, given the model parameters Pr(d, z).

Let Dz ⊆ D be the set of documents in the training
set that are assigned to class z. Then, n(w, z) is the
number of times the word w is seen across all docu-
ments in Dz. Let n(w, d) denote the count of w in d

and size(d) denote the total count of words in d. Fol-
lowing (McCallum & Nigam, 1998), we scale the count
of words in a document, to a common length L (which
can be the least common multiple of size(d) across all
documents d) and use the scaled word counts instead
of the original counts. This way, we avoid the need
to account for document lengths. We obtain n(w, z)
from the document collection as in (2).

n(w, z) =
∑

d∈Dz

nscaled(w, d) =
∑

d∈Dz

n(w, d)L
size(d)

= L
∑

d∈Dz

Pr(w|d). (2)

The objective function is expanded in (3).

LL =
N∑

n=1

log Pr(wn, zn)

=
∑

w∈W

∑
z∈Z

n(w, z) log Pr(w, z). (3)

The objective is to estimate the parameters Pr(d, z),
such that the log-likelihood in (3) is maximized, while
satisfying the constraint∑

d∈D

∑
z∈Z

Pr(d, z) = 1. (4)

We use the Expectation Maximization (Dempster
et al., 1976) (EM) algorithm for parameter estimation.
The log-likelihood can be written in a more general
form in terms of the empirical distribution, q(w, z),
of the data (Amari, 1995). Using (2), q(w, z) can be
derived as

q(w, z) =
n(w, z)
L|Dz|

=
1
|Dz|

∑
d∈Dz

Pr(w|d). (5)

The convergence properties of the EM algorithm hold
when q(w, z) is used instead of n(w, z) (Amari, 1995).
The modified objective function using q(w, z) is given
by

LLmod =
∑

w∈W

∑
z∈Z

q(w, z) log Pr(w, z). (6)

We express LLmod in terms of the parameters Pr(d, z)
and observations Pr(w|d) by expanding the right hand
side of (6) and using the assumption in (1).

LLmod =
∑

w∈W

∑
z∈Z

q(w, z) log
∑
d∈D

Pr(d, z)Pr(w|d) (7)

The method of Langrange multipliers can now be used
to maximize LLmod, subject to the constraint in (4).
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We convert this problem into an equivalent problem of
maximizing the objective function O over the parame-
ters Pr(d, z) and the Lagrange multiplier γ as follows:

O =
∑

w∈W

∑
z∈Z

q(w, z) log

(∑
d∈D

Pr(w|d)Pr(d, z)

)

− γ

(∑
d∈D

∑
z∈Z

Pr(d, z)− 1

)
(8)

The condition for maximum value of the objective
function O is obtained by partially differentiating it
with respect to each of the parameters Pr(d′, z′) as
well as γ and setting the partial derivatives to 0 as
shown in (9). ∀d′ ∈ D, z′ ∈ Z,

∂O

∂Pr(d′, z′)
=

∑
w∈W

q(w, z′)
Pr(w|d′)∑

d∈D

Pr(w|d)Pr(d, z′)
− γ

=
∑

w∈W
q(w, z′)

Pr(d′|w, z′)
Pr(d′, z′)

− γ = 0 (9)

Pr(d′, z′) =

∑
w∈W

q(w, z′)Pr(d′|w, z′)

γ
(10)

Solving (4) and (10) and eliminating γ, we obtain,
∀d′ ∈ D and z′ ∈ Z

Pr(d′, z′) =

∑
w∈W

q(w, z′)Pr(d′|w, z′)∑
d∈D

∑
z∈Z

∑
w∈W

q(w, z)Pr(d|w, z)
(11)

Further, using the Bayes rule and the independence
assumption, ∀w ∈ W, we obtain

Pr(d′|w, z′) =
Pr(d′, z′)Pr(w|d′)∑

d∈D

Pr(d, z′)Pr(w|d)
(12)

Putting together the Expectation step in (12) with the
Maximization step in (11), we can state the algorithm
as in figure 2. We initialize parameters Pr(d, z) as
a uniform distribution. The Expectation and Maxi-
mization steps are stopped when there is no significant
change in the values of the model parameters across
two successive iterations as detailed in Section 3.3.

3.2. Re-estimating the Empirical Distribution

The empirical distribution q(w, z) is initially obtained
only from the labeled set of documents in the train-
ing set. Across iterations, as the Pr(d, z) parameters

Input: Empirical distribution q(w, z), Pr(w|d).
Initialize the parameters Pr(d, z) as a uniform dis-
tribution: Pr(d, z) = 1

|D||Z|∀d ∈ D, z ∈ Z
while the stopping criterion is not met do

E Step:
for Each document d′ ∈ D do

for Each word w ∈ W do
for Each class z′ ∈ Z do

Pr(d′|w, z′) = Pr(d′,z′)Pr(w|d′)∑
d∈D

Pr(d, z′)Pr(w|d)

end for
end for

end for
M Step:
for Each document d′ ∈ D do

for Each class z′ ∈ Z do

Pr(d′, z′) =

∑
w∈W

q(w, z′)Pr(d′|w, z′)∑
d∈D

∑
z∈Z

∑
w∈W

q(w, z)Pr(d|w, z)

end for
end for

end while
Output: Estimated distribution Pr(d′, z′),
∀d′ ∈ D, z′ ∈ Z

Figure 2. The Expectation Maximization Algorithm for es-
timating parameters of the Bayesian Network in Figure 1.

for the labeled and the unlabeled documents are esti-
mated, it is desirable that distribution of words in the
unlabeled documents supplement the empirical distri-
bution for the subsequent iterations. Simultaneously,
the effect of words from the correctly labeled docu-
ments needs to be reinforced and those from the incor-
rectly labeled documents needs to be reduced from the
empirical distribution. A possible way of re-estimating
the empirical distribution qn(w, z) in the nth iteration
from the empirical distribution q(n−1)(w, z) and prob-
ability estimates Pr(n−1)(d, z) from the (n− 1)th iter-
ation is given below.

qn(w, z) = (1− λ)q(n−1)(w, z) + λPr(n−1)(w, z)
= (1− λ)q(n−1)(w, z)

+ λ
∑
d∈D

Pr(w|d)Pr(n−1)(d, z) (13)

We employ λ as a smoothing parameter. In the case of
learning in the presence of classification noise, λ serves
as an estimate of the proportion of classification noise
in the training data.

An implication of (13) is that a word w in an unla-
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beled document d gets associated with a class label
z based on the degree to which d belongs to z. The
word w may have been previously unseen in the train-
ing documents of class z, i.e. q0(w, z) = q(w, z) = 0.
However, the maximization step in (11) ensures a non-
zero value for Pr(n−1)(d, z), if this document has some
other words in common with documents labeled with
class z. Hence, the re-estimated value q1(w, z), as per
(13) will be non-zero and weighed by Pr(n−1)(d, z),
which reflects the support for membership of docu-
ment d in class z. This effect of word co-occurrence on
the empirical distribution has a transitive effect as the
iterations proceed. Further, this way of re-estimating
the empirical distribution results in denser matrix of
Pr(d, z) values across iterations.

3.3. Practical Considerations

The BayesANIL classification model has a small num-
ber of parameters to be estimated, viz., O(|D||Z|).
However, it needs to represent some amount of sparse
information such as Pr(w|d), q(w, z), etc. Further, the
algorithm in Figure 2 iterates over each feature, docu-
ment and class to estimate the required parameters. In
this section, we propose methods for efficiently storing
the sparse representation and methods for speeding up
the computations.

We used a Java-based sparse matrix implementation1

to represent our data structures for Pr(w|d) and
q(w, z). The need for a multi-dimensional matrix rep-
resentation for Pr(d′|w, z′) was completely eliminated
by introducing a minor change to the structure of the
algorithm in Figure 2. We merged the E and M steps,
to estimate the new values of Pr(d′, z′) from old values
(Pro(d′, z′)) as shown in Figure 3.

Pro(d′, z′) = Pr(d′, z′); Pr(d′, z′) = 0
for Each word w ∈ W do

for Each class z′ ∈ Z do
Pr(w, z′) =

∑
d∈D

Pro(d, z′)Pr(w|d)

for ∀d′ ∈ D|w occurs in d′ do
Pr(d′, z′) = Pr(d′, z′)+ q(w,z′)Pro(d′,z′)Pr(w|d′)

Pr(w,z′)

end for
end for

end for

Figure 3. EM iterations restructured for efficient storage
and computation

In order to speed up the convergence in our experi-
ments, we stop the EM iterations when the change in
log-likelihood across two successive iterations, i and

1http://www.math.uib.no/˜bjornoh/jmp/

(i + 1), is less than 0.01% of the log-likelihood com-
puted in the ith iteration. As an exception to this, in
the experiment described in section 5.2.2, we use con-
vergence of the classification accuracy on a held-out
validation set as a stopping criterion, to be consistent
with the work with which we compare therein.

4. Using BayesANIL’s parameters in
Classifiers

4.1. Weighted näıve Bayes

Multinomial näıve Bayes classifier uses the Bayes rule
to compute for each class z an estimate of the prob-
ability of z given the unseen document based on the
parameters, Pr(w|z), estimated a posteriori from the
training documents (McCallum & Nigam, 1998). Tra-
ditionally, the classifier uses an estimate of Pr(w|z)
based simply on the number of times word w occurs
in the training data for class z, divided by the total
number of word occurrences in the training data for
that class. However, BayesANIL has an estimate of
Pr(w|z) which takes into account the degree to which
the training documents belong to a particular class z.
Based on the model assumptions, Pr(w|z) can be de-
rived in terms of parameters Pr(d, z) as in (14). We
call the classifier that uses these Pr(w|z) estimates,
the WeightedNB classifier.

Pr(w|z) =
∑
d∈D

Pr(w, d|z) =
∑
d∈D

Pr(w|d)Pr(d|z) (14)

To classify a completely new document d′, with words
{wi|1 ≤ i ≤ |d′|}, which are i.i.d. random samples, we
compute for each class z′, the posterior Pr(z′|d′) from
the distribution Pr(wi|z′), as detailed in (McCallum
& Nigam, 1998). We did not perform any explicit
feature smoothing, because from (14) we can infer that
a dense matrix of Pr(d, z) values ensures that values
of Pr(w|z) are smooth.

4.2. Weighted SVM

Support Vector Machines are learning algorithms that
are traditionally used in two class settings to max-
imally separate regions of homogeneous labels, by
building a hyperplane that separates the positive and
the negative classes. The support vectors that span
up the hyperplane can then be used to classify the
test data points based on which side and how far they
lie from the hyperplane separating the two classes.
Most SVM implementations use cost-based optimiza-
tion techniques and provide handles to specify the
various costs associated with misclassifying the data
points. One such MATLAB-based implementation
(Schwaighofer, 2002) allows the user to associate an
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upper bound cost for misclassifying any data point,
upper bound cost for misclassifying positive and/or
negative data-points and cost for misclassifying each
of the data-points. The learning algorithm tries to
minimize the overall misclassification cost.

We use (Schwaighofer, 2002) to utilize the estimate of
Pr(d) provided by BayesANIL as the cost of misclas-
sifying the document d and call the resulting classi-
fier WeightedSVM. The intuition behind this setting
is that we require the SVM learner not to mis-classify
the labeled examples that we have more trust in. In
fact, Our observations recorded in Section 5 show that
Pr(d) reflects the probability that a training document
d is correctly labeled.

5. Experiments and Results

We ran experiments on two standard data-sets, to
demonstrate that BayesANIL is adept in facilitating
better performance of two text classifiers, viz., näıve
Bayes and SVM. We created scenarios to demonstrate
learnability in the presence of noise and in a labeled-
unlabeled setting. We also provide insights into the
performance of our method, particularly the effect of
the smoothing parameter λ on classification accuracy.

5.1. Data Sets

We used some standard text classification data-sets
to evaluate our model. We depend on rainbow (Mc-
Callum, 1996) to parse, tokenize, index and print the
sparse matrix representation of the documents. We
chose not to perform any feature selection such as
stop-word removal, de-tagging, pruning by info-gain,
stemming, etc.

The WebKB data-set2 contains Web pages gathered
from the computer science departments of several US
universities. As in (Nigam et al., 1999), we chose
the four most populous and popular categories: stu-
dent, faculty, course and project, altogether consisting
of 4,199 documents. We removed the server headers
before tokenizing the documents and found that rain-
bow’s tokenizer reports 54, 948 unique words in this
data-set.

The Newsgroups2 data set contains 19,997 arti-
cles evenly divided among twenty UseNet discussion
groups. While tokenizing, we discarded the sub-
ject and newsgroup category along with the complete
UseNet header. The total number of unique words for
this data set was 111, 935.

2
http://www-2.cs.cmu.edu/˜TextLearning/datasets.html

5.2. Experiments

5.2.1. Supervised Learning

We used BayesANIL along with standard classifica-
tion methods, näıve Bayes and SVM, in order to la-
bel previously unseen test documents. The results on
Newsgroups and WebKB datasets are as tabulated in
Table 1. The accuracies (in percentage) reported are
averages over 20 random splits of the data-sets into
training and testing parts in the ratio 60%:40%. The
stopping criterion for the EM iteration was based on
convergence of log-likelihood as described in Section
3.3. Laplace smoothing was used in the plain näıve
Bayes classifier and SVM was used with a linear ker-
nel. Error correcting output code was used to handle
multi-classes in SVM. The weightedNB and weight-
edSVM were set up as described in Section 4.

Dataset NB Weighted SVM Weighted
NB SVM

WebKB 80.51 86.2 83.8 86.47
Newsgroup 77.65 84.8 79.8 85.42

Table 1. Accuracies (in %) on two commonly-used data
sets by vanilla näıve Bayes and SVM against versions of
the respective classifiers weighed with BayesANIL.

5.2.2. Noisy Labels

In order to show the ability of BayesANIL to learn in
the presence of noise, we used the setup similar to the
one in (Lee & Liu, 2003). We used the 20 Newsgroups
data-set in one class vs. the rest setting. We held out a
random sample of 50% documents for training, 20% for
validation and 30% for testing. We introduced noise
artificially by mutating the labels of a random subset
of documents in the positive class of the training and
validation sets. We experimented by varying this noise
parameter α (α = 0, 0.3 and 0.7). BayesANIL was
used to learn the degree to which each of the train-
ing documents belongs to the positive and negative
classes. We set the λ parameter in our EM algorithm
to α to aid the correction of noise in the initial em-
pirical distribution of the features. The documents in
the validation set were used to determine the stopping
criterion for the EM runs. Finally, we built a SVM
classifier over the training data, using the class labels
predicted by BayesANIL, instead of the original noisy
class labels. We set up the weightedSVM as described
in the Section 4. Table 2 shows the F measure for the
classification of test documents by the weightedSVM.
The results convincingly exceed the ones reported in
(Lee & Liu, 2003).
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Positive class α = 0 α = 0.3 α = 0.7
atheism 0.782 0.779 0.739
autos 0.840 0.832 0.806
space 0.891 0.890 0.865

graphics 0.698 0.656 0.648
motorcycles 0.915 0.927 0.880

christian 0.833 0.855 0.829
ms-windows 0.717 0.728 0.683

baseball 0.904 0.883 0.879
guns 0.796 0.814 0.771
pc 0.728 0.722 0.687

hockey 0.921 0.913 0.840
mideast 0.862 0.848 0.847

mac 0.839 0.855 0.799
crypt 0.894 0.902 0.862

politics 0.666 0.661 0.623
xwindows 0.802 0.788 0.764
electronics 0.727 0.731 0.714

religion 0.590 0.588 0.545
forsale 0.745 0.729 0.679
med 0.913 0.909 0.858

Average 0.803 0.801 0.766

Table 2. F scores, using BayesANIL in conjunction with
SVM, with rate of mislabeled positive class being α

5.2.3. Access to unlabeled examples

In a separate setting, we use our model for classifi-
cation, given labeled and unlabeled documents. In
accordance with the experimental setup described in
(Nigam et al., 2000), we selected the latest (by date)
20% documents from each class of Newsgroups for test-
ing. In the case of WebKB, web pages from utexas.edu
were held out for testing. For each of the data-sets, we
randomly sampled 1% of the total from the remaining
collection to form the labeled training set. The un-
labeled document collection was constructed by ran-
domly sampling from the remaining document collec-
tion in each case. Figures 4 and 5 show variations
in the testing accuracies with increasing amount of
unlabeled data and with two different values of the
smoothing parameter λ for the WebKB and News-
groups data-sets respectively. It is evident that in-
creasing the amount of unlabeled data helps the clas-
sifier in each case. Also, having a non-zero value of
smoothing parameter λ for the empirical distribution
improves the accuracy over a value of λ = 0.

Figure 6 shows the plot of various documents (train-
ing/unlabeled) and their probabilities, after a fixed
number of EM iterations (10), on the WebKB and
Newsgroup data-sets. For training, we used 10% of the
documents at random as the labeled set and retained

the rest as unlabeled. We also introduced noise by mu-
tating 30% of the class labels of the labeled data. After
10 EM iterations, we labeled each document instance
d with z = argmaxzPr(z, d). Let z′ be the original la-
bel of the document d. In the plot legends, “correctly
labeled” means argmaxzPr(z, d) = z′. Similarly, “in-
correctly labeled” means argmaxzPr(z, d) 6= z′. An
interesting observation in these plots is that correctly
labeled training documents have the highest Pr(d),
followed by the incorrectly labeled training documents
and then by the correctly labeled documents from the
unlabeled set. The incorrectly labeled document from
the unlabeled set have the least Pr(d). This is the
reason why using SVM weighed by BayesANIL gives
more accurate results than plain SVM. Setting the cost
of misclassifying an example d to to Pr(d) forces the
SVM learner to generate the least mis-classifications
on the most confidently labeled examples.

6. Summary and Conclusions

We proposed a Bayesian model that accounts for un-
certainty incurred by the manual labeling process caus-
ing approximate, noisy and incomplete labelings. We
showed that this model could be used with stan-
dard learners such as näıve Bayes and SVM to sig-
nificantly improve the accuracy of text classification.
Further, our results improve over a state-of-the-art re-
sult reported in the literature of classification in the
presence of noise. This method when used in a la-
beled/unlabeled setting, can learn from features in
the unlabeled data that were unseen in the labeled
data. BayesANIL provides both conditional probabil-
ities Pr(z|d) and a priori probabilities Pr(d), which
can be used in the setting of active labeling (given
a set of unlabeled documents). One could consider
these probabilities as a measure of confidence and sup-
port, respectively, for the label assigned to a given
document. In the future, we plan to extend the im-
plementation of our model to links modeled as a set
of inward-linking and outward-linking neighbors, and
other hypertext features.
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