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Abstract

Part of Speech tagging for Indian Lan-
guages in general and Hindi in particu-
lar is not a very widely explored territory.
There have been many attempts at devel-
oping a good POS tagger for Hindi, but the
morphological complexity of the language
makes it a hard nut to crack. Some of
the best taggers available for Indian Lan-
guages employ hybrids of machine learn-
ing or stochastic methods and linguistic
knowledge. Though, the results achieved
using such methods are good, there prac-
ticability for other inflective Indian Lan-
guages is reduced due to their heavy de-
pendence on linguistic knowledge. Even
though taggers can achieve very good re-
sults if provided good morphological in-
formation, the cost of creating these re-
sources renders such methods impractical.

In this paper, we present a simple HMM
based POS tagger, which employs a
naive(longest suffix matching) stemmer
as a pre-processor to achieve reasonably
good accuracy of 93.12%. This method
does not require any linguistic resource
apart from a list of possible suffixes for
the language. This list can be easily cre-
ated using existing machine learning tech-
niques. The aim of this method is to
demonstrate that even without employing
tools like morphological analyzer or re-
sources like a pre-compiled structured lex-
icon, it is possible to harness the morpho-
logical richness of Indian Languages.

1 Introduction

Part of Speech tagging is the one of the most
basic problems of NLP. It is the process of as-
signing correct part of speech to each word of a
given input text depending on the context. The
task belongs to a larger set of problems, namely,
sequence labelling problems. Some of the other
tasks which belong to this set are Speech Recog-
nition, Optical Character recognition, Chunking
etc. All these problems deal with assigning la-
bels to discreet components of the input. A va-
riety of methods have been tried for POS tagging
over the years. The common methods employed
for POS tagging of western languages include
machine learning techniques like Transformation-
Based Error-Driven learning(Brill, 1992), decision
trees (Black et al., 1992),Hidden Markov Models
(Cutting et al., 1992), maximum entropy methods
(Ratnaparakhi, 1996)etc. Hybrid taggers have
also been tried using both stochastic and rule-
based approaches, such as CLAWS (Garside and
Smith, 1997).

Though there are obviously many approaches
to POS tagging, tagging of Indian Languages
still poses a challenge. This is due to the mor-
phological richness of Indian Languages. Mor-
phologically rich languages typically have more
than one morpheme in a word usually fused to-
gether. This renders fixed context stochastic
methods useless(Samuelsson et al., 1997). POS
tagging of some morphologically rich languages
has been attempted earlier using hand-crafted
rules and stochastic tagging methods(Hajic et al.,
2001; Tlili-Guiassa, 2006; Uchimoto et al., 2001;
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Oflazer and Kuruoz, 1994). These systems typi-
cally use large corpora with detailed morphologi-
cal analysis for the purpose of POS tagging. It is
seen that neither rule-based nor stochastic meth-
ods have been sufficient for POS tagging of mor-
phologically rich languages as rule based methods
require expert linguistic knowledge and stochastic
methods need very large corpora to be effective.

1.1 POS tagging of Hindi

In recent years a lot of work has gone into the POS
tagging of Indian Languages, specifically, Hindi.
Typically, stochastic methods have been combined
with linguistic resources to achieve reasonably
good results. The known works in POS tagging
of Hindi and, more generally, Indian Languages
are (Ray et al., 2003; Bharati et al., 1995; Dan-
dapat et al., 2007; Dandapat et al., 2004; Singh et
al., 2006). All these methods are either rule based
or work using some combination of rule based
and stochastic techniques. One common factor in
all these approaches is the extensive use of de-
tailed morphological analysis either for prelimi-
nary tagging (Singh et al., 2006; Ray et al., 2003;
Bharati et al., 1995) or for restricting a stochas-
tic model(Dandapat et al., 2004; Dandapat et al.,
2007; N. et al., 2006). These are attempts to com-
pensate for the failures of stochastic models by
utilising the morphological richness of a language.
These approaches make it obvious that harness-
ing morphology is crucial to good performance of
POS taggers. But, the cost associated with devel-
oping a good morphological analyzer takes away
some of the allure of these approaches.

In this paper, we present a simple POS tagger
based on Hidden Markov Models(HMM) for the
task of POS tagging. We attempt to utilize the
morphological richness of the languages without
resorting to complex and expensive analysis.

2 “Exploding” Input

The core idea of this approach is to “explode” the
input in order to increase the length of the input
and to reduce the number of unique types en-
countered during learning. This in turn increases
the probability score of the correct choice while
simultaneously decreasing the ambiguity of the
choices at each stage. This also decreases data
sparsity brought on by new morphological forms
for known base words. For example, if we assume
that the following sentence is seen in the training

data:

Gr кA хAnA aQCA lgtA h{ .
house gen food good feel present

(Habitual)
English:
Home food feels good.

And, the following sentence is found in the test
data:

ки Gro\ к� хAn� Eк х� шb�
many houses gen food gen smell

(obl)
aA rhF TF.
come ing past

(fem) (fem)
English: Smell of food is coming
from many houses.

Further, if the wordGro\has never been encoun-
tered in the training data then the model would
treat the word as an unknown during testing. Here,
no human annotator would commit a mistake even
if Gro\ is never seen before. Just by knowing
the morphology of nouns a human can predict that
Gro\ is a noun( plural ) and not a new, unknown
word. The same facts apply to the wordхAnA .

We can see that the only problem in identifying
the formGro\ is the suffix which resulted in a new
form which was never seen. If we can just remove
the suffix we will be left with an underlying form
which is common to both sentences and hence,
observed during learning. One method of doing
this would be to remove all inflections from all
words of the data leaving just the base form. That
is, The sentences would be written as:

Gr кA хAnA aQCA lg h{ .
house gen food good feel(base) present

ки Gr к� хAnA Eк х� шb�
many houses gen food(base) gen smell
aA rh TA.
come ing past

While this method would solve the problem of
sparsity due to multiple types, it also loses all the
information contained in the suffixes. We know
that a suffix contains a very good indication of the
category of a word as the category suffix are usu-
ally either unique or can occur in no more than a
few categories reducing the ambiguity for the ac-
companying stem. Thus it is essential that the suf-
fix be preserved and used for further disambigua-
tion.

The most favorable method of splitting would
be to find the exact suffix and root form from the
word. Once we have these two parts of the word



they can be treated as separate tokens. That is, for
the above sentences the best representation would
be :

Gr кA хAnA aQCA lg tA
house gen food good feel(base) Habitual
h{
present

And,

ки Gr ao\ к� хAnA e
many house Plural gen food(base) obl
Eк х� шb� aA rh и TA
gen smell come ing fem past
и.
fem

Unfortunately, this requires quite precise stem-
ming which is hard to achieve in practice. Also,
the words here are in root forms which can only be
arrived at by using a lexicon for cross-validation.
This processing would require a rule based stem-
mer system which would again make us rely on
extensive linguistic resources, which is something
that we want to avoid. Thus, we need to rely on
a stemming which is simpler but effective. In our
efforts, we found that a simple longest suffix re-
moval works reasonably well.

2.1 Longest Suffix Splitting

In case of a simple stemming, the result is a stem
and a probable suffix. We need a method where
the result should be consistent for both the testing
and training phases. During training the tag as-
sociated with the word can at times disambiguate
between multiple possible suffixes. But, we can-
not rely on tag information because that would not
be available at testing stage. We realized that the
quest for a consistent stemming scheme ends by
providing a simple list of all possible suffixes in
the language can be used for splitting resulting in a
crude and not very linguistically sound stemming.
Though, this approach lack linguistic strength, it
works very well for our purposes.

Assuming that{ aA , ao\ , и , tA , e } are
in the list of suffixes, the sentences above will
look like:

Gr кA хAn̂ aA aQCA lg
house gen food ’A’ good feel(base)
tA h{
Habitual present

And,

ки Gr ao\ к� хAn̂ e
many house Plural gen food(base) obl
Eк х� шb� aA rh и T
gen smell come ing fem past
и.
fem

This form becomes the new input sequence for
HMM. Suffix list for a language is not very hard
to create. For most languages, this list is read-
ily available. Though, we used a manually cre-
ated list of all possible suffixes for the purpose
of stemming, it is possible to learn these suffixes
using suitable machine learning methods (Gold-
smith, 2001), thus, making this a very feasible
method for quick and easy morphology infusion
in a stochastic method. It can be seen thatхAnA
incorrectly stemmed. Naive stemming will result
in such errors but, we show later that this compro-
mise is worth the results in most cases.

2.2 Suffix Tags

After this stemming and exploding of input, the
exploded inflected tokens result in 2 tokens in the
new corpus : the stem and the suffix. The next
problem is that of assigning tags to the newly in-
troduced symbols of the input i.e. the suffixes. For
example,Gro\ NN would result inGr which can
be tagged NN andao\ which needs to be tagged.
This can be done in four possible ways:

1. To assign category tags which are indicative
of the category of the original inflected word
but not exactly same. For example, in case of
Gro\, Gr is tagged NN whereasao\ is tagged
SNN.

2. To assign individual tags to each suffix that
we encounter, preferably the suffix itself can
be repeated as the tag. For example, tag for
ao\ would beao\ represented asao\ ao\.

3. To assign tags, which are indicative of cate-
gory as well as the suffix. Such as,ao\ Sao\.
This turns out to be the same as the second
method.

4. To assign exactly the same tag as the inflected
word. This is not a good idea as it does not
distinguish between word and suffix.

The experiments were carried out using methods 1
and 2. There are very few noticeable differences,
but both approaches have their pros and cons. The
first approach does not permit the use of actual
suffix during generative training. It gives only



the category of the word that the suffix belonged
to. This affects the tagging of surrounding words
as some of these words might require the actual
suffix for disambiguation(for example, NST occa-
sionally requires noun suffixes). Method 2 does
not give category information again causing simi-
lar problems.

3 Why HMM?

HMM is a commonly used generative stochas-
tic method regularly used in NL, Speech and Im-
age Processing domains. The allure of HMM is
its malleability and the ability to perform well if
trained on a data closely resembling the test data.
By malleability we mean the ability to modify a
model. HMMs are very simple stochastic mod-
els and present themselves with ease to modifi-
cations. The various uses to which HMM has
been put and their versatility is clearly visible in
(Vergyri et al., 2004; Duh and Kirchoff, 2004;
Duh, 2004; Brants, 2000; Connell, 1996; Rabiner,
1989; Fraser and Dimitriadis, 1994). (Vergyri et
al., 2004; Duh and Kirchoff, 2004; Duh, 2004)
show that an HMM can be effectively modified
to brilliant results. TNT (Brants, 2000) is a very
effective POS tagger for English and German with
accuracy and speed matching the best systems cur-
rently available in the world. The applications to
Speech, OCR and time series forcasting are pre-
sented in (Connell, 1996; Rabiner, 1989; Fraser
and Dimitriadis, 1994). This gives enough ground
to consider HMM for a possible candidate for the
task of POS tagging Indian Languages using mor-
phological features.

3.1 Discriminative Vs Generative Debate

As mentioned above, HMM is a generative
stochastic model. Generative models learn a joint
probabilityp(x, y), wherex is the observation and
y is the label, and use the Bayes rule to compute
p(y|x). This is done by modellingp(x|y) to make
the prediction choosing the most likely labely.
Discriminative models on the other hand learn the
p(y|x) directly from the input. The reasons cited
for the more popular use of Discriminative mod-
els is ”One should solve the problem(computing
p(y|x) directly and never solve more general prob-
lem(modellingp(x|y)) as an intermediate step.”

There is a also a debate on how much modifica-
tion can an HMM undergo. As mentioned above
an HMM consists of two parametersp(x|y) and

p(y), for including any restrictions in the form
of observations, the number of parameters of the
form p(x|y) would increase thereby making the
system rely more and more on the priorp(y). This
fact results in the unusability to HMMs for cre-
ation of complex models.

Be this as it may, Generative models have
some advantages over Discriminative models in
restricted cases. Some restrictions on the sort
of distributions the generative model learns have
been shown to improve the accuracy of classifica-
tion over and above that of discriminatory classi-
fiers. Here, the intuition is that knowledge restricts
the size of the hypothesis space leading to bet-
ter performance. Whereas, Discriminative meth-
ods do not allow any prior knowledge to be in-
cluded apart from features. The importance of
these feature cannot be pre-defined and is learned
directly. Generative classifiers are a natural way
to include domain knowledge,leading some re-
searchers to propose a hybrid of the two(Tong and
Koller, 2000). Another advantage of HMMs or
generative models is that they perform better than
Discriminative models with less training data and
when the training data closely resembles the test
data(Ng and Jordan, 2002).

4 Standard HMM

Hidden Markov Models (Rabiner, 1989) are sim-
ple three tuple models described asλ(Π, A, B),
where,

• Π = Initial Probabilities

• A = Transition Probabilities

• B = Emission Probabilities

For a given input sequence W=(w1,w2,. . .,wn)
we wish to determine a tag sequence
T=(t1,t2,. . .,tn) such that P (W, T ) is maxi-
mized. This probability term when broken down
using chain rule results in a term implausible to
compute.

P (W, T ) =

ΠN
i [P (wi|t1,i, w1,i−1)P (ti|t1,i−1, w1,i−1)]

This term is restricted by HMM using two simpli-
fying assumptions:

• Word wi depends only on the current
tag(lexical independence).



• Tag ti depends on previous K tags(Markov
Property).

This results in a much more tractable form of the
termP (W, T ). Thus, for inferencing with HMM,
we primarily try to maximize,

P (W, T ) = ΠN
i [P (wi|ti)P (ti|ti−1, ti−2)] (1)

Where,

• W is the word sequence

• T is the tag sequence

• wi is the word atith position

• ti is the tag atith position

• N is the length of the sequence

5 Exploded Input Model

The HMM remains the same as the standard HMM
as all the required changes are made to the train-
ing and testing data at a pre-processing stage ex-
plained in the section 2. The approach makes use
of simple splitting of words to lengthen the input
to HMM by providing the base word and the suf-
fix as separate observations. For a given sentence
(w1,w2,. . .,wn), we get a sequence of (r,s) pair for
each inflected word resulting in a sequence of 2n
length in the worst case of every word being in-
flected. The new input sequence for our model is
thus, (r1,s1,r2,s2,. . .,rn,sn). The model is modi-
fied only in the input and output symbol set. The
input set S is replaced bySE and the output set T
is replaced byTE where

• SE = R ∪ M ; R is the stem set and M is the
set of suffixes

• TE = T ∪ Ts ; Ts is the set of suffix tags and
T is the Tag set

This approach leads to good accuracy for Hindi
without resorting to detailed morphology analysis
of input which would be required in the case of
(Singh et al., 2006).

6 Evaluation

The corpus used for the training and testing pur-
poses contains 66900 words. This data was ‘ex-
ploded’ resulting in a new corpus of 81751 tokens
which was divided into 80% and 20% parts. The
test set contains 13500 words which resulted in an
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Figure 1: Training Curves for both EIHMM meth-
ods

HMM EI-HMM EI-HMM
CatTags SuffTags

Accuracy 83.26 93.12 93.05

Table 1: Comparison between HMM and EI-
HMM

exploded test set of 16000 tokens(stem and suf-
fix tokens). The accuracy is calculated after im-
ploding the output considering the assigned tag of
the stem as the correct tag. This data was sourced
from various domains including news, tourism and
fiction. The tagset is the Indian Language tagset
developed by IL-ILMT consortium. The follow-
ing sections report the result after a four-fold
cross-validation. This setup was used to evaluate
a standard HMM as well as the Exploded Input-
HMM (EIHMM). The implementations were de-
veloped in-house.

7 Results

The comparison of the results for standard HMM
and the two model variations presented in section
2.2 are presented in Table 1. Figure 1 presents the
training curve for both the methods. As expected,
there is a regular increase in accuracy as the train-
ing corpus increases. But, the major advantage of
these methods is the significant accuracy gain over
plain HMM.

Per POS accuracy charts for both the meth-
ods in comparison to standard HMM results are
shown in Figure 2 and Figure 3 respectively. It
is clear from these graphs that the performance
of Exploding Input HMM far outperforms stan-
dard HMM. Significant improvements are seen in
case of inflected categories such as Verbs, Verb



Auxiliaries, Adjectives and, oddly, Ordinal num-
bers, Cardinal numbers and Quantifier. Contrary
to expectations Noun(NN, NNC) accuracy does
not pick up a lot. This effect is traced back to
the fact that most rare nouns usually occur in their
root forms. There are cases of unknowns such as
moMbE�yA\(candles), where the suffixiyA\ helped
disambiguate the word. But, such cases are very
rare. It is hoped that as the number of unknowns
and specifically number of inflected nouns in un-
knowns increase, the effect would be more promi-
nently visible in noun accuracies. Currently only
11% of the words were unknown and less than 3%
were found to be inflected. The number of un-
knowns might increase if a model is subjected to
test data which is not of the same domain as the
training data.

We see a significant increase in Verb and VAUX
accuracy. This is due to the highly inflective verb
morphology of Hindi. A common error made
by HMM in Verb Group was to tag some main
verbs(VMs) as VAUX or vice-versa. HMM reg-
ularly makes an error when dealing with cop-
ula verb forms (h{ , TA etc.), tagging them as
VAUX. This is because these forms occur more
frequently as VAUX then as VMs. That there are
usually three or more forms (TA , TF , T�) does
not help the case. Stemming reduces this form to
(T), distributing the probability of (T) forms more
evenly accross VM and VAUX. Stemming also
helps identifying verbs in inflected forms which
were not seen in training data. This is a common
phenomenon as verbs inflect for Gender, Number,
Person, Tense, Aspect or Mood. This means that
the same verb or verb auxiliary might be seen in
a different form. This makes the case stronger for
utilizing stemming in case of verbs and as seen in
Figures 2 and 3, it delivers the results too.

Improvements in NNP and NNPC were con-
trary to expected results. We were able to trace
the reason for this increase to the transition prob-
ability distributions. Standard HMM tagger tags
most NNPs and NNPCs as NNs. This is because
words occuring as NNPs are usually unknowns
and they are as likely to be followed by case-
markers (NSTs) as regular Nouns. This makes
them a good candidate for Noun category based
on context. Thus, while maximizing the product
term for HMM a NN-NST transition was chosen
more often than a NNP-NST transition. This was
a slight but regular imbalance that plagued HMM.

The cure to this came unexpectedly with EIHMM
where NN-NST transition probability is lowered
as some of the weight is taken by SNN-NST or
S(suffix)-NST probability. Whereas, NNP-NST
probability distribution remains largely the same.
This resulted in lower errors in case of NNPs.

QC does not seem very important class and tru-
ely the number QCs is small compared to VMs
and NNPs. But, the improvements in their accura-
cies demonstrate the ability of the modified mod-
els quite convincingly. The words in QO can be all
characters(such aspA\cvA\(fifth)) or can be a com-
bination of digits and characters (5vA\(5th)). In the
second form almost all words are unknowns and
its only the suffix that identifies them. There can
be heuristics to handle such forms but in the cur-
rent setup they are not necessary.

8 Conclusion

The over all performance of this approach is bet-
ter than a simple stochastic method. But, it can-
not hold a candle to methods using detailed mor-
phological analysis and linguistic resources. The
results presented may not be very impressive if
compared to methods similar to one presented in
(Singh et al., 2006), but, they prove that a simple
stochastic method can be easily modified and used
for improving performance by harnessing mor-
phology in the simplest manner possible. In this
paper, our aim was to demonstrate a method which
can give good performance without relying on ex-
tensive linguistic knowledge.

The methods presented can be improved further
by restricting stemming of closed category words
so as to reduce unwanted stemming induced er-
rors. Also, for closed category words the states
of the HMM can be restricted as demonstrated in
(Dandapat et al., 2004) by learning a smaller set of
possible states from the training corpus. Similarly,
efforts can be made to learn possible suffixes and
their paradigms using methods similar to (Gold-
smith, 2001).
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