
Addressing Class Imbalance in Grammatical Error Detection with
Evaluation Metric Optimization

Anoop Kunchukuttan, Pushpak Bhattacharyya
Center for Indian Language Technology

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

{anoopk,pb}@cse.iitb.ac.in

Abstract

We address the problem of class imbalance
in supervised grammatical error detection
(GED) for non-native speaker text, which
is the result of the low proportion of erro-
neous examples compared to a large num-
ber of error-free examples. Most learn-
ing algorithms maximize accuracy which
is not a suitable objective for such imbal-
anced data. For GED, most systems ad-
dress this issue by tuning hyperparame-
ters to maximize metrics like Fβ . Instead,
we show that learning classifiers that di-
rectly learn model parameters by optimiz-
ing evaluation metrics like F1 and F2 score
deliver better performance on these met-
rics as compared to traditional sampling
and cost-sensitive learning solutions for
addressing class imbalance. Optimizing
these metrics is useful in recall-oriented
grammar error detection scenarios. We
also show that there are inherent difficul-
ties in optimizing precision-oriented eval-
uation metrics like F0.5. We establish this
through a systematic evaluation on multi-
ple datasets and different GED tasks.

1 Introduction

The task of grammatical error detection (GED)
and grammatical error correction (GEC) refers
to the identification and repair of grammatical er-
rors in text generated by speakers of a language
(native/non-native). Many techniques, rule-based
as well as machine learning based, have been pro-
posed for addressing this task. A common and
successful method for building grammatical er-
ror detection (GED) systems is to apply super-
vised learning on annotated learner corpora. For
instance, the problem of noun number error detec-
tion can be formulated as a task of classifying if

Task Errors Tokens Error Rate

Article 6658 234,695 2.84%
Noun Number 3379 245,026 1.38%
Preposition∗ 1955 123,419 1.58%

Table 1: Error rates for GED tasks (NUCLE)
∗ statistics for 10 most frequent prepositions

the head noun of a noun phrase has the correct

or incorrect grammatical number. As opposed
to rule-based methods, classification methods can
easily incorporate complex and arbitrary evidence
as features. Some of the best performing sys-
tems for the most frequent grammatical errors, viz.
noun number, article and preposition errors, are
classification systems (Ng et al., 2013).

However, a major problem in learning classi-
fiers from an annotated learner corpus is the very
low error rate (number of errors per token) in the
corpus (Chodorow et al., 2012). For instance, the
error rates are less than 3% for noun-number, arti-
cle and preposition errors in the NUCLE annotated
learner corpus (Dahlmeier et al., 2013) as shown
in Table 1. Such low error rates (less than 5%)
have been observed across various learner corpora
(see Table 2) viz. the NUCLE corpus (Dahlmeier
et al., 2013), HOO12 corpus (Dale et al., 2012)
and NICT-JLE corpus (Izumi et al., 2004). Thus,
learning classifiers for GEC/GED from annotated
learner corpora is a case of learning a classifier
from an imbalanced dataset i.e. a dataset where
the class ratios are highly skewed (He and Garcia,
2009). In contrast to many imbalanced problems
studied in datamining literature, GED tasks are
characterized by large and sparse features spaces
and very high imbalance ratios.

Since it is easy to achieve high accuracy by
simply assigning all training examples to the ma-
jority class, accuracy as the optimization objec-
tive performs poorly for classification on imbal-



Corpus Tokens Errors %Error Rate

NUCLE 1,161,567 46,597 3.82
HOO12 374,680 8,432‡ 2.25‡

NICT-JLE 169,662 14,407 8.49

Table 2: Errors statistics for learner corpora
‡ articles and prepositions errors only

anced datasets. Moreover, accuracy is not the right
evaluation metric for GED. Non-native language
learners require a GED system with a high preci-
sion so that they are not misguided by wrong er-
ror notifications. On the other hand, professional
copy-editors and language instructors will require
a high recall system that helps improve produc-
tivity and quality of service by identifying all po-
tential errors that need review, even at the cost of
flagging some spurious errors. Hence, a precision
oriented optimization objective like F0.5 and a re-
call oriented objective like F2 would be appropri-
ate for non-native speakers and copy-editors re-
spectively. In this paper, we explore the hypothesis
that by directly optimizing the desired evaluation
metric, we can satisfy the requirements of asym-
metric misclassification cost and customization of
the recall/precision trade-off.

The following are the contributions of our work:

• Sampling and example-weighting methods
have been traditionally applied to overcome
this limitation. We systematically investi-
gate different solutions to the class imbal-
ance problem for three GED tasks (noun
number, article and preposition) over mul-
tiple annotated learner corpora. We com-
pare the following sampling methods over
a range of sampling ratios: random under-
sampling, Synthetic Minority Over-sampling
Technique (SMOTE) and example weighting.
We analyze and present experimental results
to demonstrate the limitations of these tradi-
tional methods in addressing class imbalance.

• As an alternative to sampling methods, we
propose that a GED classifier be learnt by di-
rectly optimizing the evaluation metrics, typ-
ically F1, F2 or F0.5. For copy-editors, F2

is a suitable evaluation measure which ad-
dresses the need for high recall in GED. We
use the performance measure optimization
framework proposed by Joachims (2005) for
optimizing these metrics. For the three GED

tasks under consideration, we show that opti-
mizing the F2 metric of the incorrect class
gives better performance compared to sam-
pling methods.

• We also show that evaluation metric opti-
mization, as well as sampling methods, are
not suitable for improving precision. While
evaluation metric optimization helps improve
recall and obtain a reasonable precision-
recall trade-off, improving precision remains
a challenge.

The rest of the paper is organized as follows.
Section 2 describes the limitations of sampling
methods, motivates the use of evaluation metrics
optimization for imbalanced data problems, and
the use of F2 as an evaluation metric for GED.
Sections 3 and 4 discuss the related work and
the learning algorithm used for directly optimiz-
ing evaluation metrics. Section 5 explains classi-
fiers for the GED tasks under consideration, while
Section 6 describes our experimental setup. We
analyze results in Section 7. Section 8 summarizes
our contributions and describes possible future di-
rections.

2 Motivation

There are many GED applications where users do
not consider false positive and false negative er-
rors as equally damaging. To copy-editors, false
negative errors are costlier than false positive er-
rors. They would not mind evaluating a few
false alarms, but cannot afford to miss genuine er-
rors since that would affect the quality of service.
They would prefer the GED system to err on the
side of higher recall. Similarly, translators using
computer-aided translation systems would prefer
to have most errors pointed out. Even an auto-
matic post-editing system for MT would prefer to
have most errors identified since alternatives can
then be evaluated for these potential errors in a
post-editing stage.

We hypothesize that by directly optimizing the
desired evaluation metric, we can satisfy the re-
quirements of asymmetric loss and customization
of the recall/precision trade-off. For a GED sys-
tem designed to help copy-editors, F2 would be
a reasonable choice as an optimization objective
since it is biased towards recall. Similarly, F0.5

would be a reasonable choice for a GED system
designed for language learners. Our choice of



β = 0.5, 2 follows the conventional choices men-
tioned in literature for evaluating precision and re-
call bias.

Traditionally, sampling and example-weighting
have been the most common methods to han-
dle class imbalance. Sampling involves either
undersampling the correct examples or over-
sampling the incorrect examples in the train-
ing set (Van Hulse et al., 2007; Domingos,
1999). In example-weighting, misclassification
costs are associated with the training examples,
with higher misclassification costs for wrongly
classifying incorrect examples (Zadrozny et al.,
2003). In theory, example-weighting and sam-
pling techniques can be shown to be equivalent
(Zadrozny et al., 2003), and in the rest of the paper
we use sampling to refer to both. However, sam-
pling methods have a few limitations which direct
optimization of the performance metrics does not
suffer from:

• Even the choice of sampling ratio is arbitrary
and its effect on the evaluation metrics is not
obvious. A validation set may be used to se-
lect the appropriate ratio which maximizes
the evaluation metric, at the cost of setting
aside some valuable training data for tuning.
On the other hand, while optimizing an eval-
uation metric, it naturally induces a loss func-
tion.

• A high degree of undersampling is required
to negate the effect of the very low error rate
in GED tasks. However, this results in a dras-
tic reduction in the examples available for
training. Random undersampling has been
reported to work reasonably on some datasets
with a dense feature space and a small num-
ber of features (Van Hulse et al., 2007). In
contrast, the classification problems for GED
results are characterized by large and sparse
feature spaces leading to a loss of many fea-
tures due to undersampling. Optimizing eval-
uation metrics directly does not incur this loss
since data is not sampled prior to learning.

• Oversampling with repetition of incorrect

class instances generally does not improve
classification performance and results in
overfitting. Informed oversampling through
introduction of synthetic instances belong-
ing to the minority class (SMOTE) by in-
terpolation of minority class instances in the

training set has shown good improvement in
many applications (Chawla et al., 2002). For
large feature spaces, the generation of syn-
thetic examples can be computationally ex-
pensive since it involves a k-nearest neigh-
bourhood search. Optimizing evaluation met-
rics directly does not incur this computational
overhead.

3 Related Work

The most common methods to handle imbal-
anced datasets in GED involve undersampling the
correct instances (Dahlmeier et al., 2012; Pu-
tra and Szabo, 2013; Kunchukuttan et al., 2013)
or oversampling the incorrect instances (Xing
et al., 2013). Rozovskaya et al. (2012) pro-
pose an error inflation method for preposition
error correction, where a fraction of the cor-
rect prepositions are marked as incorrect prepo-
sitions and these new “erroneous” instances are
distributed among different possible erroneous
prepositions. This method is similar to the Meta-
Cost (Domingos, 1999) approach of re-labelling
examples in the training set according to a cost
function. Some whole-sentence correction ap-
proaches (Kunchukuttan et al., 2014; Junczys-
Dowmunt and Grundkiewicz, 2014; Dahlmeier
and Ng, 2012) are tuned to maximize the Fβ
scores.

In all the work mentioned above, the sys-
tems maximize Fβ by tuning only the “hyper-
parameters” like sampling threshold, features
weights for scores of underlying components
—classifier (Dahlmeier and Ng, 2012) or SMT
component scores (Kunchukuttan et al., 2014;
Junczys-Dowmunt and Grundkiewicz, 2014) —on
a tuning dataset using approximate methods like
MERT (Och, 2003), PRO (Hopkins and May,
2011) and grid search. In contrast, we optimize
all the model parameters exactly and efficiently to
maximize Fβ .

4 Optimizing Performance Measures

A loss function like the induced Fβ loss is non-
decomposable i.e. it cannot be expressed as the
sum of losses over individual instances. We
use the max-margin formulation proposed by
Joachims (2005) for exactly optimizing such non-
decomposable loss functions which can be com-



puted from the contingency table1. It is applicable
only to binary classification problems.

The training loss is described in terms of a loss
function (∆) which measures the discrepancy be-
tween the expected output vector (ȳ) and observed
output vector (ȳ′) on training data of size m:

∆ : (y1...yi...ym)× (y′1...y
′
i...y

′
m)→ R (1)

For a decomposable loss functions like 0-1 loss,
hinge loss, etc. we can express the loss as:

∆(y,y) =
m∑
i=1

∆′(yi, y
′
i) (2)

where, ∆′ is the loss function for a single in-
stance:

∆′ : y × y′ → R (3)

In the max-margin framework, a decomposable
loss function (hinge loss in the example below)
can be minimized by solving the following objec-
tive function for support vector machines (SVM):

min
1

2
w.w + C

n∑
i=1

ξi (4)

s.t : ∀ni=1 : yi[w.xi] ≥ 1− ξi (5)

Here, ξi = 1 − yi[w.xi] is an upper bound on
the loss (∆′) for the ith training instance.

However, non-decomposable loss functions
cannot be modeled in this framework since the
constraint, and hence the loss, is defined per in-
stance. We need a framework to represent the
problem in terms of loss over the entire training set
(i.e. the observed and expected label vector) using
a custom loss function. The StructSVM framework
(Tsochantaridis et al., 2005) provides the ability to
define custom loss functions over arbitrary output
structures like vectors, trees, etc. Joachims (2005)
framed the binary classification problem with non-
decomposable loss functions as a structured pre-
diction problem, where the entire training set be-
comes a single instance. The input (x̄) is a tuple
of the original features vectors (xi) and output is
the label vector (ȳ) . The training objective can be
represented as:

min
1

2
w.w + Cξ (6)

1http://en.wikipedia.org/wiki/
Confusion_matrix

Noun Number
O: It was great to see the excitements on the child’s face.
C: It was great to see the excitement on the child’s face.

Article Preposition
O: I want to buy pen. Keep the pen in the table.
C: I want to buy a pen. Keep the pen on the table.

O: original, C: corrected

Table 3: Examples of grammatical errors
O: original, C: corrected

subject to the following constraints

∀ȳ′ ∈ Y\ȳ : 〈w, δΨ(x̄, ȳ′)〉 ≥ ∆(ȳ, ȳ′)−ξ (7)

where,

δΨ(x̄, ȳ′) = Ψ(x̄, ȳ)−Ψ(x̄, ȳ′) (8)

Ψ(x̄, ȳ′) =

m∑
i=1

y′ixi (9)

Thus any label vector of the training set (ȳ′)
other than the expected label vector (ȳ) would in-
cur a loss upper bounded by:

ξ = ∆(ȳ, ȳ′) + Ψ(x̄, ȳ′)−Ψ(x̄, ȳ) (10)

where, ∆ is a custom loss function between the
expected and observed label vectors.

The number of constraints is exponential in m,
since there are 2m − 1 possible values of ȳ′.
However, the above optimization problem can be
solved efficiently in a polynomial number of itera-
tions using an iterative, cutting plane algorithm.
The efficiency of the overall algorithm depends
on the efficiency of finding the most violated con-
straint, i.e. finding the ȳ′ which maximizes Equa-
tion 10. This loss-augmented inference problem
can be solved in polynomial time for binary clas-
sification problems involving loss functions which
can be computed from the contingency table e.g.
Fβ , precision, recall loss.

5 Grammatical Error Detection
Classifiers

The GED tasks and the classifiers under study are
described in this section.

5.1 Tasks

We consider the following three GED tasks: Noun
Number (NN), Article (Art) and Preposition (Prep)



ARTICLE and NOUN NUMBER features
Head Noun
Is the noun capitalized?
Is the noun an acronym?
Is the noun a named entity?
Is the noun a (i) mass noun, (ii)pluralia tantum?
Observed number of the noun
POS of the noun
Start letter of noun ‡
Suffixes of the noun (length 1-4) ‡
Noun Phrase (NP)
Does the NP have: (i) article (ii) demonstrative (iii) quantifier?
What (i) article (ii) demonstrative (iii) quantifier does the NP have?
Number of tokens in the NP
Start letter of the word to the right of article ‡
Contextual
(i)Token (ii) POS (iii) Chunk tag in±2 word-window around head noun
(i)Token (ii) POS (iii) Chunk tags in±2 word-window around article ‡
Are there words indicating plurality in the context of the noun?
Is the noun a part of a list of nouns?
Grammatical Number of majority of nouns in noun list
Sentence
The first two words of the sentence and their POS tags
Has the noun been referenced earlier in the sentence?
PREPOSITION features
Contextual
(i) Token (ii) POS tag in±4 word-window around preposition
2-4 grams of (i) Token (ii) POS tag around preposition
‡: features used only for articles

Table 4: Feature set for various GED tasks

error detection. A few examples of these errors are
shown in Table 3.

Each is a binary classification task which
labels an instance as grammatically correct

(negative) or incorrect (positive). The training
instances for each task are defined as follows.
For noun number, each noun phrase is an
instance. For articles, each noun phrase con-
taining the articles {a, an, the, φ} is an instance.
For preposition, we consider only preposition
deletion and substitution errors. We consider only
the ten most frequent prepositions as instances:
{on, from, for, of, about, to, at, in, with, by}
(Rozovskaya and Roth, 2010). The top 10 prepo-
sitions account for 78% of all prepositions in the
NUCLE corpus and 81% of all the preposition
errors. The feature sets for the GED tasks are
shown in Table 4.

5.2 Directly optimizing evaluation metrics

We directly optimize Fβ using the support vec-
tor method for optimizing performance measures
(SVM-Perf) proposed by Joachims (2005). We
chose this method since it can exactly and ef-
ficiently optimize non-decomposable evaluation
metrics which can be computed from the contin-
gency table e.g. Fβ . We train different classifiers
corresponding to β = 0.5, 1, 2.

5.3 Sampling Methods

Sampled datasets were created from the origi-
nal training set using three sampling methods.
In random undersampling (Van Hulse et al.,
2007), the correct instances are undersampled
at random and all incorrect instances are re-
tained in the training set. In SMOTE (Chawla
et al., 2002), incorrect class examples are over-
sampled by generating synthetic examples for ev-
ery incorrect instance using linear interpola-
tion with one of its five nearest incorrect neigh-
bours. In cost-sensitive learning (Zadrozny et
al., 2003), misclassifying incorrect instances in-
curs a higher cost as compared to misclassifying
correct instances.

For each sampling method, sampled datasets
were created using different representative sam-
pling ratios (p = 0.3, 0.5, 1.0) which span the en-
tire range. The sampling ratio (p) refers to the ratio
of incorrect to correct examples in the sam-
pled dataset. For cost-senstive learning, the cor-
responding misclassification cost ratio (J) can be
computed as J = pR, where R is the ratio of
correct to incorrect instances in training set.
An SVM is trained with hinge loss on each of
these sampled datasets.

6 Experimental Setup

We tested our GED systems on three annotated
learner corpora: NUCLE (Dahlmeier et al., 2013),
HOO11 (Dale and Kilgarriff, 2011) and HOO12
(Dale et al., 2012) shared task corpora. For the
HOO12 dataset, noun number error detection was
not done since the dataset did not have these anno-
tations.

For hinge loss, the classifiers were trained using
the SVMLight package (Joachims, b). For other
loss functions, classifiers were trained using the
SVM-Perf package (Joachims, a) with extensions
to optimize recall, precision and Fβ . We used a
linear kernel for all our experiments.The evalua-
tion was done using Precision, Recall, F0.5, F1

and F2 metrics. The average scores over a 5-fold
cross-validation are reported.

7 Results and Discussion

7.1 Limitations of sampling methods

Figure 1 shows the F2 scores of sampling meth-
ods for different GED tasks on the NUCLE dataset
as a function of the sampling ratio. We can see



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
p (sampling ratio)

0

5

10

15

20

25

30

F-
2
 (

%
)

rand_us

cost sensitive
SMOTE

(a) Noun Number

0.0 0.2 0.4 0.6 0.8 1.0
p (sampling ratio)

0

5

10

15

20

25

30

35

F-
2
 (

%
)

rand_us

cost sensitive
SMOTE

(b) Articles

0.0 0.2 0.4 0.6 0.8 1.0
p (sampling ratio)

0

2

4

6

8

10

12

14

16

18

F-
2
 (

%
)

rand_us

cost sensitive
SMOTE

(c) Preposition

Figure 1: Comparison of sampling methods on NUCLE dataset (scores in %)

Dataset Method Noun Number Article Preposition
F0.5 F1 F2 F0.5 F1 F2 F0.5 F1 F2

NUCLE

Hinge Loss 7.80 3.42 2.19 6.92 3.07 1.98 15.37 7.85 5.27
Random Undersampling (p=0.3) 11.01 15.62 26.89 14.57 20.01 31.94 6.75 9.53 16.23
Cost-Sensitive (p=0.3) 10.46 13.43 18.79 18.58 22.15 27.43 13.53 8.14 5.82
SMOTE (p=1.0) 18.91 14.74 12.27 10.50 5.78 4.00 10.52 5.28 3.52
SVM-Perf F0.5 14.93 19.17 26.82 17.74 22.34 30.17 6.39 9.41 17.84
SVM-Perf F1 15.72 19.92 27.24 17.95 22.65 30.72 6.60 9.70 18.28
SVM-Perf F2 13.72 18.43 28.08 18.02 22.65 30.51 6.55 9.63 18.15

HOO-11

Hinge Loss 18.48 14.15 11.64 35.55 29.87 25.85 28.90 16.92 12.22
Random Undersampling (p=0.3) 3.55 5.36 10.98 14.64 19.54 29.42 9.90 11.96 15.20
Cost-Sensitive (p=0.3) 18.48 14.15 11.64 33.88 29.49 26.23 28.90 16.92 12.22
SMOTE (p=1.0) 18.48 14.15 11.64 34.28 29.64 26.19 28.90 16.92 12.22
SVM-Perf F0.5 4.42 6.45 11.98 25.86 27.89 30.44 26.67 17.69 13.32
SVM-Perf F1 4.42 6.45 11.98 24.06 28.12 33.88 24.84 17.19 13.21
SVM-Perf F2 4.70 6.96 13.42 18.58 24.01 34.05 12.69 14.39 16.81

HOO-12

Hinge Loss 7.66 3.74 2.47 17.63 10.14 7.12
Random Undersampling (p=0.3) 10.11 13.75 21.50 12.26 15.91 22.66
Cost-Sensitive (p=0.3) 14.66 16.79 19.65 17.58 11.47 8.51
SMOTE (p=1.0) 7.28 3.90 2.66 12.74 6.83 4.68
SVM-Perf F0.5 11.37 15.05 22.29 12.79 17.01 25.42
SVM-Perf F1 11.69 15.22 21.83 10.84 15.11 24.91
SVM-Perf F2 11.94 15.48 22.02 9.48 13.80 25.32

Table 5: Comparison of SVM-Perf with best sampling methods (scores in %)

that the scores vary sharply with sampling ra-
tio, making the choice of the right sampling ratio
extremely important. Undersampling techniques
show a sharp increase in recall with increasing
sample ratios (up to 20%), but a sharp drop in pre-
cision with increase in sampling ratio (halving the
precision in some cases). Thus, the methodology
does not offer much in terms of achieving a good
precision-recall trade-off. The drastic variation in-
dicates that the bias introduced by the sampling ra-
tio is driving the classifier’s decision and the train-
ing data’s role is made irrelevant due to sampling
loss.

In general, we can observe a trend that un-
dersampling and cost-sensitive techniques per-
form best at low sampling ratios (p=0.3), whereas
SMOTE performs best at higher sampling ratios

(p=1.0). This is a consequence of the high im-
balance ratio for GED tasks. However, there is
no sampling method that is uniformly best across
tasks and evaluation metrics. Empirical cross-
validation is the only way to determine the best
sampling method and configuration for a particu-
lar task.

7.2 SVM-Perf vs. sampling methods

Table 5 shows F1, F2 and F0.5 evaluation
for various SVM-Perf classifiers (optimized for
Fβ=0.5,1,2) and compares them with the classic
hinge loss classifier and the best undersampling,
oversampling and cost-sensitive learning methods
on three datasets.

For the F2 evaluation metric, optimizing F2 is
clearly better than the sampling techniques in all



but one out of 8 cases (NUCLE, Art). Even in
this case, the performance of Fβ optimization is
comparable to the best sampling method (96%
of the undersampling score). Improvements up
to 15% in F2 score over the best sampling tech-
niques have been observed. For instance, on the
HOO11 dataset, the F2 scores improve by about
15%, 15% and 10% over the best sampling meth-
ods for the NN, Art and Prep tasks respectively.
Using F2 optimization, the precision is generally
higher than that of the best performing sampling
technique. Only in 3 cases, F2 optimization gives
slightly lower F2 scores than F1 or F0.5 optimiza-
tions (≈ 1% lesser). A GED system designed to
achieve high recall can thus benefit from optimiz-
ing the F2 metric.
F1 optimization gives the best F1 score on the

NUCLE dataset for all tasks, and on some tasks on
other datasets. For instance, the F1 scores improve
by 27.52%, 2.26% and 1.78% over the best sam-
pling methods for the NN, Art and Prep tasks re-
spectively on the NUCLE dataset. Only on the NN

task for the HOO-11 dataset, the sampling meth-
ods vastly outperform F1 optimization. On the re-
maining tasks, the performance is comparable to
the best performing sampling method. In most
cases, we can conclude thatF1 optimization would
yield a good F1 score.

Finally, none of the Fβ optimizers perform well
for F0.5 as the evaluation metric. The preci-
sion/recall analysis in the next section explains
this issue.

7.3 Precision, Recall and Accuracy Analysis

Table 6 shows the accuracy, precision and re-
call for the classic hinge loss classifier and the
best undersampling, oversampling, cost-sensitive
and SVM-Perf classifiers on the NUCLE dataset.
Other datasets also show similar trends.

Undersampling methods achieve higher recall
(more than 70% for all tasks with p = 1.0), which
can be attributed to the strong inductive bias that
alters the class prior in favour of the minority
class. But there is a substantial reduction in preci-
sion and accuracy. The classic SVM with no sam-
pling achieves the highest precision for all tasks
(more than 40% for all tasks), while SMOTE also
shows higher precision (between 25-32%). But
the recall is as low as 5%. The SVM-Perf classifier
maintains a comparatively high precision (≈ 15%,
except preposition GED task) as well recall (be-

tween 35-45%), while the accuracy drop com-
pared to the classic hinge is comparatively less.

We also investigated if SVM-Perf is effective
in obtaining high precision or recall by directly
optimizing precision and recall respectively (see
Table 7 for results). Optimizing recall signifi-
cantly increases the recall over Fβ optimization,
with recall of more than 50% achieved on all
tasks. However, optimizing precision does not
show much improvement over the Fβ optimiza-
tion and is clearly far worse than the precision ob-
tained with the baseline SVM. Precision loss can
be represented as FP/(FP + TP ). We can see
that FP = 0 can easily be achieved by assigning
all examples to the correct class, since FN does
not affect the precision. This loss function does
not provide a sufficient bias for increasing preci-
sion. This also explains why optimizing F1, F2

are more effective than optimizing F0.5 which is
precision oriented.

8 Conclusion and Future work

We have shown on multiple GED tasks and
datasets that optimizing F1 and F2 outperforms
sampling for these evaluation metrics, while main-
taining accuracy and precision above what is
achieved through sampling methods. Directly op-
timizing evaluation metrics scores over sampling
since: (i) the optimization objective can incorpo-
rate precision requirements and needs no empiri-
cal determination of hyper-parameters, and (ii) no
data loss/corruption due to sampling.

It is beneficial to use F2 optimization to learn
GED classifiers designed for recall-oriented use-
cases like copyediting. The gains are largely due
to improvement in recall, and we show the inher-
ent difficulties in optimizing a precision-oriented
metric. Future directions of work include improv-
ing precision and direct optimization of evaluation
metrics for grammatical error correction.

A natural extension is to apply this method to
error detection in native speaker text and machine
translation output. Our method also has wider ap-
plicability to other problems in NLP which en-
counter the imbalanced dataset problem e.g. sar-
casm detection, sentiment thwarting detection,
WSD, NER, etc.

References
Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O.

Hall, and W. Philip Kegelmeyer. 2002. SMOTE:



Method Noun Number Article Preposition
A P R A P R A P R

Hinge Loss 98.54 54.29 1.77 97.50 42.39 1.60 98.41 42.91 4.32
Random Undersampling (p=0.3) 91.79 9.20 51.88 89.44 12.33 53.06 90.92 5.65 30.54
Cost-Sensitive(p=0.3) 95.16 9.11 25.63 94.29 16.78 32.62 98.27 24.26 4.89
SMOTE (p=1.0) 98.16 25.00 11.07 97.34 24.15 3.32 98.38 31.46 2.88
SVM-Perf F0.5 95.46 13.02 36.67 93.17 15.60 39.40 86.60 5.26 44.46
SVM-Perf F1 95.72 13.79 36.22 93.16 15.77 40.30 87.01 5.44 44.63
SVM-Perf F2 94.39 11.72 43.19 93.26 15.86 39.68 86.97 5.40 44.24

Table 6: NUCLE dataset: Comparison of Accuracy (A), Precision (P), Recall (R) (scores in %)

Method Noun Number Article Preposition
Precision Recall Precision Recall Precision Recall

SVM-Perf Precision 12.60 39.92 15.97 39.26 7.52 0.45
SVM-Perf Recall 3.93 63.16 7.35 56.37 4.02 52.76

Table 7: NUCLE dataset: Optimizing Precision and Recall (scores in %)

Synthetic Minority Over-sampling Technique. Jour-
nal of Artificial Intelligence Research, 16(1).

Martin Chodorow, Markus Dickinson, Ross Israel, and
Joel R Tetreault. 2012. Problems in evaluating
grammatical error detection systems. In COLING,
pages 611–628. Citeseer.

Daniel Dahlmeier and Hwee Tou Ng. 2012. A beam-
search decoder for grammatical error correction. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning.

Daniel Dahlmeier, Hwee Tou Ng, and Eric Jun Feng
Ng. 2012. NUS at the HOO 2012 Shared Task. In
Proceedings of the Seventh Workshop on Building
Educational Applications Using NLP.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a Large Annotated Corpus of
Learner English: The NUS Corpus of Learner En-
glish. In Proceedings of the 8th Workshop on Inno-
vative Use of NLP for Building Educational Appli-
cations.

Robert Dale and Adam Kilgarriff. 2011. Helping our
own: The HOO 2011 pilot shared task. In Proceed-
ings of the 13th European Workshop on Natural Lan-
guage Generation.

Robert Dale, Ilya Anisimoff, and George Narroway.
2012. HOO 2012: A report on the preposition and
determiner error correction shared task. In Proceed-
ings of the Seventh Workshop on Building Educa-
tional Applications Using NLP.

Pedro Domingos. 1999. Metacost: A general method
for making classifiers cost-sensitive. In Proceedings
of the fifth ACM SIGKDD international conference
on Knowledge Discovery and Data Mining.

Haibo He and Edwardo A Garcia. 2009. Learn-
ing from imbalanced data. IEEE Transactions on
Knowledge and Data Engineering, 21(9).

Mark Hopkins and Jonathan May. 2011. Tuning as
ranking. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
pages 1352–1362. Association for Computational
Linguistics.

Emi Izumi, Kiyotaka Uchimoto, and Hitoshi Isahara.
2004. The NICT JLE Corpus: Exploiting the Lan-
guage Learners Speech Database for Research and
Education. International Journal of the Computer,
the Internet and Management.

Thorsten Joachims. Svm-perf: Support vector ma-
chine for multivariate performance measures.
http://www.cs.cornell.edu/People/
tj/svm_light/svm_perf.html/.

Thorsten Joachims. Svmlight: Support vector ma-
chine. http://svmlight.joachims.org/.

Thorsten Joachims. 2005. A Support Vector Method
for Multivariate Performance Measures. In Pro-
ceedings of the 22nd International Conference on
Machine Learning.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2014. The AMU System in the CoNLL-2014
Shared Task: Grammatical Error Correction by
Data-Intensive and Feature-Rich Statistical Machine
Translation. In Proceedings of the Eighteenth Con-
ference on Computational Natural Language Learn-
ing: Shared Task.

Anoop Kunchukuttan, Ritesh Shah, and Pushpak Bhat-
tacharyya. 2013. IITB System for CoNLL 2013
Shared Task: A Hybrid Approach to Grammati-
cal Error Correction. In Proceedings of the Seven-
teenth Conference on Computational Natural Lan-
guage Learning: Shared Task.

Anoop Kunchukuttan, Sriram Chaudhury, and Pushpak
Bhattacharyya. 2014. Tuning a Grammar Correc-
tion System for Increased Precision. In Proceed-
ings of the Eighteenth Conference on Computational
Natural Language Learning: Shared Task.



Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian
Hadiwinoto, and Joel Tetreault. 2013. The CoNLL-
2013 Shared Task on Grammatical Error Correction.
In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning: Shared
Task.

Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation. In Proceedings of
the 41st Annual Meeting on Association for Compu-
tational Linguistics-Volume 1.

Desmond Darma Putra and Lili Szabo. 2013. UdS at
CoNLL 2013 Shared Task. In Proceedings of the
Seventeenth Conference on Computational Natural
Language Learning: Shared Task.

Alla Rozovskaya and Dan Roth. 2010. Generating
confusion sets for context-sensitive error correction.
In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing.

Alla Rozovskaya, Mark Sammons, and Dan Roth.
2012. The UI system in the HOO 2012 shared task
on error correction. In Proceedings of the Seventh
Workshop on Building Educational Applications Us-
ing NLP.

Ioannis Tsochantaridis, Thorsten Joachims, Thomas
Hofmann, and Yasemin Altun. 2005. Large mar-
gin methods for structured and interdependent out-
put variables. In Journal of Machine Learning Re-
search.

Jason Van Hulse, Taghi M Khoshgoftaar, and Amri
Napolitano. 2007. Experimental perspectives on
learning from imbalanced data. In Proceedings
of the 24th International Conference on Machine
learning.

Junwen Xing, Longyue Wang, Derek F. Wong, Lidia S.
Chao, and Xiaodong Zeng. 2013. UM-Checker: A
Hybrid System for English Grammatical Error Cor-
rection. In Proceedings of the Seventeenth Confer-
ence on Computational Natural Language Learn-
ing: Shared Task.

Bianca Zadrozny, John Langford, and Naoki Abe.
2003. Cost-sensitive learning by cost-proportionate
example weighting. In Third IEEE International
Conference on Data Mining.


