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Knowledge about protein-protein interactions is essential for understanding the biological processes
such as metabolic pathways, DNA replication, and transcription etc. However, a majority of the existing
Protein-Protein Interaction (PPI) systems are dependent primarily on the scientific literature, which is
not yet accessible as a structured database. Thus, efficient information extraction systems are required
for identifying PPI information from the large collection of biomedical texts.

In this paper, we present a novel method based on attentive deep recurrent neural network, which
combines multiple levels of representations exploiting word sequences and dependency path related
information to identify protein-protein interaction (PPI) information from the text. We use the stacked
attentive bi-directional long short term memory (Bi-LSTM) as our recurrent neural network to solve the
PPl identification problem. This model leverages joint modeling of proteins and relations in a single unified
framework, which is named as the ‘Attentive Shortest Dependency Path LSTM’ (Att-sdpLSTM) model. Ex-
perimentation of the proposed technique was conducted on five popular benchmark PPI datasets, namely
AiMed, Biolnfer, HPRD50, IEPA, and LLL. The evaluation shows the F1-score values of 93.29%, 81.68%,
78.73%, 76.25%, & 83.92% on AiMed, Biolnfer, HPRD50, IEPA, and LLL dataset, respectively. Comparisons
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with the existing systems show that our proposed approach attains state-of-the-art performance.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The study of the Protein-Protein Interaction (PPI) is crucial
in understanding the biological process, such as DNA replication,
transcription, metabolic pathways and cellular organization. Ow-
ing to this fact, several databases have been manually curated to
cache protein interaction information such as MINT [1], BIND [2],
and SwissProt [3] in structured and standard formats. However,
the rapid growth of biomedical literature has shown a significant
gap between the availability of protein interaction article and its
automatic curation. As such, a majority of the protein interaction
information is still uncovered in the textual contents of biomedical
literature. Moreover, the growth in biomedical literature is at an
exponential pace. In the last 20 years, the overall size of MEDLINE
has increased at a 4.2% compounded annual growth rate. There
is 3.1% compounded annual growth rate in the number of new
entries in MEDLINE database. MEDLINE currently has more than
6,000,000 publications, which are more than three millions than
those published in the last 5 years alone [4]. Hence, owing to the
exponential rise [5,6] and complexity of the biological information,
the necessity for intelligent information extraction techniques to
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assist biologist in detecting, curating and maintaining database
is becoming crucial. This has lead to a surge in the interest of
Biomedical Natural Language Processing (BioNLP) community for
automatic detection and extraction of PPI information.
Determining PPIs in the scientific text is the process of recogniz-
ing how two or more proteins in the given biomedical sentence are
related. We exemplify interaction types between protein pairs in
Table 1 where protein (Bnrlp-Rho4p) forms the interacting protein
pair and the (Bnrlp-Rho1p) is non-interacted protein pairs.
Majority of the existing systems look upon this task as a binary
classification problem by identifying whether any interaction oc-
curs between a pair of proteins or not. One of the most explored
techniques for PPI task includes kernel-based method [7,8]. The
potentiality of the kernel-based method is due to the virtue of a
large amount of carefully crafted features. However, extraction of
these features relies on the other NLP tools such as ABNER [9],
MedT-NER [10] or PowerBioNE [11] and machine learning (ML)
tool (SVM-light with Tree-Kernels). Recently, with the widespread
usages of neural network based techniques in clinical and biomed-
ical domain natural language processing tasks [12-21], meth-
ods exploring latent features have emerged as strong alternative
choices over the traditional machine learning based techniques.
Some of the distinguished studies [22,23] for PPI extraction tasks
utilize convolution neural networks (CNNs) which have shown
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Table 1
Exemplar description of protein protein interaction in a sentence.

Sentence

Protein entities

Interacted protein pair Non-interacted protein pair

Bnrlp interacts with another Rho family member, Rho4p,but Bnrlp, Rho4p, Rholp Bnrlp-Rho4p Bnrlp-Rho1p
not with Rho1p.
These data demonstrate that Stat3 but not Stat1 or Stat5 is Stat3, Stat1, Stat5, IL-10 Stat3-1L-10 Stat3-Stat1, Stat3-Stat5, Stat3-I1L-10,

directly recruited to the ligand-activated IL-10 receptor.

Stat1-Stat5, Stat1-IL-10, Stat5-IL-10

significant performance improvements over the existing state-of-
art techniques. Some other popular neural network based models
for relation extraction are [24,25] system. However, these sys-
tems are mostly applicable in identifying different relationships
from newswire articles. Thus these approaches fail to produce a
comparable performance on biomedical literature owing to the
complexity of the biomedical text. Biomedical named entities do
not have standard nomenclature. Moreover, the different protein
entities often have similar names making it more difficult to cap-
ture the contextual information, and these arbitrariness increases
the difficulty in capturing the semantic relationships between the
entities (proteins).

Motivated by these observations, in this paper we propose
an attentive shortest dependency path based Bi-directional LSTM
architecture (Att-sdpLSTM) to identify PPI pairs from the text.
The proposed method differs from the previous studies in three
facets: firstly, utilizing the dependency relationships between the
protein names, we generate the Shortest Dependency Path (SDP)
of the sentences. This facilitates us to create more syntax-aware
inferences about the capabilities of the proteins in a sentence in
comparison to the technique developed based on classical kernel-
based method. Second, we investigate the significance of Part-of-
Speech (PoS) and position embedding features in improved learn-
ing of the Att-sdpLSTM. Finally, we exploit the stacked Bi-LSTM
over attention by stacking multiple Bi-LSTMs layers on top of each
other, and finally generating the weighted sum representation of
hidden states using the attention mechanism. This approach po-
tentially allows the hidden state at each level to operate at different
timescale. In contrast to the systems proposed by [22] and [23],
we employ attentive multi-layer Bi-LSTM models [26] instead of
Convolutional Neural Network (CNN) [27]. In CNN, features are
generated by performing pooling over the entire sentence based on
continuous n grams, where n refers to the filter size. This puts con-
straints on longer sentences where long-term dependencies exist.
Our method circumvents the shortcoming of CNN architecture
by utilizing the Bi-LSTM layer, which can effectively encode the
long-term dependencies using the recurrent connection. In gen-
eral, Bi-LSTM can keep track of preceding and succeeding words.
We also use the attention mechanism to generate the weighted
representation of each word. As such, when we employ the LSTM,
we obtain the features from the entire sentence possessing the
whole information not just on n-grams as in state-of-the-art CNN
based architecture [22,23]. The intuition behind Bi-LSTM network
is that it combines the multiple levels of representations that are
proven to be effective in deep networks with the flexible use of
long range context that empowers RNNs (LSTM). Also, introducing
attention mechanism in the context of relation classification helps
in weighing of text segments (e.g., word or sentence) or some
high-level feature representations obtained by learning a scoring
function. This allows a model to pay more attention to the most
influential segments of texts for a relationship category.

In contrary, the existing methods [24,28] generally consider
a whole sentence as the input. The drawback of these existing
techniques is that such representations fail to describe the rela-
tionships of two target entities which appear in the same sentence
at a far distance (i.e. long distant). Considering these problems,
in our proposed technique we exploited dependency parsing re-
lated feature to examine the sentence and capture the Shortest

Dependency Path to generate SDP based word embedding. In order
to further inject the explicit linguistic information and boost the
performance of the attentive multi-layer LSTM architecture, we
have included the PoS information of SDP based words to assist the
LSTM based network. The position w.r.t protein and part-of-speech
(PoS) are prominent features' in identifying the protein interaction
information. PoS provides useful evidence that helps to detect
important grammatical properties. Words assigned with same PoS
possess similar syntactic behavior which provides an important
clue to the system for inferencing the interaction between the
protein pair.

The basic structure of a sentence can be obtained by deter-
mining the position of protein-word and the word occurring in
its vicinity which provides pivotal clues to identify interactions in
sentences. The extraction of SDP based word embeddings rather
than full sentence embedding and its usage as an input to attentive
Bi-LSTM network in an amalgamation with the other latent feature
is the core contribution of our proposed work.

The key contributions of the proposed work are summarized
below:

(1) Anshortestdependency path based attentive Bi-LSTM model
(Att-sdpLSTM) inspired from [29] is proposed for relation
extraction in biomedical domain.

(2) Integration of different concepts (SDP, attention, stacking, &
feature embedding) and application of the integrated system
in solving the biomedical protein protein interaction task is
a novel contribution.

(3) Latent features like Part-of-Speech (PoS) and position of
token with respect to the proteins which are found to be
effective are utilized in extracting protein-protein pairs in
a deep learning framework.

(4) We have demonstrated that word embedding models
learned on the PubMed, PMC and Wikipedia corpus are more
powerful than the internal embedding models or the models
trained on general corpus such as the news corpus.2

(5) Evaluations on five different benchmark corpora, namely
AiMed, Biolnfer, HPRD50, IEPA, and LLL establish the fact
that our proposed approach is generic in nature. Please note
that these five datasets were created by following different
protein annotation guidelines.

2. Related works

1. Pattern-based model: Preliminary studies conducted by
[30] and [31] explored pre-specified patterns and rules for
the PPI task. However, the system lacks in identifying com-
plex cases such as complex relationships expressed in vari-
ous coordinating and relational clauses. For sentences con-
taining complex relations between three or more entities,
the approach usually yields erroneous results. For example,
“The gapl mutant blocked stable association of Ste4p with
the plasma membrane, and the ste18 mutant blocked stable

1 We used the word features and embeddings interchangeably for position and
PoS input.

2 https://code.google.com/archive/p/word2vec/.
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Table 2

Feature Encoding for sentence “Interaction between cell cycle regulator, Prot1, and Prot2 mediates repression of HIV-1 gene transcription.” Here, the words occurring in the

vicinity of SDP are used to generate features.

SDP words PoS PoS feature PoS feature Relative position Relative position Position Position Position feature Position feature
Encoding from Prot; from Prot, feature-1 feature-2 encoding-1 encoding-2
Prot1 NN 10000000 [0.00171600 0 —6 0000000000 0000111111  [0.03141600 [0.1117600
...0.0033500] ...0.9035500] ...0.0223500]
Regulator NN 00000000 [0.99121600 1 -5 0000000001 0000011111  [0.77171600 [0.83191600
...0.0233500] ...0.4858500] ...—0.1133500]
Between IN 00100000 [0.25191600 2 —4 0000000011 0000001111 [0.33171600 [0.58961600
...0.1739500] ...—0.8833500] ...0.7189200]
Interaction NN 10000000 [0.17171219 3 -3 0000000111 0000000111  [0.75171600 [0.99171600
...0.7583350] ...0.5533500] ...0.7633500]
and CC 00100000 [0.17001600 4 -2 0000001111 0000000011  [0.78117600 [0.72171600
...0.3030350] ...—0.033500] ...0.1233500]
Repression NN 10000000 [0.17858500 5 -1 0000011111 0000000001  [0.45897600 [0.7800100
...0.8835300] ...—0.0522500] ...0.3311500]
Prot2 NN 10000000 [0.98581600 6 0 0000111111 0000000000  [0.77451600 [0.1745100
...0.0263500] ...0.8985500] ...0.3323500]

association of Ste4p with both plasma membranes and internal
membranes.”

In [32] authors proposed a technique based on dynamic pro-
gramming to automatically discover patterns. The system
proposed in [33] also studied the performance of rule-based
algorithms. They developed two models, first one made use
of rapier rule-based system and the other one relied on
longest common subsequences.

2. Using dependency parsing: Here we describe the works
that take into account more syntax aware approach such
as full and partial (shallow) parsing. In the partial pars-
ing, sentence structure is divided partially and dependen-
cies are generated locally within the phrase. While in full
parsing, the whole sentence is considered to capture de-
pendencies, [34] developed the system solely based on the
shallow syntactic information. They further incorporated
kernel functions to combine information from the entire
sentence and the local contexts around the interacting enti-
ties. The work reported in [35] focused on extracting the SDP
between the protein pairs by defining the cosine similari-
ties and edit distance function via semi-supervised learning.
Some of the other prominent works include the studies
conducted by [36] and [37]. Other popular studies based on
full parsing include the works as reported in [38-40].

3. Kernel-based model: Bunescu and Mooney [7] first pro-
posed the idea of using kernel methods to extract PPI based
on the SDP. Some of the effective kernel-based techniques
for PPI task include graph kernel [41], bag-of-word (BoW)
kernel [42], edit-distance kernel [35], all-path kernel [8] and
tree kernel [43,44].

4, Deep learning based model: Recent studies show the ap-
plicability of deep learning models for the PPI task [22,23].
The work reported in [22] made use of Convolutional Neural
Network (CNN) for developing the PPI based system. [23]
proposed a CNN based model utilizing several handcrafted
features exploiting lexical, syntactic and semantic level in-
formation in combination with word embeddings.

3. Method

In this study, we present a novel method to predict protein
interaction pairs from the biomedical text. Our model leverages
joint modeling of proteins and relations in a single model by
exploiting attentive stacked Bi-LSTM technique. Dependency be-
tween entities captures the information relevant for identifying the
relations. We begin by extracting SDP sentences, which capture
the dependency information between the entities and exploiting
latent features PoS and position embedding. Embeddings are gen-
erated corresponding to each feature which is passed as input to

the stacked Bi-LSTM unit. The architecture of our proposed Att-
sdpLSTM is shown in Fig. 2. We describe each phase in succeeding
subsections.

3.1. Shortest Dependency Path (SDP)

The input to the sdpLSTM is the SDP between a protein pair.
For this purpose, we exploit the dependency parse tree of the
sentence. It describes the syntactic constituent structure of the
sentence by annotating edges with dependency types, e.g. subject,
auxiliary, modifier and captures the semantic predicate-argument
relationships between the words. In general, [7] first proposed the
idea of using dependency parse tree for relation extraction. They
designed a kernel function exploring the shortest path between
the entities to capture the relations. The main intuition behind
this is based on the observation that shortest path reveals non-
local dependencies within sentences which can help in capturing
the relevant information from the sentence. The shortest path
between the protein pair generally captures the essential informa-
tion (aspects of sentence construction such as mood, modality and
sometimes negation, which can significantly alter or even reverse
the meaning of the sentence) to identify their relationship. The
approach proposed in [45] was proved to be significantly better
over the dependency tree kernel-based model. We follow this idea
to use SDPs for extracting protein interacting pairs.

As illustrated in Fig. 2, the word ‘bind’ in SDP carries important
information to predict the interaction between the protein pair.
The dependency relation bounded here is by verb argument and
as interaction verb carries essential evidence in PPI. For PPI task,
capturing these dependency relations is important.

For the purpose of extracting dependency relations, we use Enju
Parser> which is a syntactic parser for English and can effectively
analyze syntactic and/or semantic structures of biomedical text
and provide with predicate-argument information. We have gen-
erated a graph for every sentence that contains at least two protein
entities where each word corresponds to the node of the graph and
the edges between the nodes (dependency relation) are obtained
by the parser. We utilize Breadth First Search (BFS) algorithm [46]
to calculate the shortest distance between the protein pair. The
words occurring between the SDP only takes part in the training
instead of the whole words present in the sentences to generate
SDP embedding.

3 http://www.nactem.ac.uk/enju/.
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Fig. 1. Proposed model architecture for protein protein interaction. The input is the Shortest Dependency Path (SDP) between a pair of protein. The output of the model is
the probability distribution over two class:‘interaction’ and ‘non-interaction’. (all the neurons representation are hypothetical).

verb-arg
prep-arg
verb-arg
verb-arg
aux-arg
‘ Pott || is || shown || to || bind H with H cell \I surface H of H Prot2 ‘
comp-arg prep-ar noun-arg prep-ar prep-ar
aux-arg

Fig. 2. The predicate argument of the example sentence “Prot1 is shown to bind with cell surface of Prot2”. Here, the words represent the nodes and predicate argument
relation is represented by edges. The red nodes form the SDP for the given sentence with the black arrow denoting the path to reach from ‘Prot;’ to ‘Prot,’. The other words
are represented in blue round-rectangular boxes that are not part of SDP. Thereby, the SDP for given sentence is “Prot1 bind with surface of Prot2”.

Table 3
Binary representation of relative distance w.r.t the protein mention.
Distance 0 1 2 3 4 5 6 7 8 9 10 11-00
0 0 0 0 0 0 0 0 0 0 1 1
g 0 0 0 0 o O O O O 1 1 1
ke 0 0 0 0 0 0 0 0 1 1 1 1
g 0 0 0 0 0 0 0 1 1 1 1 1
g 6o o 0o 0 0 o0 1 1 1 1 1 1
2 0 0 0 0 0 1 1 1 1 1 1 1
> oo 0o 0 1 1 1 1 1 1 1 1
= 0 0 0 1 1 1 1 1 1 1 1 1
9 0 0 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1

3.2. Latent feature encoding layer

Along with the SDP embedding, we design domain-independent
features to assist our model in becoming more generic and adapt-
able. We explore PoS and position of each word as a feature. An
exemplar illustration of latent feature encoding is provided in
Table 2.

1.

PoS feature: This represents the PoS for each word occurring
in the vicinity of SDP. We use Genia Tagger® to extract PoS
information of each token. Every PoS tag is encoded as a
unique eight dimension one hot vector which is fed to a
neural network (NN) based encoder. Auto-encoder [47] is
employed to transfer the sparse PoS features to the dense

4 http://www.nactem.ac.uk/GENIA/tagger/.

real-valued feature vectors. This converts one-hot represen-
tation to dense feature representation of dimension 8. We
use Adadelta optimizer [48] with loss function as a squared
error to train our auto-encoder model.

Let P represents the one hot vector of a PoS tag correspond-
ing to each word. The auto-encoder learns the transition
functions ¢ and £2 such that reconstruction errors (squared
errors) are minimized. The function ¢ and §2 are called the
encoder and the decoder function, respectively. Mathemat-
ically, it can be written as follows:

¢, $2 = argmin IP—P'|? (1)

whereg :P — 7,2 :Z — P.

. Position feature: This feature helps us in identifying the

significant interacting tokens between the two target pro-
tein entities. The position feature computes the relative
distances of a word with respect to the protein mentions.
We extract this feature on SDP of the target protein pairs.
It is a two-dimensional tuple denoting distances of these
tokens from the two target proteins. For e.g., consider the
following sentence: ‘Prot1 regulator between interaction
and repression Prot2’, the relative distances of the word
‘interaction’ with respect to Prot1 and Prot2 are —3 and
3, respectively. Relative distances are then mapped to 10-
dimensional binary vectors. From Table 3, we can observe
that more attention is given to the words near to the protein
mentions, particularly to the words occurring in the vicinity
of 10 surrounding words. Moreover, words whose relative
distances exceed 10 are all treated equally.
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Intuitively, the words which are nearer to the target words
are more informative than the farther words. We perform
experiments to determine the optimal dimension by varying
the distance (from 5 to 12) of more informative words with
respect to proteins as shown in Table 6. We notice that the
system performs well when the maximum relative distance
of the informative word is within the range of 10 w.r.t the
protein term. As we follow the binary representation of
distance, therefore, the position feature is represented using
a feature vector of 10 dimensions.

Similar to PoS feature, every position feature is encoded as
a 10-dimensional vector which is fed into an auto-encoder.
Using the learned auto-encoder model, we convert the sparse
position feature vector to a dense real valued feature vector
of dimension 10.

3.3. Embedding layer

Word embedding persuades a real-valued latent semantic or
syntactic vector for each word from a large unlabeled corpus by us-
ing continuous space language models [49]. In embedding layer we
obtain real-valued vector corresponding to each word of the SDP.
Let us assume that we have a SDP sentence Sygp = {w1, wy ... Wy}
having size N, a pre-trained word embedding matrix M € R,
A real-valued vector representation E;’ for given a word wy can be
obtained as follows:

Ex =M - j(wy) (2)

where j(wy) is the one hot vector representation of the word wy.
Thereafter, we augment the PoS and position embeddings (ob-
tained from the previous layer) to the vector representation.

X = EI?} ® E}:gs ® E];(zosition (3)

where EF*S and E[*"" are the PoS embedding and position em-
bedding, respectively. The @ denotes the concatenation operator.
In our work, we use publicly available word embedding® (200
dimensions) pre-trained on a combination of PubMed and PMC
articles to the text extracted from a recent English Wikipedia
dump. The performance of the word embedding depends on var-
ious hyperparameter setting such as vector dimension, context
window size, learning rate, sample size etc. Pysallo et al. [50] has
released this pre-trained biomedical embedding after the deep
analysis of various hyperparameter setting that obtains optimal
embedding. Utilizing the pretrained word embedding not only
helps in minimizing the time cost but also helpful in obtaining the
best optimal parameter.

3.4. Stacked Bi-LSTM layer

The Stacked Bi-LSTM layer takes the input from embedding
layer and provides a higher level abstract representation of each
word in the sentence. Recurrent neural network (RNN) is a power-
ful technique to encode a sentence by capturing long term depen-
dency. However, because of the long sequence it often suffers from
vanishing or exploding gradient problems [26,51]. This problem
can be overcome by gating and memory mechanism as introduced
in LSTM [52]. LSTM provides a different way to compute the hidden
states.

The feature word sequence is represented by a bidirectional
LSTM-RNNs [26]. The LSTM unit at kth word consists of an input
gate iy, forget gate f, an output gate o, a memory cell ¢, and hidden
state hy. The input to this unit is a n-dimensional input vector

5 http://bio.nlplab.org/.

Xk, the previous hidden state hy, and the memory cell hyy, and
computes the new hidden states as follows:

i = o (W{'xi + Wi hy_q + b7)

fe = oW %+ W h_y + b9

or = o(W% + WSy + b))

u = tanh(W" %, + Wiy + )
G = ik O U + fi © Chr

hy = o, © tanh(cy)

where o, ® denote the sigmoid function and element-wise multi-
plication, respectively. The Wy, W, and b’s are the weight-metrics
and bias vectors, respectively. We can simplify Eq. (4) as follows:

hy, cx = LSTM(xy, Ck—1, hr—1) (5)

Inspired by the success of stacked attentive LSTM in solving other
NLP tasks [29,53-55], we use the stacked LSTM to encode the
shortest dependency path sentence. The Stacked LSTM is an exten-
sion to LSTM model that has multiple hidden LSTM layers where
each layer contains multiple memory cells. The purpose of using
multiple LSTM layers is to learn more sophisticated conditional
distributions from the data [56]. In this work, we employ vertical
stacking strategy where the output of the previous layer of LSTM is
fed to the input of the next layer of LSTM. Let the number of layers
in stacked LSTM is L then the LSTM computes the hidden state and
memory cell for each layer I € L as follows:

R, ch = LSTM(xL, ¢, B (6)

where, h§< and c,’< are the hidden state representation and the mem-
ory cell at the Ith layer, respectively. The inputs c,? and hg to the
first layer (I = 1) of LSTM are initialized randomly. The first layer of
LSTM unit at kth word feature takes the input as the concatenation
of word embedding, PoS embedding and position embeddings
obtained from an auto-encoder: x; = [EY @ Ef*S @ E*""]. The
inputs (x;"', cl, hk) to the (I + 1)th LSTM layer is the (hi, ci, h}),
in other words the output hidden state hi of the Ith layer is the
input to the (I + 1)th layer and the hidden state and memory cell
are initialized with the previous layer’s hidden state and memory
cell respectively. We compute the forward ( hy ) and backward ( hy, )
hidden state for each word k in the sentence. The final hidden state
at layer [ is computed by augmenting both the hidden states: z}< =

— 7 <«

[hl, @ h. 1. The final SDP sentence representation is calculated by

taking the hidden state of the last layer (L) of the LSTM as follows:
- >«

— <~
21,2, ...,z = [hs @ KL 1, [hS @ K51, ..., [hy @ K] (7)

3.5. Attention layer

We introduce another layer over the outputs of stacked LSTM.
The attention layer uncovers the salient contexts from the SDP
sentence and encodes those to form the context vector. Usually the
contexts in our task are the clue words and the implicit information
which play important roles in deciding the interaction or non-
interaction between the protein pairs. The inputs to this layer are
the hidden states as calculated in Eq. (7) and the output is the
weighted sum based on the attention distribution. We first feed
the hidden state z, of the kth of the SDP sentence to one-layer
perceptron to obtain the my as a hidden representation of z;, then
we compute the similarity with the context vector c. We obtain
the normalized attention weights through softmax. Finally, the
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weighted SDP representation (R) is calculated by multiplying the
attention weight to the stacked LSTM hidden representation z.

my = tanh(W,yz + b,)

T
emk *C

N T
Dz €M (8)

N
R = E o * Zg
k=1

where, W, and b, are the weight matrix and bias vector, respec-
tively. The context vector c¢ is randomly initialized and jointly
learned through training.

Q=

3.6. Multilayer Perceptron (MLP) layer

The output of attention layer R is fed into a fully connected layer
with H number of hidden layers. More formally, given a sequence
layer output R, number of hidden layers H, network calculates
output as follows:

M = f(Wy * R+ by) (9)

where, W), e RF*R is the weight matrix between the output
of sequence layer and hidden layer; by, € RY*! is a bias term
vector. Thereafter, the output M is transformed into T € R®*!
by augmenting with a weight matrix Wy € R°*H, where C is the
number of required labels. In our case the value of C = 2.

T=Wr+M (10)

Finally, the transformed output T is fed into the softmax layer.
The softmax layer provides the output probability of each label.
Mathematically, it can be written as follows:

eTcluss
P(class = C|T) = — (11)
Dk €
Fig. 1 represents the architecture of our Att-sdpLSTM model.
4. Results
4.1. Dataset

The proposed model is evaluated on the five popular benchmark
corpora for PPI, namely AiMed, Biolnfer,® HPRD50,” IEPA,® & LLL.°
AiMed dataset is generated from 197 abstracts extracted from the
Database of Interacting Protein (DIP). It contains 1955 sentences
with the protein entities, manually tagged with the PPI interaction
relations. This is recognized as the standard dataset for PPI extrac-
tion task.

The Biolnfer corpus created by the Turku BioNLP group'? con-
sists of 836 sentences. In our work, we assume the protein inter-
acted pair as the positive instance and non-interacted pair as the
negative instance. To identify the negative instances which are not
directly given in the dataset, we assume all the possible pairs of
proteins that are possible in a given sentence and consider those
protein-pairs to be negative instances whose relations are not
given in the sentence. Thereby, we obtain 3109 negative instances
and 939 positive instances for AiMed corpus. Similarly, in case of

6 http://corpora.informatik.hu-berlin.de/.
7 https://goo.gl/M5tE]j.

8 https://goo.gl/JeboFE.

9 https://goo.gl/1DsDqL.

10 http://bionlp.utu.fi/.

Table 4

Dataset statistics for PPI extraction.
Datasets Interacted pair Non-interacted pair Ratio
AiMed 939 3109 1:3.3
Biolnfer 1077 5951 1:5.5
HPRD50 163 270 1:1.6
IEPA 335 482 1:14
LLL 164 166 1:1.0

Biolnfer corpus, we obtain 5951 negative instances over 1077 posi-
tive interactions. It can be observed that all dataset are imbalanced
as they are strongly biased towards the negative examples.

HPRD50, referenced by the Human Protein Reference Database
(HPRD) dataset is generated by randomly selecting a subset of 50
abstracts [57]. The annotation was done for direct physical inter-
actions, regulatory relations, and for any modifications (e.g., phos-
phorylation). The dataset consists of a total 145 sentences, with
163 positive interaction pairs and 270 negative pairs.

IEPA, termed as the Interaction Extraction Performance Assess-
ment (IEPA) consists of nearly three hundred abstracts [58]. These
abstracts were retrieved from the MEDLINE utilizing the queries.
Each query was the AND of two biochemical nouns.

LLL (Learning language in logic) is another PPI dataset, released
as part of the LLL shared task challenge 2005 [59]. The aim of the
task was to extract protein/gene interactions in the form of rela-
tions from biology abstracts of the Medline bibliography database,
specifically concerning Bacillus subtilis transcription.

A detail statistics of these datasets are provided in Table 4.

4.2. Preprocessing

The protein entities are generalized with the protein IDs to
make the model insensitive towards biases associated with the
names of the proteins. This makes every protein unique and avoids
the model to learn highly interacting protein pairs. We perform to-
kenization with the help of Genia Tagger.'' The tokenized sentence
is parsed with the Enju parser to obtain the dependency relations.

4.3. Network training and hyper-parameters

The objective of training the Bi-LSTM model is to minimize the
binary cross entropy cost function. It can be written as follows:

LS, Y) = —% > ¥ Imas®) + (1-y?)In(1—as™)  (12)
i=1

Here, S = {sV, s ... s} is the set of input SDP sentence in the
training dataset, and C = {c(, ¢® ... c™)} is the corresponding
set of labels for those SDP sentences. The a(s) denote the out-
put of the MLP layer. The gradient-based optimizer is used to
minimize our cost function described in Eq. (12). We have used
Adam [60], an adaptive learning rate based optimizer, to update the
parameters throughout training. To avoid over-fitting, the network
dropout [61] mechanisms are used with a dropout rate of 0.3.

The hyper-parameter values were determined from the prelim-
inary experiments by evaluating the model performance for 10-
fold cross-validation. The proposed model described in Section 3
is implemented using Keras.!? We have chosen Tensorflow as
backend machine learning library. We tune our model for various
hyper-parameters of the LSTM architecture including the num-
ber of LSTM units, dropout ratio, number of epochs and different

1 http://www.nactem.ac.uk/GENIA/tagger/.
12 https://keras.io/.
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Table 5
Optimal hyper-parameter setting on 10-fold cross validation for all datasets.

Optimal value

Hyper-parameters

Number of LSTM units 64
Dropout ratio 0.3
Activation function Sigmoid
Optimization algorithm Adam

# Epochs (AiMed & Biolnfer) 115

# Epochs (HPRD50, IEPA & LLL) 50

Size of MLP layer output 30

No. of LSTM layers 6
Context vector size 75

Table 6
Analysis of context window on 10 fold cross validation data for position feature on
sdpLSTM model.

Context window size

F-score (AiMed) F-score (Biolnfer)

[—5.5] 78.36 72.72
[—6.6] 78.54 73.18
[=7.7] 79.19 73.23
[—8.38] 81.16 7429
[—9,9] 81.75 75.56
[—10,10] 82.89 75.93
[—11,11] 82.17 75.28
[—12,12] 81.41 74.88
@® Biolnfer @ AiMed HPRDS0 @ IEPA @ LLL
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Fig. 3. Effect of stacking Bi-LSTM layers.

optimization algorithms etc. for all datasets. The optimum per-
formance is achieved with 115 epochs for AiMed and Biolnfer
datasets as depicted in Fig. 4. We obtain the best results for all the
PPI datasets on a set of optimized network hyper-parameters (c.f.
Table 5) using 10-fold cross validation experiments.

4.4. Analysis of hyper-parameter settings

We setup all the experiments by varying the hyper-parameter
values and analyze the behaviors of our model. For AiMed dataset,
we observed that addition of LSTM units improves the model
performance to a certain extent. Thereafter, it keeps on decreasing
gradually. We define an optimal value 64 for the same, via cross-
validation experiment. We started the experiment with single
LSTM layer and keep on increasing till six layer of LSTMs. We
observed that the performance start decreasing after sixth layer
of LSTMs. The model performance against the varying number of
LSTM layer can be visualize in Fig. 3. In case of other datasets, we
also observe quite a similar trend in performance with the addition
of LSTM units, size of context vector and stacking of LSTM layer.

As shown in Fig. 3, stacking helps in improving the performance
of the system for the AiMed and Biolnfer dataset. However, for
the dataset HPRD50, IEPA, & LLL, there was not much impact on
stacking multiple LSTM units. We observed that after stacking two
layers of LSTM units, the performance of the system was almost
constant.

@ Biolnfer @ AiMed HPRDS0 @ IEPA @ LLL

100

80

F1-Score

60

40
1 5 50 75 100 115 130 140

No. of Epochs

Fig. 4. Effect of varying epochs on the performance (F1-Score).

We also analyze the performance of our model on the number of
epochs for which training was performed on all datasets. On AiMed
dataset, the value of F1-score initially shows minor growth from
epochs 1 to 5 and then shows regular growth with the increasing
number of epochs from 5 to 115, and finally a dip on further
increasing the number of epochs to 115 and 140. For Biolnfer
dataset there has been steady increase with the increase in the
number of epochs. We achieve the optimum performance with the
almost same number of epochs (115) for all datasets. The model
behaviors with respect to the epochs are shown in Fig. 4. For the
remaining dataset, the optimal results are achieved with 50 epochs
(c.f. Fig. 4), this is because the HPRD50, IEPA and LLL datasets are
small compared to AiMed and Biolnfer datasets and model get
over-fitted with higher number of epochs.

Similarly, we performed the cross-validation experiment with
the varying size of context vector and found to be optimal on size
75 for all the datasets.

4.5. Evaluation on benchmark datasets

In the recent years, different kernel-based techniques and SVM
based model were adopted as baselines against the deep learn-
ing CNN based model for the PPI task. It has been shown how
deep learning based models perform superior compared to the
feature based models [23,62]. As such, in order to make an effective
comparison of our proposed approach, we design three strong
baselines based on neural network architecture as follows:

1. Baseline 1: The first baseline model is constructed by train-
ing a multi-layer perceptron on the features obtained from
the embedding layer as defined in Section 3.3. The sentence
embedding Sy, is generated by the concatenation of every
PoS and position augmented word embeddings to SDP em-
bedding.

SM:)(l@Xz...@Xn; (13)

Thereafter, Sy is fed into MLP layer described in Section 3.6.

2. Baseline 2: Our second baseline is based on the more ad-
vanced sentence encoding techniques, RNN. The SDP sen-
tence encoding S can be generated as follows:

Sg=0(Usxy+Vsxh(n—1)+b) (14)

where o is a sigmoid function, h(n — 1) denotes the hidden
representation of (n — 1)th word in the SDP sentence. U, V,
and b are the network parameters. Similar to Baseline 1, MLP
layer is used to classify a SDP sentence into one of the two
classes, viz: ‘interacting pair’ and ‘non-interacting pair’.
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Table 7
Comparative results of the proposed model (Att-sdpLSTM) with the baselines model.
Model Approach AiMed Biolnfer HPRD50 IEPA LLL

P R F1 P R F1 P R F1 P R F1 P R F1

Baseline 1 MLP (SDP) 59.73 7593 66.46 68.56 72.05 70.22 68.26 66.64 67.44 69.21 6457 66.81 70.39 71.88 71.13
Baseline 2 RNN (SDP) 66.23 74.72 7022 71.89 74.59 73.21 75.13 7278 7394 7248 7097 7172 78.02 7734 77.68
Baseline 3 sdpLSTM (SDP+Feature Embeddings) 91.10 8220 86.45 7240 83.10 77.35 79.19 76.14 77.64 76.17 7495 75.56 83.10 82.81 82.95
Proposed Att-sdpLSTM (SDP+Feature 92.63 9396 93.29 80.81 8257 81.68 79.92 77.58 78.73 76.90 75.62 76.25 84.22 83.62 83.92
model Embedding+Attention + Stacking)
Table 8

Comparative results of the proposed model (Att-sdpLSTM) with state-of-the-art systems for AiMed and Biolnfer dataset. Ref. [23]* and [63]* denote the re-implementation
of the systems proposed in [23] and [63] with the authors reported experimental setups.

Model Approach AiMed Biolnfer
Precision Recall F1-score Precision Recall F1-score
Proposed model Att-sdpLSTM (SDP+Feature embedding+Attention+Stacking) 92.63 93.96 93.29 80.81 82.57 81.68
sdpLSTM + sdpLSTM (SDP+Feature embeddings-+Negative sampling) 89.61 80.39 84.75 70.06 82.61 75.82
Negative sampling
[22] sdpCNN (SDP+4-CNN) 64.80 67.80 66.00 73.40 77.00 75.20
[23] DCNN (CNN-+word/position embeddings+Semantic (WordNet) - - 85.20 - - -
feature embeddings)
[23]* DCNN 88.61 81.72 85.03 72.05 77.51 74.68
[64] Single kernel+ Multiple Parser4+-SVM 59.10 57.60 58.10 63.61 61.24 62.40
[28] McDepCNN (CNN+word-+PoS+Chunk+NEs Multi-channel 67.30 60.10 63.50 62.70 68.20 65.30
embedding)
[65] Deep neutral network 51.50 63.40 56.10 53.90 72.90 61.60
[66] All-path graph kernel 49.2 64.60 55.30 53.30 70.10 60.00
[63] Multiple kernel+ Word Embedding+ SVM - - 69.70 - - 74.00
[63]* Multiple kernel+ Word Embedding+ SVM 67.18 69.35 68.25 72.33 74.94 73.61
[67] Tuned tree kernels +SVM 72.80 62.10 67.00 74.50 70.90 72.60

3. Baseline 3: As a third baseline model, we utilized shortest
dependency path based single Bi-LSTM model assisted by
the latent features (PoS, position embedding). We call this
baseline as sdpLSTM.

We perform 10-fold cross validation on all the datasets. With no
official development data set available, cross validation seems to
be the most reliable method of evaluating our proposed model.
To evaluate the performance of our model, we use standard recall,
precision, and F1-score. The detailed comparative analysis of our
proposed model (Att-sdpLSTM) over these baselines and state-of-
art systems are reported in Tables 7-9. The obtained results clearly
show the effectiveness of our proposed Att-sdpLSTM based model
over the other models exploring neural network architectures or
conventional kernel or SDP based machine learning model. In our
proposed model we obtain the significant F1-score improvements
of 26.83, 23.07, and 6.84 points over the first three baselines for
the AiMed dataset, respectively. On Biolnfer dataset, our system
shows the F1-Score improvements of 11.46, 8.47, and 4.33 points
over these three baselines, respectively. For HPRD50 dataset, per-
formance improvements of 11.29, 4.79, 1.09 points were observed
by the proposed approach over the first three baselines, respec-
tively. Similar improvements were also observed for the other
two datasets. With IEPA, the proposed model outperforms the
baselines by 9.44, 4.53, 0.69 points, respectively. On LLC dataset,
the performance improvements of 12.79, 6.24, 0.97 F1-Score points
were observed with the proposed approach.

5. Analysis
5.1. Comparative analysis with existing methods

In order to perform the comparative analysis with the exist-
ing approaches, we choose the recent approach exploiting neu-

ral network model for AiMed and Biolnfer dataset. We explore
other approaches utilizing SVM based kernel methods and word

embedding feature as shown in Table 8. We observe that Att-
sdpLSTM significantly performs better than all the state-of the-
art techniques for AiMed and Biolnfer dataset. From this, we can
conclude that Att-sdpLSTM is more powerful in extracting protein
interacted pairs over the CNN based architecture developed in [22]
and [23]. We further make an interesting observation that incorpo-
rating the latent features embedded into the neural network based
architecture improves the performance of the system.

Our proposed model attains an significant improvement of 8.09
F-score point (c.f. Table 8) over the model proposed in [23] for the
AiMed dataset. The DCNN model [23] made use of a significant
number (total 29) of domain dependent lexical, syntax and seman-
tic level features. In contrast to this our model is more generic in
the sense that we use only PoS and position features. We further
re-implemented the DCNN system and evaluated it on AiMed and
Biolnfer datasets. Evaluation (c.f. Table 8) shows that our proposed
model attains better performance for AiMed and Biolnfer datasets.
We also re-implemented the system reported in [63] to obtain
the precision and recall values. We also conducted experiments by
introducing negative sampling in Baseline 3 model for AiMed and
Biolnfer dataset. As shown in Table 8, the overall performance of
the system has dropped by nearly 2% for all datasets compared to
Baseline 3.

We also conducted comparative analysis for HPRD50, IEPA,
and LLL dataset with the existing state-of-the-art system utilizing
kernel based approach. Table 9 shows that our proposed model
outperformed the state-of-art by 7.83, 1.15, and 1.72 F1-Score
points on HPRD50, IEPA, and LLL dataset, respectively.

5.2. Effects of stacking Bi-LSTM with attention

We examined the impact of stacking multiple Bi-LSTM layers by
varying the number of layers from 1 to 6. To investigate the role of
stacking, we replaced basic LSTM model with the stacked Bi-LSTM
model. We observed (c.f. Table 10) the performance improvement
of 5.49 F1-Score points on AiMed dataset and 3.11 F1-Score points
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Table 9
Comparative results of the proposed model (Att-sdpLSTM) with state-of-the-art systems for HPRD50, IEPA, and LLL dataset.
Model Approach HPRD50 IEPA LLL
P R F1 P R F1 P R F1
Proposed model Att-sdpLSTM (SDP-+Feature 79.92 77.58 78.73 76.90 75.62 76.25 84.22 83.62 83.92
Embedding+Attention+Stacking)
[66] APG 68.2 69.8 67.8 66.6 82.6 73.1 713 91 78.1
[66] APG(with SVM) 65.4 725 67.5 71.0 75.1 72.1 70.9 95.4 79.7
[68] kBSPS 66.7 80.2 70.9 70.4 73.0 70.8 76.8 91.8 82.2
[41] APG 64.3 65.8 63.4 69.6 82.7 75.1 72.5 82.2 76.8
[69] Rich Feature Based 60.0 51.0 55.0 64.0 70.0 62.0 72.0 73.0 73.0
[70] Hybrid 68.5 76.1 709 67.5 78.6 71.7 77.6 86.0 80.1
[41] Co-occ 38.9 100.0 55.4 40.8 100.0 57.6 55.9 100.0 70.3
[71] RelEx 76.0 64.0 69.0 74.0 61.0 67.0 82.0 72.0 77.0
Table 10
Effect of stacking and attention on proposed Att-sdpLSTM model.
Model AiMed Biolnfer HPRD50 IEPA LLL
P R F1 P R F1 P R F1 P R F1 P R F1
sdpLSTM 91.10 82.20 86.45 76.61 78.10 77.35 79.19 76.14 7764 76.17 7495 7556 83.10 82.81 82.95
sdpLSTM + Stacking 92.89 91.02 9194 7929 81.67 8046 7953 76.73 78.10 76.29 75.16 7572 83.41 8294 83.17
Att-sdpLSTM (sdpLSTM + Stacking + Attention) 92.63 93.96 93.29 80.81 8257 81.68 7992 77.58 7873 7690 7562 76.25 84.22 83.62 8392
Table 11
Proposed model performance after removing PoS and position embeddings once at a time.
Model AiMed Biolnfer HPRD50 IEPA LLL
P R F1 P R F1 P R F1 P R F1 P R F1
Att-sdpLSTM 92.63 9396 9329 8081 8257 81.68 7992 7758 7873 7690 7562 7625 8422 8362 8392
Att-sdpLSTM - PoS Embeddings 9461 9244 9351 7995 82.04 8098 7852 7682 77.66 7588 7491 7539 83.13 8250 8281
Att-sdpLSTM - Position Embeddings 9439 9141 9287 8037 8244 8139 79.07 76.13 7757 76.02 7464 7532 8358 8291 8324
Att-sdpLSTM - PoS - Position Embeddings 95.61 89.17 92.27 79.16 8195 80.53 7832 7589 77.09 7572 7449 75.10 8297 8228 8262

improvement on the Biolnfer dataset. For the other three datasets,
we observed very modest improvement by introducing stacking.
Performance improvements of 0.46, 0.16, and 0.22 points were ob-
served for HPRD50, IEPA, and LLL dataset, respectively. The possible
reason for not getting any significant improvement (unlike AiMed
and Biolnfer datasets) is the small dataset size. The model was
easily overfitted and therefore no major impact was observed.

In order to understand the role of attention, we further incor-
porated the attention to sdpLSTM + stacking model. The obtained
results show the effectiveness of attention mechanism on all the
datasets. Incorporating attention boosts the performance of the
stacked sdpLSTM model by 1.35, 1.22, 0.63, 0.53, and 0.75 F1-
Score points on AiMed, Biolnfer, HPRD50, IEPA, and LLL dataset,
respectively. With the vanilla sdpLSTM model, performance im-
provements of 6.84, 4.33, 1.09, 0.69, and 0.97 F1-Score points
were observed on AiMed, Biolnfer, HPRD50, IEPA, and LLL datasets,
respectively.

5.3. Effects of feature combination

In this section, we analyze the significance of each feature by
performing feature ablation study (removing one feature at a time)
as shown in Table 11. We begin by examining only SDP embedding.
It can be observed that Att-sdpLSTM alone without using additional
features shows a remarkable performance of 92.27, 80.53, 78.73,
76.25, and 83.92 F1-Score on AiMed, Biolnfer, HPRD50, IEPA, and
LLL datasets, respectively. This clearly shows the significance of
SDP based embedding with attention in identifying protein in-
teracted pairs. We observe that inclusion of position embedding
slightly improves (0.42 F1 score) the performance on the AiMed
dataset. However, there have been drops in F1-score by 0.22 points
when PoS feature is added. This might be due to the data sparse-
ness problem with the lack of training data. In case of Biolnfer
dataset, position embedding is comparatively less informative, but

still boosts the F1-score by 0.29 F1-score points. The inclusion of
PoS embeddings, however, shows an improvement of 0.70 F-score
points. The reason is while adding a position to PoS feature, it
helps as we have PoS tag information (which is NNP) of the closest
potential entity. We analyze that, the improvements are not simply
due to combining the features to SDP embedding. This suggests
that these information sources are complementary to each other
in some linguistic aspects. We closely investigate the outputs of
the AiMed dataset produced in our system and make the summary
with the following observations:

1. PoS distribution: Protein names are mainly noun phrases.
For the AiMed dataset, we observed that the multi-word
proteins were not properly tagged as the noun phrases.
This encountered some errors which eventually propagated
when introduced the PoS alone as a feature to the LSTM
model.

2. Presence of protein interacted words: The presence of
protein interacted words (inhibit, regulated, interaction etc.)
provides an important clue to identify the interaction of
proteins. When the system takes SDP as input, we observe
that in some cases the PoS tagger is unable to tag the in-
teracted words as verbs. This could be one of the reasons
that the system performance is comparable when we use
PoS information alone as a feature.

For the HPRD50 dataset, the exclusion of PoS drops the model
performance by 1.07 F1 Score points. Position feature was also
observed as a significant feature in assisting the proposed model.
Removal of this feature leads to the decrease in F1-Score by 1.16
points. We observed similar phenomena for the IEPA and LLL
datasets, where exclusion of PoS feature drops the F1 Score by 0.86,
1.11 point respectively. When the position feature is removed from
the proposed model, it showed the F-score degradation by 0.93 and
0.68 points, respectively, for IEPA and LLL data sets. Interestingly,
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Table 12

Statistical significance (Wilcoxon Signed-Rank with 95% confidence interval (C.L))
tests for the baselines and proposed model. The p-values greater than the confi-
dence level (0.05) are shown in italicized font.

Datasets With Baseline 1 With Baseline 2 With Baseline 3
p-value (95% CI.)  p-value (95% C.I.)  p-value (95% C.L.)

AiMed 2.453e—4 0.024 0.032

Biolnfer 3.749e—3 0.014 0.039

HPRD50 4.258e—3 0.048 0.129

IEPA 3.477e—4 0.027 0.046

LLL 9.231e—4 0.047 0.094

combination of all the features improves the performance of the
system by 1.02, 1.15, 1.64, 1.15 and 1.3 F1-score points on AiMed,
Biolnfer, HPRD50, IEPA, and LLL datasets, respectively. We observe
that when the model is evaluated on the less number of epochs,
performance improvement with the addition of features is 3%-4%.
Increasing the epoch gradually vanishes the impact of additional
features.

5.4. Statistical significance testing

We conduct the statistical significance tests to verify the im-
provements over the baselines. Specially, we used the Wilcoxon
signed-ranks test [72]. The Wilcoxon signed-rank test is the non-
parametric uni-variate test which is an alternative to the depen-
dent t-test. Wilcoxon signed-rank test estimates the statistical
significance for the null hypothesis that the two models (one of
the baselines and the proposed model) are equally accurate. The p-
values for the null hypothesis, corresponding to different baselines
for our proposed model, are listed in Table 12. This test confirms
that the performance of proposed model is statistically significant
over Baseline 1 and Baseline 2 for all the PPI datasets. The dataset
for which null hypothesis can be rejected (p-value < 0.05) are
highlighted.

5.5. Error analysis

In this subsection, we analyze different sources of errors which
lead to misclassification. We closely study the false positive and
false negative instances and come up with following observations:

(1) When Enju dependency parser fails to capture dependen-
cies, the error is propagated to BFS algorithm as such it does not
return any valid SDP. For example, in the given sentence

“The Protld1 or Protld2 family is targets of cytokines and other
agents that induce HIV-1 gene expression”, the mentioned SDP out-
puts are “Protld1 and Protld2” and “Protld1 family Protld2”. It
should be noted that this is a negative example and our SDP fails
to capture the context. This hampers our accuracy significantly.

(2) Presence of multiple protein entities: Another form of
misclassification is because of the presence of multiple protein
instances in a sentence. Repetitive mention of protein is expected
to act like a noise, which may cause neural models to lose relevant
information from other words likely to be contextually important.
For example:

“The nucleotide sequences of Protld26 (Protld29), Protld28 (Pro-
tld23), Protld27 (Protld31), Protld22 (Protld32), and Protld30 (Pro-
tld24) genes were partly determined for 19 wild strains of measles
virus (MV) isolated over the past 10 years in Japan (nucleotide po-
sition Protld33: 1301-1700, Protld21: 1751-2190, Protld25: 3571-
4057, Protld19: 6621-7210, Protld20: 10381-11133) and also for a MV
strain obtained from a patient with subacute sclerosing panencephali-
tis (SSPE) who had natural measles in 1980”.

(3) No mention of explicit protein: The misclassification was
observed where there is no mention of the explicit interaction
bearing words. For example:

“Cotransfections with different combinations of these genes demon-
strated that a subset of four of them, coding for the HSV Protld242
complex (Protld241, Protld239, Protld243 and the Protld240, was
already sufficient to mediate the helper effect”.

(4) Negative protein interacting word: Interaction bearing
words carry important information to identify protein interacted
pairs such as bind, interact, inhibit. However, when interaction
bearing words appear in negative context, system fails to properly
classify those as non-interacted protein pairs. For example:

“in GSK-3 inhibitors suppressed Sema4D-induced growth”, inhibit
does not occur here in context of PPI.

6. Conclusion and future works

In this article, we have proposed an efficient model based on
deep learning technique for PPI. The model makes use of SDP
embeddings as low level input feature. In addition, it also exploits
the latent PoS and position embedding features to complement the
SDP embedding. The main contribution of the proposed methodol-
ogy is the systematic integration of word embeddings learn from
the biomedical literature and the use of SDP between protein pairs
into the attentive stacked sdpLSTM architecture. Bio-medical word
embedding was observed to capture semantic information more
effectively than internal embedding. By employing SDP and Bi-
LSTM, the proposed approach could make full use of structural in-
formation. Our comprehensive experimental results on five bench-
mark biomedical corpora, AiMed, Biolnfer, HPRD50, IEPA,and LLL
demonstrated that (i) the SDP based word embedding input is
effective to describe protein-protein relationships in PPI task; (ii)
the attentive Bi-LSTM architecture is useful to capture the long
contextual and structure information; and (iii) high-quality pre-
trained word embedding is important in the PPI task. The obtained
results depict the superiority of Att-sdpLSTM over the complex
state-of-art approaches leveraging CNN and several higher level
features with the significant F1-score improvements of 8.09 and
6.48 points on AiMed and Biolnfer dataset, respectively. Similarly,
for the HPRD50, IEPA, LLL datasets, our proposed model outper-
formed the state-of-art by 7.83, 1.15, and 1.72 F1-Score points,
respectively.

In future, we would like to validate our approach on other
relation extraction tasks such as drug-drug interaction, chemical-
protein interaction by overcoming the possible errors.
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