
SarcasmBot: An open-source sarcasm-generation module
for chatbots

Aditya Joshi
IITB-Monash Research

Academy
Mumbai, India

adityaj@cse.iitb.ac.in

Anoop Kunchukuttan
Indian Institute of Technology

Bombay
Mumbai, India

anoopk@cse.iitb.ac.in

Pushpak Bhattacharyya
Indian Institute of Technology

Bombay
Mumbai, India

pb@cse.iitb.ac.in
Mark James Carman

Monash University
Melbourne, Australia

mark.carman@monash.edu

ABSTRACT
Sarcasm detection is a recent innovation in sentiment anal-
ysis research. However, there has been no attention to sar-
casm generation. We present a sarcasm-generation module
for chatbots. The uniqueness of ‘SarcasmBot ’ is that it gen-
erates a sarcastic response for a user input. SarcasmBot is a
sarcasm generation module that implements eight rule-based
sarcasm generators, each of which generates a certain type
of sarcastic expression. One of these sarcasm generators is
selected at run-time, based on properties of user input such
as question type, number of entities, etc.

We evaluate our sarcasm-generation module in two ways:
(a) a qualitative evaluation on three parameters: coher-
ence, grammatical correctness and sarcastic nature, where
all scores are above 0.69 out of 1, and (b) a comparative
evaluation between SarcasmBot and ALICE, where a ma-
jority of our human evaluators are able to identify the out-
put of SarcasmBot among two outputs, in 70.97% of test
examples.

Keywords
Sarcasm generation, Sarcasm generating chatbots, Dialogue
systems

1. INTRODUCTION
Sarcasm is a phenomenon where literal sentiment of text

is different from implied sentiment, with an element of hos-
tility involved [14]. In this paper, we describe our sarcasm
generation module for chatbots, called ‘SarcasmBot ’. It
has a browser-based interface that always responds sarcas-
tically to user statements. The input to SarcasmBot is a
well-formed English sentence. The output is a sarcastic re-
sponse to the user input. In rest of the paper, we refer to the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
This paper was presented at the Fourth International Workshop on Issues of
Sentiment Discovery and Opinion Mining (WISDOM ‘15), held in conjunc-
tion with KDD’15 in Sydney on 10 August 2015. Copyright of this work is
with the authors.
.

input as ‘user input ’ and the output as ‘sarcastic response’.
Sarcasm detection has received attention in recent times.

However, to the best of our knowledge, no past work focuses
on automatic sarcasm generation. We implement eight rule-
based sarcasm generators, each capable of generating a pe-
culiar pattern of sarcasm. SarcasmBot selects among these
generators and produces a sarcastic response using proper-
ties of the user input such as question type, tense, number,
set of noun entities, sentiment, etc. We evaluate the re-
sponse of our sarcasm-generation module in terms of three
parameters: (a) Coherence (to the user input), (b) Gram-
matical correctness (of the sarcastic response), and (c) Sar-
castic nature (of the sarcastic response), and also compare
its output with a popular chatbot, ALICE [17].

In addition to the entertainment value of such a sarcasm-
generation module, the motivation lies in the Turing Test [11].
The test envisages an ideal AI agent, and states that a hu-
man interacting with an AI agent must be unable to de-
termine whether they are communicating with a human or
a computer. Sarcasm is observed in human communica-
tion. So, in order to satisfy the Turing test, we believe
that a sarcasm-generation module must be able to express
sarcasm effectively. This encourages us to look at sarcasm
generation as an interesting problem. We do not ex-
pect that a sarcastic sarcasm-generation module like
ours will be useful as it is. However, existing chat-
bots can become more ‘human’ by integrating this
behavior. In this paper, we focus on building a
sarcasm-generation module that responds sarcasti-
cally to user responses. Enabling the chatbot to de-
cide when to respond sarcastically is left as future
work.

The contribution of SarcasmBot is that it systematically
‘algorithmizes’ different forms of sarcastic expression as ob-
served in linguistic studies of sarcasm![4]. In order to enable
further experimentation with sarcasm generation and inte-
gration into general-purpose chatbots, we will make avail-
able the source code and APIs of SarcasmBot.

The rest of the paper is organized as follows. We first
describe the related work in Section 2. Section 3 presents
the need for a sarcasm-generation module. Its architecture
is described in detail in Section 4. Section 5 discusses the
evaluation, while Section 7 concludes the paper.

2. RELATED WORK
Context incongruity is central to sarcasm [6]. Consider

the sarcastic tweet “I love being awake at 4am”. The sar-
casm arises because the positive verb ‘love’ is incongruous
with the negative context of ‘being awake at 4am’. Sarcasm
is a common phenomenon that humans use in communica-
tion. It has an element of causticness or hostility involved.
Sarcasm is peculiarized by incongruity between the literal
meaning and implied meaning. . In this light, our sarcastic
chat system is a step towards the Turing test. To the best of
our knowledge, this is a first-of-its kind sarcasm-generation
module. However, research in chatbots and dialogue sys-
tems is old, and such systems have been implemented for a
variety of applications. Pattern-based matching algorithms
are a popular approach in chatbots, as in the case of a popu-
lar chatbot, ALICE [17]. Another approach [1] uses Twitter
as a large-scale corpus in order to find candidate responses
to the given user statement.

3. MOTIVATION
Research in natural language generation systems dates

back several decades [17, 2]. Chatbots have been used for
a variety of applications such as information agents [7], in-
structing agents for autonomous vehicles [15] and automatic
tutoring agents [8]. EHeBBy [13] is a chatbot that gener-
ates humor based on user input and a set of known humorous
patterns. Using a similar approach, ‘SarcasmBot ’ generates
sarcasm.

Sarcasm has been widely studied in linguistics. Different
kinds of sarcasm such as propositional and illocutionary have
been described [3]. Similarly, different dimensions associated
with sarcasm have been defined [4]. Sarcasm detection has
been explored in the past in the context of sentiment anal-
ysis. On the other hand, sarcasm generation has not been
looked at so far, to the best of our knowledge. We believe
that sarcasm generation will lead to a deeper understanding
of the phenomenon of sarcasm, and as a result, help sarcasm
detection as well.

4. ARCHITECTURE
Figure 1 shows the architecture of SarcasmBot. The user

input and sarcastic response are syntactically valid English
sentences. The user input is first analyzed using the Input
Analyzer (described in Section 4.1), and is then sent to the
Generator Selector (described in Section 4.2). The generator
selector chooses among eight Sarcasm Generators (described
in Section 4.3). The chosen sarcasm generator is used to
produce the sarcastic response. All three modules are rule-
based, relying on lexicons. The code is available at: https:

//github.com/adityajo/sarcasmbot.

4.1 Input Analyzer
Input Analyzer extracts following information about the

user input:

1. POS sequence: We tag the user input using the Stan-
forrd POS tagger [16].

2. Question Type Determiner: In case the user in-
put is a question, we look up a set of words in order
to determine the type of question among: why, what,
where, how, who, when and choice.

Figure 1: Architecture of SarcasmBot

3. Tense: We determine the tense of the input by look-
ing for verb-related POS tags. This is to ensure that
the response is coherent with the user input. The can-
didate tenses are as given in [9], specifically: Third
person present, Non-third person present, Past and
Modal.

4. Entities: Using the POS sequence, we create two lists
of entities: noun entities (sequence of NNs) and named
entities (sequence of NNPs). The entities in these lists
are later used as targets for sarcasm. Associated with
every noun entity is a number attribute that indicates
whether the entity is in singular or plural.

5. Pronouns: Using the POS sequence, we identify pro-
nouns in the user input. Additionally, we use a list of
pronoun-pronoun pairs corresponding to question and
response (example: ‘You’ in the user input must be
responded with ‘I’).

6. Sentiment: Since sarcasm is associated with senti-
ment, we implement a rule-based sentiment determiner
that uses the sentiment lexicon by [10], and applies
appropriate rules on negations and conjunctions. This
sentiment determiner predicts the sentiment as posi-
tive/negative.

7. Offensive language: Sarcasm is often used as a re-
tort for offensive language. Hence, we identify offen-
sive words by looking up sarcastic patterns for offensive
language as given in [12].

4.2 Generator Selector
Based on the user input properties, the Generator Selector

decides which of the eight sarcasm generators is to be used
to generate the sarcastic response. The algorithm to select
a sarcasm generator is:

Sarcasm Generator Description
(a) Offensive Word Response Generator In case an offensive word is used in user input, select a placeholder

from a set of responses.
(b) Opposite Polarity Verb-Situation Generator Randomly select a verb. Compute its sentiment. Discover a situa-

tion which is opposite in sentiment.
(c) Opposite Polarity Person-Attribute Generator Randomly select a named entity. Select incongruent pairs of famous

people.
(d) Irrealis Sarcasm Generator Create a hypothetical situation that is impossible by selecting from

a set of undesirable situations.
(e) Hyperbole Generator Select a noun phrase in the user input. Generate a hyperbole with

a ‘best ever’ style regular expression.
(f) Incongruent Reason Generator Select an unrelated reason as a response for a user input.
(g) Sentiment-based Sarcasm Generator Compute sentiment of user input. Generate a response opposite in

sentiment.
(h) Random Response Generator Select one positive exclamation and one negative exclamation ran-

domly from a set of exclamations. Place them together.

Table 1: A Tabulated Summary of Sarcasm Generators in SarcasmBot

1. If the input contains an offensive word, the Offensive
word response generator is invoked.

2. If the input is not a question, the Sentiment-based sar-
casm generator is invoked.

3. If the input is a question that requires a Yes/No re-
sponse, we count the number of entities in the input.
If there is more than one entity, the Opposite Polarity
Verb-Situation Generator is invoked. If the sentence
contains modal verbs, the Irrealis Sarcasm Generator
is called. Else, the Hyperbole Generator is invoked.

4. If the input is an opinion question, one out of these sar-
casm generators is randomly invoked: Opposite Polar-
ity Verb-Situation generator, Opposite polarity person-
attribute generator or Hyperbole generator.

5. If the input is a ‘why ’ question and has non-zero enti-
ties, the incongruent reason generator is invoked.

6. Finally, the random response generator is invoked if
none of the above apply.

Each of the above generators handles a peculiar form of sar-
castic expression. The sarcasm generators are described in
the next subsection.

4.3 Sarcasm Generators
The basis of our sarcasm generators is a set of sarcastic

patterns with placeholders for words. A sarcasm generator
selects a random sarcastic pattern (consisting of placeholders
for phrases), and inserts appropriate words from the user
input into the placeholders. The random selection of the
pattern allows a dynamic nature to the sarcastic response.

Based on this general approach, we implement eight sar-
casm generators: (a) Offensive Word Response Generator,
(b) Opposite Polarity Verb-Situation Generator, (c) Oppo-
site Polarity Person-Attribute Generator, (d) Irrealis Sar-
casm Generator, (e) Hyperbole Generator, (f) Incongruent
Reason Generator, (g) Sentiment-based Sarcasm Generator,
and (h) Random Response Generator. Each of them mod-
els a peculiar form of sarcastic expression, based on evi-
dences/dimensions of sarcasm as described in [6]. The gen-
erators are summarized in Table 1. In the forthcoming
sections, we describe them in detail.

4.3.1 Offensive Word Response Generator
If the input contains an offensive word , the Offensive

word response generator is invoked. It picks randomly from
a list of responses that praise the use of the offensive word,
and inserts the offensive word at the appropriate place. An
example of response generated is ‘Wow! I can’t believe you
just said ‘b****’. You are really very classy! ’.

4.3.2 Opposite Polarity Verb-Situation Generator
This generator selects a polar verb from the user input

(for coherence) and randomly selects a noun phrase corre-
sponding to a ‘situation’ of the opposite polarity. Specifi-
cally, the sarcastic pattern used for the response is: <Op-
tional Filler> <Pronoun-Response> <used to/will> <Verb
of Polarity X> <Optional intensifying adverb> <Situation
of Polarity Y>. The optional filler is picked randomly from
a set of filler words like ‘Hmm..’. The pronoun-response
is the response pronoun as found by pronoun determiner.
For example, if the input contains the pronoun ‘you’, the
pronoun-response is selected as ‘I ’. The tense of the sen-
tence is used to choose between ‘used to’ or ‘will’. The verb
of polarity X is selected from the sentence. Finally, a ran-
dom situation of polarity Y (Y is opposite of X) is selected
from a set of situations. This set of situations was extracted
as follows: We first downloaded tweets using Twitter API1

marked with hashtag #sarcasm. Then, we manually selected
a set of noun phrases that correspond to ‘situations’2. An
example of response generated by Opposite polarity verb-
situation generator is ‘Hmm, well.. I used to like Tim, just
the way I like being stuck in the elevator all night ’ to the
question ‘Do you like Tim? ’. The situation in this case is
‘being stuck in the elevator all night ’.

4.3.3 Opposite Polarity Person-Attribute Generator
The Opposite Polarity Person-Attribute Generator gener-

ates sarcasm on a named entity in the input. The generator
uses the sarcastic pattern: I think that <Named entity>
is <Popular Person< <plus/minus> <Positive/ Negative
Attribute>. The generator first picks a named entity from

1http://dev.twitter.com/overview/api
2This ‘manual’ approach can be extended to other automatic
strategies.

the input. Then, it randomly selects a popular person and
an attribute. If it is a desirable attribute, the generator se-
lects a plus or a minus. We have compiled a list of popular
actors. For the positive attributes, we use a list of positive
traits for an actor. For the negative attributes, we use a
list of negative traits for an actor. An example of response
generated by Opposite polarity person-attribute generator
is ‘I think that Jim is Tom Cruise minus talent ’.

4.3.4 Irrealis Sarcasm Generator
Irrealis mood3 corresponds to sentences like ‘I would have

loved to watch this movie if I did not have anything bet-
ter to do’. The irrealis sarcasm generator selects a verb
from the input and selects from a set of hypothetical neg-
ative situations. The irrealis sarcasm generator is invoked
in case of questions that demand a ‘Yes/No’ answer using
modal verbs like ‘Will/Should ’. The sarcastic pattern used
for the response is: <Pronoun-response> would <verb>
<Hypothetical bad situation>. The verb and pronoun-response
is selected based on the input. An example response gener-
ated by irrealis sarcasm generator is ‘He will marry only if
badly drunk ’ to a question ‘Will he marry me? ’.

4.3.5 Hyperbole Generator
To create hyperbole-based sarcasm, we select a noun en-

tity from the user input and use sarcastic patterns of the
following type: <Those were/That is > the best <Noun
Entity> in the history of humankind! The choice between
‘those were’ and ‘that is’ is made using the number attribute
of the randomly selected noun entity from the user input.
Note that the above pattern is one among many hyperbolic
patterns. An example of response generated by hyperbole
generator is ‘Those were the best immigration reforms in the
history of humankind ’ to the input ‘What do you think of
the immigration reforms announced by the Parliament this
Saturday? ’.

4.3.6 Incongruent Reason Generator
The incongruent reason generator is selected in case of

‘why ’ questions. A named entity is randomly selected from
the input and an incongruent reason is picked out of ran-
dom unrelated reasons. One sarcastic pattern in this case is:
Because <Named entity/Pronoun-Response><Incongruent
reason>. An example response to the question ‘Why did
Jim miss his date tonight? ’ is ‘Because Jim loves to play
the piano’. The sentiment of the response is designed to
be opposite to that of the user input, if the user input is
sentiment-bearing.

4.3.7 Sentiment-based Sarcasm Generator
The sentiment-based sarcasm generator aims to counter

the sentiment expressed in the user input. We use a set of
positive and negative expressions. In case the user input
expresses sentiment without asking a question, a random
response from the opposite polarity is selected. An example
of response generated by the random sarcasm generator is
‘Poor you! ’ in response to a positive input (such as ‘I am
excited about my new job! ’).

4.3.8 Random Sarcasm Generator
In case the user input does not express sentiment with-

out asking a question, the random sarcasm generator is em-

3http://en.wikipedia.org/wiki/Irrealis mood

ployed. It randomly picks a phrase each from a set of posi-
tive and negative reactions, and concatenates them together.
An example of response generated by the random sarcasm
generator is ‘Wow! (positive reaction) *rolls eyes* (negative
reaction)’.

5. EVALUATION
This section describes the evaluation of SarcasmBot. We

first describe our two evaluation experiments, and then dis-
cuss their results.

5.1 Experiment Details
Automatic evaluation of a sarcasm-generation module like

ours is difficult for a variety of reasons:

1. For a given user input, there are multiple possible re-
sponses - both sarcastic as well as non-sarcastic. Hence,
a gold response is difficult.

2. While coherence can be measured sufficiently using
lexical overlap-based metrics or web as a resource, it
is difficult to judge the sarcastic nature of the output.

We conduct a two-step evaluation to assess the output pro-
duced by SarcasmBot. The first experiment answers the
question: ‘Is the response grammatically correct, co-
herent and sarcastic in itself?’. The second experiment
answers the question: ‘Is the response sarcastic enough
so that a human can identify the output of Sarcasm-
Bot from a non-sarcasm-aware chatbot?’.

The two experiments are conducted as follows:

1. Experiment 1: Stand-alone4 evaluation: For a
set of 31 user inputs, we obtain the sarcastic response
from SarcasmBot. Three evaluators answer the follow-
ing question for each output:

(a) Coherence: Is the output a suitable response to
the user input?

(b) Grammatical correctness: Is the output gram-
matically valid?

(c) Sarcastic nature: Is the output sarcastic?

2. Experiment 2: Comparative evaluation: For the
same set of 31 user inputs, we obtain the output from
SarcasmBot, as well as ALICE [17]. Four evaluators
participate in this experiment. An evaluator is dis-
played the input statement, and two outputs. Their
task is to identify which of the two outputs is from
SarcasmBot. ALICE does not particularly lay empha-
sis on sarcasm while SarcasmBot does. If an evaluator
correctly identifies the sarcasm-generation module, it
means that SarcasmBot had created a sufficiently sar-
castic statement. Specifically, the evaluators answer
two questions:

(a) Which of the two outputs is from SarcasmBot?

(b) Was it difficult to make this judgment?

4This evaluation is ‘stand-alone’ because the output is eval-
uated on its own. Experiment 2 compares our output with
a regular chatbot.

All seven evaluators are engineering graduates and have stud-
ied for a minimum of 10 years with English as the primary
language of academic instruction. The evaluation is blind:
(a) No evaluator has any information about the internals
of SarcasmBot, and (b) The evaluators for Experiments 1
and 2 are different.

Evaluation Parameter Fleiss’ Kappa
Coherence 0.164
Grammatical correctness 0.015
Sarcasm 0.335

Table 2: Multi-annotator agreement statistics for
Experiment 1

5.2 Results
Fleiss’ Kappa [5] (to measure multi-annotator agreement)

for Experiment 1 are shown in Table 2. The value for sar-
casm is 0.335. As stated above, all evaluators assigned 0
(No) or 1 (Yes) to each input-output pair. The average val-
ues for the three evaluation parameters are shown in Table 3.
The average value for grammatical correctness is high but
the corresponding Fleiss Kappa in Table 2 is low (i.e., 0.015).
This may be due to low variance because of which proba-
bility of chance agreement increases. As seen in Table 3,
the evaluators assign an average value of 0.806 for sarcasm.
All values are greater than 0.69 (0.698 for coherence, 0.903
for grammatical correctness, and 0.806 for sarcasm), indi-
cating that the system performs well in terms of the three
parameters.

Evaluation Parameter Average
Coherence 0.698
Grammatical correctness 0.903
Sarcastic nature 0.806

Table 3: Average values for the three evaluation pa-
rameters resulting from Experiment 1

Evaluation Parameter Fleiss’ Kappa
Identification of SarcasmBot out-
put

0.476

Difficulty 0.164

Table 4: Multi-annotator agreement statistics for
Experiment 2

Strategy Accuracy (%)
At least one evaluator is correct 87.09
Majority evaluators are correct 70.97
All evaluators are correct 61.29

Table 5: Percentage of statements in which the eval-
uators are able to correctly identify SarcasmBot out-
put, in case of Experiment 2

Fleiss’ Kappa for Experiment 2 are shown in Table 4. The
value for identification of SarcasmBot output is 0.476, indi-
cating moderate agreement. The corresponding value for

difficulty is low: 0.164. This is expected because each eval-
uator may have their own perception of difficulty. Using the
annotations obtained in Experiment 2, we now check how
many evaluators correctly identify the outputs generated by
SarcasmBot. These results are shown in Table 5. We con-
sider three evaluation strategies: (a) at least one evaluator
correctly identifies the output, (b) majority of the evaluators
correctly identify the output, and (c) all evaluators correctly
identify the output . The simplest scenario is (a) where even
if one evaluator correctly identifies the SarcasmBot output,
we mark it as correct. In this case, the accuracy is 87.09%.
On the other end of the spectrum is the constrained case
(c). Here, we observe that all evaluators correctly identify
the output of SarcasmBot in 61.29% of sentences, indicating
that SarcasmBot generates a reasonably sarcastic response.
In case of 70.97% of sentences, majority of evaluators are
correct (i.e., (b)).

(a) User input: Why did Greg go home?
Sarcastic response: Because Greg was in a mood
for adventure.
(b) User input: What do you think of Greg?
Sarcastic response: Well..I like Greg. The way I
absolutely appreciate Zero accountability people.
(c) User input: Stop being such a b****!
Sarcastic response: Unbelievable that you just said
‘b****!’ ! You are really very classy!
(d) User input: What do you think of the new video
game that James purchased?
Sarcastic response: That was the best video game
in the history of humankind!
(e) User input: Did James meet you?
Sarcastic response: Hmm..I used to meet James if
I felt stupid.
(f) User input: I won a lottery!
Sarcastic response: I am so sorry for you!

Table 6: Example outputs of SarcasmBot

6. EXAMPLE OUTPUTS
Table 6 shows some example outputs from our Sarcasm-

Bot system. Each output was generated as follows: For (a),
the incongruent reason generator of SarcasmBot identified
the named entity ‘Greg’. Since the question was of ‘Why’
type, an incongruent reason was selected. Input in (b) is
an opinion question. For this, a positive verb ‘like’ and a
negative situation ‘the way I absolutely appreciate zero ac-
countability people’ was selected - and the named entity
‘Greg’ was appropriately inserted. Input (c) consists of an
offensive word. The offensive word generator identifies the
offensive word, and places the word in a candidate output
to generate the response. Hyperbole generator of the Sar-
casmBot produced the Output (d) where the noun entity
‘video game’ was selected from the user input. Output (e) is
not grammatically well-formed because the tense of the re-
sponse also does not agree with the user input. Output (f)
was generated by Sentiment-based sarcasm generator, which
identified the sentiment of the user input as positive (due to
the phrase ‘won a lottery ’), and generated a response of op-
posite sentiment.

7. CONCLUSION & FUTURE WORK
We present SarcasmBot, a sarcasm-generation module that

always responds sarcastically. Our sarcasm-generation mod-
ule implements peculiar forms of sarcastic expressions such
as hyperbole, incongruity and irrealis, in order to generate
sarcastic responses to user input. The architecture consists
of three stages: an input analyzer that extracts information
about the user input, a generator selector that selects among
sarcasm generators, and eight sarcasm generators that im-
plement different sarcastic expressions. A sarcasm generator
uses sarcastic patterns with placeholders for words. We eval-
uate our sarcasm-generation module through two manual ex-
periments. Our evaluators assign average scores greater than
0.69 (out of 1) for the three parameters: coherence, gram-
matical correctness and sarcastic nature. In addition, we
conduct a comparative evaluation where, in case of 70.97%
of test cases, majority of our evaluators are able to correctly
identify the output of SarcasmBot from among two candi-
date outputs.

As a future work, SarcasmBot may be integrated into a
full-fledged chatbot to selectively decide when the sarcasm-
generation module must be invoked. We also believe that
our insight into sarcasm generation may help to improve
techniques for automatic sarcasm detection.

8. REFERENCES
[1] F. Bessho, T. Harada, and Y. Kuniyoshi. Dialog

system using real-time crowdsourcing and twitter
large-scale corpus. In Proceedings of the 13th Annual
Meeting of the Special Interest Group on Discourse
and Dialogue, SIGDIAL ’12, pages 227–231,
Stroudsburg, PA, USA, 2012. Association for
Computational Linguistics.

[2] D. G. Bobrow, R. M. Kaplan, M. Kay, D. A. Norman,
H. Thompson, and T. Winograd. Gus, a frame-driven
dialog system. Artificial intelligence, 8(2):155–173,
1977.

[3] E. Camp. Sarcasm, pretense, and the
semantics/pragmatics distinction*. Noûs,
46(4):587–634, 2012.

[4] J. D. Campbell and A. N. Katz. Are there necessary
conditions for inducing a sense of sarcastic irony?
Discourse Processes, 49(6):459–480, 2012.

[5] J. L. Fleiss. Measuring nominal scale agreement among
many raters. Psychological bulletin, 76(5):378, 1971.

[6] S. L. Ivanko and P. M. Pexman. Context incongruity
and irony processing. Discourse Processes,
35(3):241–279, 2003.

[7] D. J. Litman and S. Pan. Designing and evaluating an
adaptive spoken dialogue system. User Modeling and
User-Adapted Interaction, 12(2-3):111–137, 2002.

[8] D. J. Litman and S. Silliman. Itspoke: An intelligent
tutoring spoken dialogue system. In Demonstration
papers at HLT-NAACL 2004, pages 5–8. Association
for Computational Linguistics, 2004.

[9] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini.
Building a large annotated corpus of english: The
penn treebank. Computational linguistics,
19(2):313–330, 1993.

[10] J. J. McAuley and J. Leskovec. From amateurs to
connoisseurs: modeling the evolution of user expertise
through online reviews. In Proceedings of the 22nd

international conference on World Wide Web, pages
897–908. International World Wide Web Conferences
Steering Committee, 2013.

[11] M. Newman, A. M. Turing, G. Jefferson,
R. Braithwaite, and S. Shieber. Can automatic
calculating machines be said to think? S. Shieber, The
Turing test: Verbal behavior as the hallmark of
intelligence, pages 117–132, 2004.

[12] J. W. Pennebaker, M. E. Francis, and R. J. Booth.
Linguistic inquiry and word count: Liwc 2001.
Mahway: Lawrence Erlbaum Associates, 71:2001, 2001.

[13] G. Pilato, A. Augello, G. Vassallo, and S. Gaglio.
Ehebby: An evocative humorist chat-bot. Mobile
Information Systems, 4(3):165–181, 2008.

[14] J. Schwoebel, S. Dews, E. Winner, and K. Srinivas.
Obligatory processing of the literal meaning of ironic
utterances: Further evidence. Metaphor and Symbol,
15(1-2):47–61, 2000.

[15] A. Stent, J. Dowding, J. M. Gawron, E. O. Bratt, and
R. Moore. The commandtalk spoken dialogue system.
In Proceedings of the 37th annual meeting of the
Association for Computational Linguistics on
Computational Linguistics, pages 183–190. Association
for Computational Linguistics, 1999.

[16] K. Toutanova, D. Klein, C. D. Manning, and
Y. Singer. Feature-rich part-of-speech tagging with a
cyclic dependency network. In Proceedings of the 2003
Conference of the North American Chapter of the
Association for Computational Linguistics on Human
Language Technology-Volume 1, pages 173–180.
Association for Computational Linguistics, 2003.

[17] R. S. Wallace. The anatomy of ALICE. Springer, 2009.

