
Everybody loves a rich cousin: An empirical study of transliteration through
bridge languages

Mitesh M. Khapra
IIT, Bombay

miteshk@cse.iitb.ac.in

A Kumaran
Microsoft Research India, Bangalore
a.kumaran@microsoft.com

Pushpak Bhattacharyya
IIT, Bombay

pb@cse.iitb.ac.in

Abstract

Most state of the art approaches for machine
transliteration are data driven and require sig-
nificant parallel names corpora between lan-
guages. As a result, developing translitera-
tion functionality amongn languages could
be a resource intensive task requiring paral-
lel names corpora in the order ofnC2. In this
paper, we explore ways of reducing this high
resource requirement by leveraging the avail-
able parallel data between subsets of then lan-
guages, transitively. We propose, and show
empirically, that reasonable quality transliter-
ation engines may be developed between two
languages,X andY , even when no direct par-
allel names data exists between them, but only
transitively through languageZ. Such sys-
tems alleviate the need forO(nC2) corpora,
significantly. In addition we show that the per-
formance of such transitive transliteration sys-
tems is in par with direct transliteration sys-
tems, in practical applications, such as CLIR
systems.

1 Introduction

Names and Out Of Vocabulary (OOV) terms appear
very frequently in written and spoken text and hence
play a very important role in several Natural Lan-
guage Processing applications. Several studies have
shown that handling names correctly across lan-
guages can significantly improve the performance
of CLIR Systems[[Mandl and Womser-Hacker2004]]
and the utility of machine translation systems. The
fact that translation lexicons or even statistical dic-
tionaries derived from parallel data do not provide a

good coverage of name and OOV translations, un-
derscores the need for good transliteration engines
to transform them between the language.

The importance of machine transliteration, in the
above context, is well realized by the research com-
munity and several approaches have been proposed
to solve the problem. However, most state of the art
approaches are data driven and require significant
parallel names corpora between languages. Such
data may not always be available between every pair
of languages, thereby limiting our ability to support
transliteration functionality between many language
pairs, and subsequently information access between
languages. For example, let us consider a practi-
cal scenario where we have six languages from four
different language families as shown in Figure 1.
The nodes in the graph represent languages and the
edges indicate the availability of data between that
language pair and thus the availability of a Machine
Transliteration system for that pair. It is easy to see
the underlying characteristics of the graph. Data is
available between a language pair due to one of the
following three reasons:
Politically related languages: Due to the political
dominance of English it is easy to obtain parallel
names data between English and most languages.
Genealogically related languages: Arabic and He-
brew share a common origin and there is a signifi-
cant overlap between their phoneme and grapheme
inventory. It is easy to obtain parallel names data
between these two languages.
Demographically related languages: Hindi and
Kannada are languages spoken in the Indian sub-
continent, though they are from different language

Figure 1: A connected graph of languages

families. However, due to the shared culture and de-
mographics, it is easy to create parallel names data
between these two languages.

On the other hand, for politically, demographi-
cally and genealogically unrelated languages such
as, say, Hindi and Hebrew, parallel data is not readily
available, either due to the unavailability of skilled
bilingual speakers. Even the argument of using
Wikipedia resources for such creation of such par-
allel data does not hold good, as the amount of in-
terliking may be very small to yield data. For ex-
ample, only 800 name pairs between Hindi and He-
brew were mined using a state of the art mining algo-
rithm [[Udupa et al.2009]], from Wikipedia interwiki
links.

We propose a methodology to develop a practi-
cal Machine Transliteration system between any two
nodes of the above graph, provided a two-step path
exists between them. That is, even when no parallel
data exists betweenX & Y but sufficient data exists
betweenX & Z andZ & Y it is still possible to de-
velop transliteration functionality betweenX & Y

by combining aX → Z system with aZ → Y

system. For example, given the graph of Figure 1,
we explore the possibility of developing translitera-
tion functionality between Hindi and Russian even
though no direct data is available between these two
languages. Further, we show that in many cases the
bridge language can be suitably selected to ensure
optimal MT accuracy.

To establish the practicality and utility of our ap-

proach we integrated such a bridge transliteration
system with a standard CLIR system and compared
its performance with that of a direct transliteration
system. We observed that such a bridge system
performs well in practice and in specific instances
results in improvement in CLIR performance over
a baseline system further strengthening our claims
that such bridge systems are good practical solutions
for alleviating the resource scarcity problem.

To summarize, our main contributions in this pa-
per are:

1. Constructing bridge transliteration systems and
establishing empirically their quality.

2. Demonstrating their utility in providing prac-
tical transliteration functionality between two
languages X & Y with no direct parallel data
between them.

3. Demonstrating that in specific cases it is pos-
sible to select the bridge language so that op-
timal Machine Transliteration accuracy is en-
sured while stepping through the bridge lan-
guage.

1.1 Organization of the Paper

This paper is organized in the following manner. In
section 2 we present the related work and highlight
the lack of work on transliteration in resource scarce
scenarios. In section 3 we discuss the methodology
of bridge transliteration. Section 4 discusses the ex-
periments and datasets used. Section 4.3 discusses
the results and error analysis. Section 5 discusses or-
thographic characteristics to be considered while se-
lecting the bridge language. Section 6 demonstrates
the effectiveness of such bridge systems in a practi-
cal scenario,viz., Cross Language Information Re-
trieval. Section 7 concludes the paper, highlighting
future research issues.

2 Related Work

Current models for transliteration can be classi-
fied as grapheme-based, phoneme-based and hy-
brid models. Grapheme-based models, such as,
Source Channel Model[[Lee and Choi1998]], Max-
imum Entropy Model [[Goto et al.2003]], Condi-
tional Random Fields[[Veeravalli et al.2008]] and

Decision Trees[[Kang and Choi2000]] treat translit-
eration as an orthographic process and try to map
the source language graphemes directly to the tar-
get language graphemes. Phoneme based mod-
els, such as, the ones based on Weighted Finite
State Transducers (WFST)[[Knight and Graehl1997]]
and extended Markov window[[Jung et al.2000]]
treat transliteration as a phonetic process rather than
an orthographic process. Under such frameworks,
transliteration is treated as a conversion from source
grapheme to source phoneme followed by a conver-
sion from source phoneme to target grapheme. Hy-
brid models either use a combination of a grapheme
based model and a phoneme based model[[Stalls and
Knight1998]] or capture the correspondence between
source graphemes and source phonemes to produce
target language graphemes[[Oh and Choi2002]].

A significant shortcoming of all the previous
works was that none of them addressed the issue of
performing transliteration in a resource scarce sce-
nario, as there was always an implicit assumption
of availability of data between a pair of languages.
In particular, none of the above approaches address
the problem of developing transliteration functional-
ity between a pair of languages when no direct data
exists between them but sufficient data is available
between each of these languages and an intermedi-
ate language. Some work on similar lines has been
done in Machine Translation[[Wu and Wang2007]]
wherein an intermediate bridge language (say,Z) is
used to fill the data void that exists between a given
language pair (say,X and Y). In fact, recently it
has been shown that the accuracy of aX → Z Ma-
chine Translation system can be improved by using
additional X → Y data providedZ and Y share
some common vocabulary and cognates[[Nakov and
Ng2009]]. However, no such effort has been made in
the area of Machine Transliteration. To the best of
our knowledge, this work is the first attempt at pro-
viding a practical solution to the problem of translit-
eration in the face of resource scarcity.

3 Bridge Transliteration Systems

In this section, we explore the salient question“Is
it possible to develop a practical machine transliter-
ation system betweenX and Y , by composing two
intermediateX → Z andZ → Y machine translit-

eration systems?”We use a standard transliteration
methodology based on orthography for all experi-
ments (as outlined in section 3.1), to ensure the ap-
plicability of the methodology to a variety of lan-
guages.

3.1 CRF based transliteration engine

Conditional Random Fields ([[Lafferty et al.2001]])
are undirected graphical models used for labeling
sequential data. Under this model, the conditional
probability distribution of the target word given the
source word is given by,

P (Y |X;λ) =
1

N(X)
· e

P

T

t=1

P

K

k=1
λkfk(Yt−1,Yt,X,t)

(1)

where,

X = source word

Y = target word

T = length of source word

K = number of features

λk = feature weight

N(X) = normalization constant

CRF++1, an open source implementation of CRF
was used for training and further transliterating the
names. GIZA++[[Och and Ney2003]], a freely avail-
able implementation of the IBM alignment mod-
els [[Brown et al.1993]] was used to get character
level alignments for the name pairs in the parallel
names training corpora. Under this alignment, each
character in the source word is aligned to zero or
more characters in the corresponding target word.
The following features are then generated using this
character-aligned data (hereei andhi are the charac-
ters at position i of the source word and target name
respectively):

• hi andej such thati − 2 ≤ j ≤ i + 2

• hi and source character bigrams ({ei−1, ei} or
{ei, ei+1})

• hi and source character trigrams ({ei−2, ei−1,
ei} or {ei−1, ei, ei+1} or {ei, ei+1, ei+2})

• hi, hi−1 andej such thati − 2 ≤ j ≤ i + 2

• hi, hi−1 and source character bigrams
• hi, hi−1 and source character trigrams
1http://crfpp.sourceforge.net/

3.2 Bridge Transliteration Methodology

In this section, we outline our methodology for com-
posing transitive transliteration systems betweenX

andY , using a bridge languageZ, by chaining indi-
vidual direct transliteration systems. Our approach
of using bridge transliteration for finding the best
target string (Y ∗), given the input stringX can be
represented by the following probabilistic expres-
sion:

Y ∗ = arg max
Y

P (Y |X)

=
∑

Z

P (Y,Z|X)

=
∑

Z

P (Y |Z,X) ∗ P (Z|X) (2)

We simplify the above expression, by assuming that
Y is independent ofX givenZ; the linguistic intu-
ition behind this assumption is that thetop-koutputs
of the X → Z system corresponding to a string in
X, capture all the transliteration information neces-
sary for transliterating toY . Subsequently, in sec-
tion 5 we discuss the characteristics of the effective
bridge languages to maximize the capture of neces-
sary information for the second stage of the translit-
eration, namely for generating correct strings ofZ.
Thus,

Y ∗ =
∑

Z

P (Y |Z) ∗ P (Z|X) (3)

The probabilitiesP (Y |Z) andP (Z|X) in Equation
(3) are derived from the two stages of the bridge sys-
tem. Specifically, we assume that the parallel names
corpora are available between the language pair,X

andZ, and the language pair,Z andY . We train two
baseline CRF based transliteration systems (as out-
lined in Section 3.1), between the languageX and
Z, andZ and Y . Each name in languageX was
provided as an input intoX → Z transliteration sys-
tem, and the top-10 candidate strings in languageZ

produced by this first stage system were given as an
input into the second stage systemZ → Y . The re-
sults were merged using Equation (2). Finally, the
top-10 outputs of this system were selected as the
output of the bridge system.

4 Experiments

It is a well known fact that transliteration is lossy,
and hence the transitive systems may be expected to
suffer from the accumulation of errors in each stage,
resulting in a system that is of much poorer quality
than a direct transliteration system. In this section,
we set out to quantify this expected loss in accuracy,
by a series of experiments in a set of languages us-
ing bridge transliteration systems and a baseline di-
rect systems. We conducted a comprehensive set of
experiments in a diverse set of languages, as shown
in Figure 1, that include English, Indic (Hindi and
Kannada), Slavic (Russian) and Semitic (Arabic and
Hebrew) languages. The datasets and results are de-
scribed in the following subsections.

4.1 Datasets

To be consistent, for training each of these systems,
we used approximately 15K name pairs corpora (as
this was the maximum data available for some lan-
guage pairs). While we used the NEWS 2009 train-
ing corpus as a part of our training data, we en-
hanced the data set to about 15K by adding more
data of similar characteristics (such as, name origin,
domain, length of the name strings,etc.), taken from
the same source as the original NEWS 2009 data.
For languages such as Arabic and Hebrew which
were not part of the NEWS 2009 shared task, the
data was created along the same lines. All results are
reported on the standard NEWS 2009 test set, wher-
ever applicable. The test set consists of about 1,000
name pairs in languagesX andY ; to avoid any bias,
it was made sure that there is no overlap between the
test set with the training sets of both theX → Z and
Z → Y systems. To establish a baseline, the same
CRF based transliteration system (outlined in Sec-
tion 3.1) was trained with a 15K name pairs corpora
between the languagesX → Y . The same test set
used for testing the transitive systems was used for
testing the direct system as well. As before, to avoid
any bias, we made sure that there is no overlap be-
tween the test set and the training set for the direct
system as well.

4.2 Results

We produce top-10 outputs from the bridge system
as well from the direct system and compare their

Language
Pair

ACC-1 Relative change in
ACC-1

Mean F-score Relative change in
Mean F-score

Hin-Rus 0.507 0.903
Hin-Eng-Rus 0.466 -8.08% 0.886 -1.88%

Hin-Ara 0.458 0.897
Hin-Eng-Ara 0.420 -8.29% 0.876 -2.34%

Eng-Heb 0.544 0.917
Eng-Ara-Heb 0.544 0% 0.917 0%

Hin-Eng 0.422 0.884
Hin-Kan-Eng 0.382 -9.51% 0.871 -1.47%

Table 1: Stepping through an intermediate language

performance. The performance is measured using
the following standard measures,viz., top-1 accu-
racy (ACC-1) and Mean F-score. These measures
are described in detail in[[Li et al.2009]]. Table 1
presents the performance measures, both for a di-
rect system (say, Hin-Rus), and a transitional sys-
tem (say, Hin-Eng-Rus), in 4 different transitional
systems, between English, Indic, Semitic and Slavic
languages. In each case, we observe that the transi-
tional systems have a slightly lower quality, with an
absolute drop in accuracy (ACC-1) of less than 0.05
(relative drop under 10%), and an absolute drop in
Mean F-Score of 0.02 (relative drop under 3%).

4.3 Analysis of Results

Intuitively, one would expect that the errors of the
two stages of the transitive transliteration system
(i.e., X → Z, andZ → Y) to compound, leading
to a considerable loss in the overall performance of
the system. Given that the accuracies of the direct
transliteration systems are as given in Table 2, the
transitive systems are expected to have accuracies
close to the product of the accuracies of the individ-
ual stages, for independent systems.

However, as we observe in Table 1, the relative
drop in the accuracy (ACC-1) is less than 10% from
that of the direct system, which goes against our in-
tuition. To identify the reasons for the better than
expected performance, we performed a detailed er-
ror analysis of each stage of the bridge translitera-
tion systems, and the results are reported in Tables 3
– 5. We draw attention to two interesting facts which
account for the better than expected performance of

Language Pair ACC-1 Mean F-Score
Hin-Eng 0.422 0.884
Eng-Rus 0.672 0.935
Eng-Ara 0.514 0.905
Ara-Heb 1.000 1.000
Hin-Kan 0.433 0.879
Kan-Eng 0.434 0.886

Table 2: Performance of Direct Transliteration Systems

the bridge system:
Improved 2nd stage performance on correct
inputs: In each one of the cases, as expected, the
ACC-1 of the first stage is same as the ACC-1 of the
X → Z system. However, we notice that the ACC-1
of the second stageon the correct strings output
in the first stage, is significantly better than the the
ACC-1 of theZ → Y system! For example, the
ACC-1 of the Eng-Rus system is 67.2% (see Table
2), but, that of the 2nd stage Eng-Rus system is
77.8%, namely, on the strings that are transliterated
correctly by the first stage. Our analysis indicate
that there are two reasons for such improvement:
First, the strings that get transliterated correctly in
the first stage are typically shorter or less ambigu-
ous and hence have a better probability of correct
transliterations in the both stages. This phenomenon
could be verified empirically: Names likegopAl
{Gopal}, rm�ш {Ramesh}, rAm {Ram} are
shorter and in general have less ambiguity on target
orthography. Second, also significantly, the use of
top-10 outputs from the first stage as input to the
second stage provides a better opportunity for the

second stage to produce correct string inZ. Again,
this phenomenon is verified by providing increasing
number oftop-n results to the 2nd stage.

Hi→En→Ru
En → Ru
(Stage-2)

Stage-2
Acc.

Correct Error
Hi→En Correct 263 75 77.81%
(Stage-1) Error 119 362 24.74%

Table 3: Error Analysis for Hi→En→Ru

Hi→En→Ar
En → Ar
(Stage-2)

Stage-2
Acc.

Correct Error
Hi→En Correct 221 127 63.50%
(Stage-1) Error 119 340 25.70%

Table 4: Error Analysis for Hi→En→Ar

Hi→Ka→En
Ka → En
(Stage-2

Acc.)

Stage-2
Acc.

Correct Error
Hi→Ka Correct 225 196 53.44%
(Stage-1) Error 151 400 27.40%

Table 5: Error Analysis for Hi→Ka→En

2nd stage error correction on incorrect inputs:
The last rows in each of the above tables 3 – 5 re-
port the performance of the second stage system on
strings that were transliterated incorrectly by the first
stage. While we expected the second row to pro-
duce incorrect transliterations nearly for all inputs
(as the input themselves were incorrect inZ), we
find to our surprise that upto 25% of the erroneous
strings inZ were getting transliterated correctly in
Y ! This provides credence to our hypothesis that
sufficient transliteration information is captured in
the 1st stage output (even when incorrect) that may
be exploited in the 2nd stage. Empirically, we veri-
fied that in most cases (nearly60%) the errors were
due to the incorrectly transliterated vowels, and in
many cases, they get corrected in the second stage,
and re-ranked higher in the output. Figure 2 shows a

few examples of such error corrections in the second
stage.

Figure 2: Examples of error corrections

5 Characteristics of the bridge language

An interesting question that we explore in this sec-
tion is “how the choice of bridge language influence
the performance of the bridge system?”. The under-
lying assumption in transitive transliteration systems
(as expressed in Equation 3), is that“ Y is indepen-
dent ofX givenZ” . In other words, we assume that
the representations in the language willZ “capture
sufficient transliteration information fromX to pro-
duce correct strings inY ” . We hypothesize that two
parameters of the bridge language, namely, the or-
thography inventory and the phoneme-to-grapheme
entropy, that has most influence on the quality of the
transitional systems, and provide empirical evidence
for this hypothesis.

5.1 Richer Orthographic Inventory

In each of the successful bridge systems (that is,
those with a relative performance drop of less than
10%), presented in Table 1, namely,Hin-Eng-Ara,
Eng-Ara-Heb and Hin-Kan-Eng, the bridge lan-
guage has, in general, richer orthographic inven-
tory than the target language. Arabic has a reduced
set of vowels, and hence poorer orthographic inven-
tory compared with English. Similarly, between the
closely related Semitic languages Arabic-Hebrew,
there is a many-to-one mapping from Arabic to He-
brew, and between Kannada-English, Kannada has
nearly a superset of vowels and consonants as com-
pared to English or Hindi.

As an example for a poor choice ofZ, we present
a transitional system,Hindi → Arabic→ English, in
Table 6, in which the transitional languagez (Ara-
bic) has smaller orthographic inventory thanY (En-
glish).

Language
Pair

ACC-1 Relative change in
ACC-1

Hin-Eng 0.422
Hin-Ara-Eng 0.155 -64.28%

Table 6: Incorrect choice of bridge language

Arabic has a reduced set of vowels and, unlike En-
glish, in most contexts short vowels are optional. As
a result, when Arabic is used as the bridge language
the loss of information (in terms of vowels) is large
and the second stage system has no possibility of re-
covering from such a loss. The performance of the
bridge system confirms such a drastic drop in ACC-
1 of nearly 64% compared with the direct system.

5.2 Higher Phoneme-Grapheme Entropy

We also find that the entropy in phoneme - grapheme
mapping of a language indicate a good correlation
with a good choice for a transition language. In
a good transitional system (say,Hin-Eng-Rus), En-
glish has a more ambiguous phoneme-to-grapheme
mapping than Russian; for example, in English the
phoneme ‘s’ as inSam or Cecilia can be repre-
sented by the graphemes ‘c’ and ‘s’, whereas Rus-
sian uses only a single character to represent this
phoneme. In such cases, the ambiguity introduced
by the bridge language helps in recovering from er-
rors in theX → Z system. The relative loss of
ACC-1 for this transitional system is only about 8%.
The Table 7 shows another transitional system, in
which a poor choice was for the transitional lan-
guage was made.

Language
Pair

ACC-1 Relative change in
ACC-1

Hin-Eng 0.422
Hin-Tam-Eng 0.231 -45.26%

Table 7: Incorrect choice of bridge language

Tamil has a reduced set of consonants compared
with Hindi or English. For example, the Hindi con-
sonants (k, kh, g, gh) are represented by a sin-
gle character in Tamil. As a result, when Tamil is
used as the bridge language it looses information (in
terms of consonants) and results in a significant drop
in performance (nearly a 45% drop in ACC-1) for

the bridge system.

6 Effectiveness of Bridge Transliteration
on CLIR System

In this section, we demonstrate the effectiveness of
our bridge transliteration system on a downstream
application, namely, a Crosslingual Information Re-
trieval system. We used the standard document col-
lections from CLEF 2006[[Nardi and Peters2006]],
CLEF 2007[[Nardi and Peters2007]] and FIRE 2008
[[FIRE2008]]. We used Hindi as the query language.
All the three fields (title, description and narration)
of the topics were used for the retrieval. Since the
collection and topics are from the previous years,
their relevance judgments were also available as a
reference for automatic evaluation.

6.1 Experimental Setup

We used primarily the statistical dictionaries gen-
erated by training statistical word alignment mod-
els on an existing Hindi-English parallel corpora.
As with any CLIR system that uses translation lex-
icon, we faced the problem of out-of-vocabulary
(OOV) query terms that need to be transliterated,
as they are typically proper names in the target lan-
guage. First, for comparison, we used the above
mentioned CLIR system with no transliteration en-
gine (Basic), and measured the crosslingual retrieval
performance. Clearly, the OOV terms would not be
converted into target language, and hence contribute
nothing to the retrieval performance. Second, we in-
tegrated a direct machine transliteration system be-
tween Hindi and English (D-HiEn), and calibrated
the improvement in performance. Third, we inte-
grate, instead of a direct system, a bridge transliter-
ation system between Hindi and English, transition-
ing through Kannada (B-HiKaEn). For both, direct
as well as bridge transliteration, we retained the top-
5 transliterations generated by the appropriate sys-
tem, for retrieval.

6.2 Results and Discussion

The results of the above experiments are given in
Table 7. The current focus of these experiments is
to answer the question ofwhether the bridge ma-
chine transliteration systems used to transliterate
the OOV words in Hindi queries to English(by step-

Collection CLIR System MAP Relative MAP change
from Basic

Recall Relative Recall change
from Basic

Basic 0.1463 - 0.4952 -
CLEF 2006 D-HiEn 0.1536 +4.98% 0.5151 +4.01%

B-HiKaEn 0.1529 +4.51% 0.5302 +7.06%

Basic 0.2521 - 0.7156 -
CLEF 2007 D-HiEn 0.2556 +1.38% 0.7170 + 0.19%

B-HiKaEn 0.2748 +9.00% 0.7174 + 0.25%

Basic 0.4361 - 0.8457 -
FIRE 2008 D-HiEn 0.4505 +3.30% 0.8506 +0.57%

B-HiKaEn 0.4573 +4.86% 0.8621 +1.93%

Table 8: CLIR Experiments with bridge transliteration systems

ping through Kannada)performs at par with a di-
rect transliteration system. As expected, enhancing
the CLIR system with a machine transliteration sys-
tem (D-HiEn) gives better results over a CLIR sys-
tem with no transliteration functionality (Basic). On
the standard test collections, the bridge translitera-
tion system performs in par or better than the di-
rect transliteration system in terms of MAP as well
as recall. Even though, the bridged system is of
slightly lesser quality in ACC-1 in Hi-Ka-En, com-
pared to Hi-En (see Table 1), the top-5 results had
captured the correct transliteration, as shown in our
analysis. A detailed analysis of the query transla-
tions produced by the above systems showed that in
some cases the bridge systems does produce a bet-
ter transliteration thereby leading to a better MAP.
As an illustration, consider the OOV termsv�EVкn
{Vatican} and n�-l� {Nestle} and the corre-
sponding transliterations generated by the different
systems. The Direct-HiEn system was unable to
generate the correct transliteration in the top-5 re-
sults whereas the B-HiKaEn was able to produce the
correct transliteration in the top-5 results thereby re-
sulting in an improvement in MAP for these queries
(refer Table 8).

7 Conclusions

In this paper, we introduced the idea of bridge
transliteration systems that were developed employ-
ing well-studied orthographic approaches between
constituent languages. We empirically established
the quality of such bridge transliteration systems
and showed that quite contrary to our expectations,

OOV term D-HiEn B-HiKaEn
vetican vetican
veticon vettican

v�EVкn vettican vatican
(vatican) vetticon watican

wetican wetican
nesle nestle
nesly nesle

n�-l� nesley nesley
(nestle) nessle nestley

nesey nesly

Table 9: Sample output in direct and bridge systems

the quality of such systems does not degrade dras-
tically as compared to the direct systems. Our er-
ror analysis showed that these better-than-expected
results can be attributed to (i) Better performance
(∼10-12%) of the second stage system on the strings
transliterated correctly by the first stage system and
(ii) Significant (∼25%) error correction in the sec-
ond stage. Next, we highlighted that the perfor-
mance of such bridge systems will be satisfactory as
long as the orthographic inventory of the bridge lan-
guage is either richer or more ambiguous as com-
pared to the target language. We showed that our
results are consistent with this hypothesis and pro-
vided two examples where there is a significant drop
in the accuracy when the bridge language violates
the above constraints. Finally, we showed that a
state of the art CLIR system integrated with a bridge
transliteration system performs in par with the same
CLIR system integrated with a direct translitera-

tion system, vindicating our claim that such bridge
transliteration systems can be use in real-world ap-
plications to alleviate the resource requirement of
nC2 parallel names corpora.

References

Peter E Brown, Vincent J. Della Pietra, Stephen A. Della
Pietra, and Robert L. Mercer. 1993. The mathemat-
ics of statistical machine translation: parameter esti-
mation.Computational Linguistics, 19:263–311.

FIRE. 2008. Forum for information retrieval evaluation.
I. Goto, N. Kato, N. Uratani, and T. Ehara. 2003.

Transliteration considering context information based
on the maximum entropy method. InProceedings of
MT-Summit IX, page 125132.

Sung Young Jung, SungLim Hong, and Eunok Paek.
2000. An english to korean transliteration model of
extended markov window. InProceedings of the 18th
conference on Computational linguistics, pages 383–
389.

B. J. Kang and K. S. Choi. 2000. Automatic translit-
eration and back-transliteration by decision tree learn-
ing. In Proceedings of the 2nd International Confer-
ence on Language Resources and Evaluation, pages
1135–1411.

Kevin Knight and Jonathan Graehl. 1997. Machine
transliteration. InComputational Linguistics, pages
128–135.

John D. Lafferty, Andrew Mccallum, and Fernando C. N.
Pereira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.
In ICML ’01: Proceedings of the Eighteenth Interna-
tional Conference on Machine Learning, pages 282–
289, San Francisco, CA, USA.

J. S. Lee and K. S. Choi. 1998. English to korean statis-
tical transliteration for information retrieval. InCom-
puter Processing of Oriental Languages, pages 17–37.

Haizhou Li, A Kumaran, , Min Zhang, and Vladimir Per-
vouvhine. 2009. Whitepaper of news 2009 machine
transliteration shared task. InProceedings of the 2009
Named Entities Workshop: Shared Task on Transliter-
ation (NEWS 2009), pages 19–26, Suntec, Singapore,
August. Association for Computational Linguistics.

Thomas Mandl and Christa Womser-Hacker. 2004. How
do named entities contribute to retrieval effectiveness?
In CLEF, pages 833–842.

Preslav Nakov and Hwee Tou Ng. 2009. Improved statis-
tical machine translation for resource-poor languages
using related resource-rich languages. InProceedings
of the 2009 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1358–1367, Singa-

pore, August. Association for Computational Linguis-
tics.

A Nardi and C Peters. 2006. Working notes for the clef
2006 workshop.

A Nardi and C Peters. 2007. Working notes for the clef
2007 workshop.

Franz Josef Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics, 29(1):19–51.

Jong-hoon Oh and Key-sun Choi. 2002. An english-
korean transliteration model using pronunciation and
contextual rules. InProceedings of the 19th In-
ternational Conference on Computational Linguistics
(COLING), pages 758–764.

Bonnie Glover Stalls and Kevin Knight. 1998. Trans-
lating names and technical terms in arabic text. In
Proceedings of COLING/ACL Workshop on Computa-
tional Approaches to Semitic Languages, pages 34–41.

Raghavendra Udupa, K Saravanan, Anton Bakalov, and
Abhijit Bhole. 2009. ”they are out there, if you know
where to look: Mining transliterations of oov query
terms for cross language information retrieval”. In
ECIR’09: Proceedings of the 31st European Confer-
ence on IR research on Advances in Information Re-
trieval, pages 437–448, Toulouse, France.

Suryaganesh Veeravalli, Sreeharsha Yella, Prasad Pin-
gali, and Vasudeva Varma. 2008. Statistical translit-
eration for cross language information retrieval using
hmm alignment model and crf. InProceedings of the
2nd workshop on Cross Lingual Information Access
(CLIA) Addressing the Information Need of Multilin-
gual Societies, page 125132.

Hua Wu and Haifeng Wang. 2007. Pivot language
approach for phrase-based statistical machine transla-
tion. Machine Translation, 21(3):165–181.

