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Abstract

Though Social media helps spread knowledge more effectively, it also stimulates the propaga-
tion of online abuse and harassment, including hate speech. It is crucial to prevent hate speech
since it may have serious adverse effects on both society and individuals. Therefore, it is not
only important for models to detect these speeches, but to also output explanations of why a
given text is toxic. While plenty of research is going on to detect online hate speech in English,
there is very little research on low-resource languages like Hindi and the explainability aspect
of hate speech. Recent laws like the ”right to explanations” of the General Data Protection
Regulation have spurred research in developing interpretable models rather than only focusing
on performance. Motivated by this, we create the first interpretable benchmark hate speech
corpus HHES in the Hindi language, where each hate post has its stereotypical bias and tar-
get group category. Providing descriptions of internal stereotypical bias as an explanation of
hate posts makes a hate speech detection model more trustworthy. Current work proposes a
commonsense-aware unified generative framework, CGenFEx by reframing the multitask prob-
lem as a text-to-text generation task. The novelty of this framework is it can solve two different
categories of tasks (generation and classification) simultaneously. We establish the efficacy of
our proposed model (CGenFEz-fuse) on various evaluation metrics over other baselines when
applied to Hindi HHES dataset.

Disclaimer: The article contains profanility, an inevitable situation for the nature of the work
involved. These in no way reflect the opinion of authors.

1. Introduction

The exponential increase in textual content due to the widespread use of social media
platforms renders human moderation of such information untenable (Cao et al] 2020).
Governments, media organizations, and researchers now view the prevalence of hate speech
on online social media platforms as a major problem, particularly given _how quickly it
spreads and encourages harm to both individuals and society. Hate speech Nockleby (1994)
is any communication that intends to attack the dignity of a group based on characteristics
such as race, gender, ethnicity, sexual orientation, nationality, religion, or other features.
With the advancement of Natural Language Processing (NLP), numerous studies have sug-
gested methods to detect hate speech automatically using traditional Machine Learning
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(ML) (Dadvar_et al) 2014; Dinakar et all 2011; Reynolds et al! 2011) and deep learning
approaches (Agrawal and Awekal 2018; Waseem and Hovy 2016; Badjatiya et al) 2017).
However, it is crucial for artificial intelligence (AI) tools not only to identify hate speech
automatically but also to generate the implicit bias that is present in the post_in order
to explain why it is hated. The advent of explainable artificial intelligence (AI) (Gunning
et al] 2019) has necessitated the provision of explanations and interpretations for deci-
sions made by machine learning algorithms. This requirement is crucial for establishing
trust and confidence in the deployment of AT models. Additionally, recent legislation in
Europe, such as the General Data Protection Regulation (GDPR) (Regulation 2016), has
implemented a "right to explanation” law, further emphasizing the need for interpretable
models. Consequently, there is a growing emphasis on the development of models that
prioritize interpretability rather than solely focusing on improving performance through
increased model complexity.

Stereotypical bias (SB) (Cuddy et al) 2009), a common unintentional bias, can be based
on specific aspects such as skin tone, gender, ethnicity, demography, disability, Arab-
Muslim origin, etc. Stereotyping is a cognitive bias that permeates all aspects of daily life
and is firmly ingrained in human nature. Social stereotypes have a detrimental influence
on people’s opinions of other groups and may play a crucial role in how people interpret
words aimed towards minority social groups (Sap et al 2019a). For example, earlier studies
have demonstrated that toxicity detection models correlate texts with African-American
English traits with more offensiveness than texts lacking such qualities (Davidson et al,
2019).

In the past decade, extensive research has been conducted to develop datasets and
models for automatic detection of online hate speech in the English language (Agrawal
and Awekar 2018; Waseem and Hovy 2016; Badjatiya et al] 2017). However, there is a
noticeable scarcity of hate speech detection work in the Hindi language, despite its status
as the fourth-most-spoken language globally, widely used in South Asia. Existing studies in
this domain have primarily focused on enhancing the performance of hate speech detection
using various models, often neglecting the crucial aspect of explainability. The emergence
of explainable artificial intelligence (AI) has now necessitated the provision of explanations
and interpretations for decisions made by machine learning algorithms, becoming a critical
requirement in this field. For instance, debiasing techniques that incorporate knowledge
of the toxic language may_benefit from extra information provided by in-depth toxicity
analyses in text (Ma et al] 2020). Furthermore, thorough descriptions of toxicity can make
it easier for people to interact with toxicity detection systems (Rosenfeld and Richardson
2019).

To fill this research gap, in this work, we create a benchmark Hindi hate speech expla-
nation dataset (HHES) that contains the stereotypical bias and target group category of
a toxic post. To create HHES dataset, we manually translate the existing English Social
Bias Frames (SBIC) (Sap et al| 2020a) dataset. Now, we have to develop an efficient mul-
titask framework that can solve two different categories of tasks simultaneously, i.e., (i)
sequence generation task (generate stereotypical bias as explanation) and (ii) classification
task (identify the target group category).

Humans have the ability to learn multiple tasks simultaneously and apply the knowl-
edge learned from one task to another task. To mimic this quality of human intelligence,
researchers have been working on Multitask learning (MTL) (Caruana [1997) which is a
training paradigm in which a model is trained with data from different closely related
tasks in an attempt to efficiently learn the mapping and connection between these tasks.
There have been many works that have shown that solving a closely related auxiliary task
along with the main task increases the performance of the primary tasks (such as cyber-
bullying detection (CD) (Maity and Saha 2021b), complaint identification Singh et al.
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(2021) and tweet act classification (TAC) (Saha et al] 2021))). A typical multitask model
consists of a shared encoder that contains representations from data of different tasks and
several task-specific layers or heads attached to that encoder. However, there are many
drawbacks of this approach such as negative transfer (Crawshaw 2020) (where multiple
tasks instead of optimizing the learning process start to hurt the training process), model
capacity (Wu 2019) (if the size of shared encoder becomes too large then there will be no
transfer of information across different tasks ) or optimization scheme (Wu 2019) (how to
assign weights to different tasks during training). There are also several scalability issues
with this approach of multitasking such as adding task-specific heads every time a new
task has been introduced or changing the complete model architecture whenever a new
combination of tasks has been introduced.

To overcome the challenges of MTL, we propose the use of a generative model to solve
two different categories of tasks: classification (target group category) and generation
(stereotypical bias). Rather than employing two separate models to address these tasks,
we present a commonsense-aware unified generative multitask framework that can solve
both tasks simultaneously in a text-to-text generation manner. We converted the classifi-
cation task into a generation task, where the target output sentence is the concatenation
of the classification task’s output tokens. In our proposed model, the input is text, such as
a social media post, and the output is also text, representing the concatenation of stereo-
types and target groups separated by a special character. For instance, given the input
post "Bitches love Miley Cyrus and Rihanna because they speak to every girl’s inner ho,”
the corresponding output or target sequence is "< Women are sexually promiscuous>
<Gender>. In this example, "Women are sexually promiscuous” represents the stereo-
typical bias, and "Gender” is the target group category. As sentient beings, we use our
common sense to establish connections between what is explicitly said and inferred. We
employed Conceptnet to generate commonsense knowledge to capture and apply common
patterns of real-world knowledge in order to draw conclusions or make decisions about a
given post. For example, if the input sentence is “I was just pretending to be retarded!”
Then some of the generated commonsense reasonings by Conceptnet are (i) “pretend
requires imagination”, (ii) “retard is similar in meaning to an idiot”.

To sum up, our contributions are twofold:

(1) HHES, a new benchmark dataset for explainable hate speech detection with target
group category identification in the Hindi language has been developed.

(2) To simultaneously solve two tasks, i.e., stereotypical bias/explanation (generation
task) and identifying target group (classification task), a commonsense-aware uni-
fied generativegframework (CGenEx) with reinforcement learning-based training has
been proposed®.

The organization of this article is as follows. A survey of all the previous works in this do-
main is explained in Section E Section E describes the process of dataset creation in detail.
Sectione@ explains the proposed methodology and Section p describes the experimental
settings and results. This part also contains a detailed error analysis of our results.

2. Related Works

Hate speech is very reliant on linguistic subtlety. Researchers have recently provided a lot
of attention to automatically identifying hate speech in social media. In this section, we
will review recent works on detecting and explaining hate speech.

2The code and dataset will be made publicly available in the camera-ready version
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2.1 Hate speech Detection

Kamble et al. (Kamble and Joshi 2018) explored hate speech detection in code-mixed
Hindi-English tweets. By employing three deep learning models with domain-specific
embeddings, they achieved a significant improvement of 12% in Fl-score compared to
previous work that used statistical classifiers. The authors emphasized the ability of their
models to capture the semantic and contextual aspects of hate speech, highlighting the
value of domain-specific word embeddings. In this paper (Kumar et al| 2018), the authors
address the increasing incidents of aggression and related behaviors on social media plat-
forms by developing an aggression-annotated dataset of Hindi-English code-mixed data
from Twitter and Facebook. The dataset, consisting of approximately 18k tweets and 21k
Facebook comments, is annotated with a hierarchical tagset of aggression levels and types.
This annotated dataset serves as a valuable resource for understanding and automatically
identifving aggression, trolling, and cyberbullying on social media platforms. Maity et
al. (Maity and Saha 20214) introduces a benchmark corpus specifically designed for de-
tecting cyberbullying targeted at children and women in the context of Hindi-English
code-mixed language. By combining BERT, CNN, GRU, and Capsule networks, the au-
thors develop a powerful model for classification, surpassing both conventional machine
learning and deep neural network baselines. The model achieves an accuracy of 79.28%
highlighting its effectiveness in identifying cvberbullying instances. By leveraging the
power of the BERT language model, (Paul and Sahg 2020) developed a transformer-
based method for identifying hate speech across multiple social media platforms. The
approach involves fine-tuning BERT and implementing a straightforward classification
model, leading to state-of-the-art performance on real-world datasets from Formspring,
Twitter, and Wikipedia. (Badjatiya et al| 2017) addresses the task of hate speech detec-
tion on Twitter by leveraging deep learning architectures and semantic word embeddings.
Through extensive experimentation on a benchmark dataset of 16K annotated tweets, the
study demonstrates that the proposed deep learning methods outperform state-of-the-art
character n-gram and word TF-IDF methods by a significant margin of approximately
18% F1 points. The authors also highlight the superiority of certain combinations, such
as LSTM with random embedding and GBDT, and provide evidence of the task-specific
nature of the learned embeddings through word similarity comparisons. Watanabe et al.
(2018) presents an approach for detecting hate speech on Twitter by leveraging patterns
and unigrams collected from the training set as features for machine learning algorithms.
The proposed method achieves high accuracies of 87.4% for binary classification (offensive
vs. non-offensive) and 78.4% for ternary classification (hateful, offensive, or clean). The
study highlights the importance of automatically identifying hate speech to filter out of-
fensive content and proposes future work to expand the dictionary of hate speech patterns
and _analyze the presence of hate speech across different demographics. Davidson et al.
(2017) addresses the challenge of distinguishing hate speech from other types of offensive
language in social media. Using a crowd-sourced hate speech lexicon and a multi-class
classification model, the study accurately categorizes tweets into hate speech, offensive
language, or neutral content. The findings highlight the importance of precise classifi-
cation, uncover insights into different types of hate speech, and emphasize the need to
address social biases in hate speech detection algorithms.

2.2 Explainability /Bias

Zaidan et al. (Zaidan et al] 2007) proposed the concept of rationales, in which human an-
notators underlined a section of text that supported their tagging decision. Authors have
examined that the usages of these rationales certainly improved sentiment classification
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performance. (Mathew et al| 2020) introduce HateXplain, a comprehensive benchmark
dataset that includes annotations from multiple perspectives, such as classification la-
bels (hate, offensive, normal), target communities, and rationales based on which labeling
decisions are made. The study evaluates state-of-the-art models on this dataset and high-
lights the limitations of high-performing classification models in terms of explainability.
Furthermore, the findings demonstrate the importance of incorporating human rationales
in training models to mitigate unintended bias and improve performance in hate speech
detection. Sridhar et al. Sridhar and Yang (2022) developed the MixGEN model based
on expert, explicit and implicit knowledge to explain toxic text by generating the stereo-
type of the post. They have experimented on SBIC social bias dataset collected from
different social media like Twitter, Reddit, Gab, etc. The study highlights the strengths
and weaknesses of different knowledge types and emphasizes the effectiveness of mixture
and ensemble methods in leveraging diverse knowledge sources to generate high-quality
text generations. To remove stereotypical bias in the hate speech detection task, au-
thors in Badjatiya et al| (2019) propose a two-stage framework that includes heuristics
to identify bias-sensitive words and novel strategies based on knowledge generalization
for replacing these words. Experimental results using real-world datasets (WikiDetox
and Twitter) demonstrate the effectiveness of the proposed methods in reducing bias
without compromising overall model performance. The study highlights the potential of
data correction_techniques and provides qualitative analysis and examples to support
the findings. (Karim et al] 2021) developed DeepHateExplainer, an explainable approach
for hate speech detection in the under-resourced Bengali language. The authors prepro-
cess Bengali texts and employ a neural ensemble method using transformer-based neural
architectures to classify hate speech into political, personal, geopolitical, and religious
categories. They utilize sensitivity analysis and layer-wise relevance propagation (LRP)
to identify important terms and generate human-interpretable explanations. Evaluations
against machine learning and neural network baselines demonstrate the superior perfor-
mance of DeepHateExplainer. The study acknowledges potential limitations due to limited
labeled data and proposes future directions for improvement and expansion.

2.3 Text Generation

Models such as GPT-2 (Radford et al| 2019) and GPT-3 are decoder-only transformer
models that have been pre-trained on a large amount of text data that can generate fluent,
coherent, and consistent text. Encoder-decoder Transformers consisting of BART (Lewis
et all 2020) and T5 (Raffel et al] 2020), have shown massive improvements and success
in many NLP tasks such as summarization and translation. Recently, there are many
attempts to use these generative models in solving non-generational tasks. (Yan et al,
2021)) used the BART model to solve the task of aspect-based sentiment analysis. They
proposed to convert all the aspect-based sentiment analysis tasks to a unified generation
task. The BART model is implemented to generate the target sequence in an end-to-
end process based on unified task generation. Similarly, (Wang et al) 2022) used the T5
model for solving named entity recognition as a generative problem. This enriches source
sentences with task-specific instructions and answer options, then inferences from the
entities and types in natural language. The T5 model is further trained for tasks such as
entity extraction and entity typing.

After an in-depth literature review, we can conclude that most of the works on hate
speech detection are in English, and there is no such work on the explainability of hate
speech by generating the internal stereotypical bias in the Hindi language. In this work,
we attempt to bridge this research gap.
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3. Dataset Creation

This section discusses the developed benchmark Hindi hate speech explanation (stereo-
types) dataset (HHES). To begin, we reviewed the literature for the existing hate speech
datasets, which contain stereotypical bias and target groups. As per our knowledge, there
is only one standard social bias dataset (SBIC) in English developed by (Sap et al) 2020a).
The lack of any other publicly available dataset related to our work and the good structure
of this dataset makes it the perfect choice for our purpose.

Technological advancements have revolutionized the way people express their opinions,
particularly in Jow-resource languages. India, a country with a massive internet user base
of 1010 million®, exhibits significant linguistic diversity. Among the numerous languages
spoken in India, Hindi hqlds a prominent position as one of the official languagest, with
over 691 million speakerst. Consequently, a substantial portion of text conversations on
social media platforms in India occurs in the Hindi language. This phenomenon highlights
the significance of Hindi as the primary medium of communication for the majority of
users in the country.

We have manually annotated the existing English SBIC dataset to create the Hindi
hate speech explanation dataset (HHES). The annotation process was overseen by two
proficient professors who have extensive expertise in hate speech and offensive content
detection. The execution of the annotation task was carried out by a group of ten under-
graduate students who were proficient in both Hindi and English. These students were
recruited voluntarily through the department email list and were provided compensation
in the form of gift vouchers and an honorarium for their participation. To ensure consis-
tency and accuracy in the translation process, we initiated the annotation training phase
with a set of gold-standard translated samples. Our expert annotators randomly selected
300 samples and manually translated them from English to Hindi. Through collaborative
discussions, any differences or discrepancies in the translations were resolved, resulting in
the creation of 300 gold-standard manually annotated samples encompassing toxic posts
and their corresponding stereotypes. To facilitate the training of novice annotators, these
annotated examples were divided into three sets, each containing 100 samples. This di-
vision allowed for a three-phase training procedure in which novice annotators received
guidance and feedback from the expert annotators. After the completion of each training
phase, the expert annotators collaborated with the novice annotators to rectify any in-
correct annotations and provide further guidance. Upon the conclusion of the three-phase
training process, the top ten annotators were selected based on their performance. These
annotators were chosen to annotate the entire dataset, and the workload was evenly di-
vided among them. Therefore, each post was translated by one of the selected annotators.
However, we acknowledge that despite our diligent efforts, there may be cases where the
translation does not precisely replicate the original post due to the inherent difficulties of
cross-lingual translation and the complexities of social media language.

The number of training, validation, and test samples in HHES dataset are 12110, 1806,
and 1924, respectively. The detailed distribution of target group category classes is shown
in Table m

Further, we have engaged three senior annotators (Master’s students in Linguistics)
to verify the translation quality in terms of fluency (F) and adequacy (A) as mentioned
in (Ghosh et al) 2022). Fluency evaluates whether the translation is syntactically correct
or not, whereas Adequacy checks the semantic quality. Each annotator marked every

b https://en.wikipedia.org/wiki/List of_countries_by_number_of_Internet_users
“https://en.wikipedia.org/wiki/Hindi
d https://en.wikipedia.org/wiki/List_of_languages_by_number_of_native_speakers_in_India
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Table 1. : Train, validation, and test split distribution of Target group category in HHES
dataset.

Target Group Category

Split Total
Race Gender Social Body Culture Disabled Victim

Train | 3462 3294 538 369 2134 713 1600 12110

Val 681 441 72 54 342 92 124 1806

Test 716 439 75 47 421 102 124 1924

Table 2. : Two examples from HHES dataset

Target grou;
Post Target Stereotype et group

Hindi: F AT THY A o [T &1 T . W aTTd 9 (a1 g1 2 | T apreqaterep e ahtequfes it & forg 21

English: What up fake ass hoe? I'm not gone fought you today.

Category

Race

. nigga is a slang term for black people
Gimme my nigga hand back” =

Hindi: 31X ¥ 0% FST-HT @A o a1 # ST AT o qabal A FEaaT &

English: And I can’t be known for fucking wit a trash bitch women are bitches

Gender

translated sentence with an ordinal value from a scale of 1—5E for both F and A. We attain
high average F and A scores of 4.23 and 4.58, respectively, illustrating that the translations
are of good quality. In Table P, some examples of the HHES dataset are shown.

4. Methodology

In this work, we have proposed CGenFEz (shown in Figure m)7 a commonsense-aware uni-
fied generative framework for generating stereotypical bias to explain why an input post
is hateful and identify the target group category. Detailed descriptions of the proposed
models are described below.

4.1 Commonsense-aware Generative Framework (CGenEx)

We propose a text-to-text generation paradigm for solving hate speech explanations and
identifying target group categories in a unified manner. To transform this problem into
a text generation problem, we first construct a natural language target sequence, Y;, for
input sentence, X;, for training purposes by concatenating the explanations (stereotypical
bias) and target group. Finally, the target sequence Y; is represented as :

Yi={<St><Tg>} (1)

where St and Tg represent the corresponding stereotypical bias and target group of an
input post X;j, respectively.
We have added special characters after each task’s prediction as shown in Equation
so that we can extract task-specific predictions during testing or inference. Now, both
the input sentence and the target are in the form of natural language to leverage large
pre-trained sequence-to-sequence models for solving this task of text-to-text generation.
Now the problem can be reformulated as: given an input sequence X, the task is to
generate an output sequence, Y,, containing all the predictions defined in Equation

¢Fluency - 5: Flawless, 4: Good, 3: Non-native, 2: Disfluent, 1: Incomprehensible; Adequacy - 5: All, 4:
Most, 3: Much, 2: Little, 1: None
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Figure 1: A commonsense-aware unified generative framework (CGenEzx) architecture.
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Figure 2: Commonsense aware encoder module internal architecture

using a generative model defined in Equation E:

!

Y

G(X)

(2)

where G is a generation model. We divide our approach into three steps: 1) Commonsense
extraction module, 2) Commonsense aware transformer model and 3) Reinforcement

learning-based training.
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4.1.1 Sequence to Sequence Learning (Seq25eq):

This problem of a text-to-text generation defined in equation E can easily be solved with
the help of a Sequence to Sequence model which consists of two modules: 1) Encoder and
2) Decoder. We employed the pre-trained BART (Lewis et al| 2020) and T5 (Raffel et al.
2020) models as the Sequence to Sequence models in our proposed model (CGenEx).

BART: BART is an encoder-decoder-based transformer model which is mainly pre-
trained for text generation tasks such as summarization and translation. BART is pre-
trained with various denoising pretraining objectives such as token masking, sentence
permutation, sentence rotation etc.

T5: T5 is also an encoder-decoder-based transformer model which aims to solve all
the text-to-text generation problems. The main difference between BART and T5 is the
pre-training objective. In T5, the transformer is pre-trained with a denoising objective
where 15% of the input tokens are randomly masked and the decoder tries to predict all
these masked tokens whereas, during pre-training of BART, the decoder generates the
complete input sequence.

4.1.2 Commonsense Extraction Module

Commonsense reasoning in NLP models is the ability of the model to capture and apply
common patterns of real-world knowledge in order to draw conclusions or make decisions
about a particular text or data set Sap et al] (2020b). This type of reasoning allows
the model to draw inferences. Incorporating commonsense reasoning in language models
can help to more accurately capture the underlying intentions and context behind the
speech. We employ a commonsense extraction module to provide more context in the
form of commonsense reasoning to the input text so that model can incorporate knowledge
regarding social entities and events involved in the input text. We use ConceptNet (Speer
et al] 2017) as our knowledge base for the commonsense extraction module. At first, we
feed the input text, X;, to the Commonsense Extraction Module to extract the top 5
commonsense reasoning triplets using the same strategy as mentioned in (Sridhar and
Yang 2022) where a triplet consists of two entities and a connection/relation between
these two entities which is then converted into a single sentence. Formally, to get the top
5 triplets from Conceptnet, we take the nouns, verbs, and adjectives from the input and
search for related triplets in ConceptNet. Then, we sort them in order of the combination
of their IDF score and the edge weight of the triplets and then will select the top 5 triplets.
To obtain the final commonsense reasoning CS for each input text, X;, we concatenate these
five commonsense reasonings together.

4.1.3 Commonsense Aware Transformer

To leverage the commonsense reasoning CS obtained from the Commonsense Extraction
Module, we have proposed two variations of commonsense aware encoder-decoder archi-
tecture (CGenEx-con and CGenEx-fuse) that are capable of incorporating CS in their
sequence-to-sequence learning process. We employed the pre-trained BART (Lewis et al,
2020) and T5 (Raffel et al) 2020) models as the base sequence to sequence models.

4.1.4 CGenEx-con (Concatenation based CGenEx)

Given an input text X; and corresponding commonsense reasoning CS, the task to generate
the target sequence, Yi/7 can be modeled as the following conditional text generation model:
Pg(Yi/|Xi, CS), where 0 is a set of model parameters. CWHSI-Con models this conditional
probability as follows:
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We first concatenate the tokens of the input text, X;, and the commonsense reasoning,
CS to provide us with a final input sequence as follows: T; = X; © CS. Now, given a pair
of input sentences and target sequence (T}, Y;), the first step is to feed T; to the encoder
module to obtain the hidden representation of input defined as

HEN = GEncoder(T;') (3)

where Ggpeoder T€Presents encoder computation.

After obtaining the hidden representation, Hgy, we will feed Hgy and all the output
tokens till time step r — 1 represented as Y.; to the decoder module to obtain the hidden
state at time step t as defined in below equation.

HE)EC = Gpecoder (HEN; Y<t> (4)

where Gpecoder denotes the decoder computations.

The conditional probability for the predicted output token at * time step, given the
input and previous ¢ — 1 predicted tokens is calculated by applying the softmax function
over the hidden state, H},p, as follows:

P(Yz |Xa Y<t) = Fvoftmax(HE)ECWGen) (5)

where Fy,fimax T€presents softmax computation and Wg,, denotes weights of our model.

4.1.5 CGenEx-Fuse (Fusion based CGenEx)

To fuse the information from both commonsense and input text, we have proposed a
commonsense aware encoder (shown in Figure E), an extension of the original transformer
encoder Vaswani et al| (2017)). At first, the input text, X;, is tokenized and converted into a
sequence of embeddings. Then positional encodings are added to these token embeddings
to retain their positional information before feeding input to the proposed commonsense
aware encoder. Our commonsense aware encoder is composed of three sub-layers: 1) Multi-
head Self-Attention (MSA), 2) Feedforward Network (FFN) and 3) Commonsense Fusion
(CSF)._MSA and FFN_are standard sub-layers as used in the original transformer en-
coder Vaswani et al| (2017). We have added a CSF sub-layer as a means to fuse the
commonsense knowledge in our model which works as follows:

After obtaining the encoded representation, Hgy from the first two sub-layers (MSA
and FFN), we feed this Hgy and commonsense feature vector Ges to the CSF sub-layer.
Unlike the standard transformer encoder where we project the same input as query, key,
and value, in CWHSI-Fuse, we implement a context-aware self-attention mechanism inside
CSF to facilitate the exchange of information between Hgy and G¢g, motivated by Yang
et al] (2019). We create two triplets of queries, keys, and values matrices corresponding to
Hgy and Ggg, respectively: (Qy,Ky,Vy) and (Qcs,Kes,Ves). Triplets (Qy,Ky,Vy) are generated
by linearly projecting the input text representation, Heyn, whereas triplets (Qcs,Kes,Ves) are
obtained through gating mechanism as given in [Yang et al| (2019) which works as follows:
To maintain a balance between fusing information from commonsense representation, G¢g,
and retain original information from text representation, Hgy, we learn matrices Ax and
Ay to create context-aware K.y and Vg (Equationrg).

o P [ [
Av Ay

KCS
VCS

Ky
Vi

Uk

) U

(Ges ) (6)
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where Uk and Uy are learnable parameters and matrices Ax and Ay are computed as

follows:
A K| |W¥ Ug| |WES
K=o ( * I; + Gcs K IES ) (7)
Ay Vel [Wy v Wy

where W, WX, WSS and WSS all are learnable parameters. ¢ represents the sigmoid
function computation.

After obtaining K., and Vg, we apply the dot product attention based fusion method
over Qy, K.; and V. to obtain the final commonsense aware input representation, Z,
computed as:

O:K(;
Vi

At last, we feed this commonsense aware input representation vector, Z, to an au-
Eoregressive decoder following the same decoder computations defined in equation

Z = so ftmax( Wes (8)

4.1.6 Reinforcement Learning based Training

We initialize our model’s weights 8 with weights of a pre-trained sequence to sequence
generative model. We then fine-tune the model with the following two training objective
functions: 1) Negative log-likelihood, i.e., the maximum likelihood estimation (MLE) ob-
jective function, which works in a supervised manner to optimize the weights, 08, as defined
in Equation 9.

T
max [TPo (Y, X, Y<r) (9)
t=0

2) On top of the maximum likelihood estimation (MLE) objective function, we also employ
a reward-based training objective function. Inspired from (Sancheti et al| 2020), we use
a BLEU (Papineni et al) 20024) based reward function. We define BLEU based Reward
Rprey in Equation @:

Rprry = (BLEU(Y;, Y:) — BLEU(Yig, Y1), (10)

where Yl-/ denotes the output sequence sampled from the conditional probability distribu-
tion at each decoding time stamp and Yl-g denotes the output sequence obtained by greedily
maximizing the conditional probability distribution at each time step. To maximize the
expected reward, Rprpy of Yi/, we use the policy gradient technique which is defined in
Equation @V

VQJ(G) = RBLEU . VglogP(Y”X,‘, CS; 9) (11)

4.1.7 Inference

During the training process, we have access to both the input sentence (X;) and target
sequence (Y;). Thus, we train the model using the teacher forcing approach, i.e., using the
target sequence as the input instead of tokens predicted at prior time steps during the
decoding process. However, the inference must be done in an autoregressive manner as we
don’t have the access to target sequences to guide the decoding process. After obtaining
the predicted sequence Yl-/, we split that sequence around the special character (<>) to
get the corresponding predictions for different tasks; stereotypical bias, and target group
as described in Equation ﬁ



12 Natural Language Engineering

5. Experiments and Results

This section contains a detailed explanation of the experimental settings and the corre-
sponding results. Certain standard baseline models are also mentioned for evaluating our
results. The final part of this section is the ablation study and error analysis.

5.1 Experimental Settings

In this section, we detail various hyperparameters and experimental settings used in our
work. We have performed all the experiments on Tyrone machine with Intel’s Xeon W-
2155 Processor having 196 Gb DDR4 RAM and 11 Gb Nvidia 1080Ti GPU. We have
executed all of the models five times, and the average results have been reported. We
have used mBART and mT5 as the base model for both GenFExz-Con and GenFEx-Fuse.
Both these models are trained for a maximum of 110000 epochs and a batch size of 16.
Adam optimizer is used to train the model with an epsilon value of 0.00000001. All the
models are implemented using Scikit-Learn? and pytorch® as a backend. For the target
category detection task, accuracy and macro-F1 metrics are used_to_evaluate predictive
performance. For the stereotype generation tagk, we used BLEU (Papineni et al| 20021),
ROUGE-L (ROUGE 2004), and BERTScore (Zhang et al. 2019).

(i) BLEU: One of the earliest metrics to be used to measure the similarity between
two phrases is BLEU. It was first proposed for machine translation and is described as
the geometric mean of n-gram precision scores times a brevity penalty for short sentences.
We apply the smoothed BLEU in our experiments as defined in (Lin and Och 2004).

(ii) ROUGE-L: ROUGE was first presented for the assessment of summarization
systems, and this evaluation is carried out by comparing overlapping n-grams, word se-
quences, and word pairs. In this work, we employ the ROUGE-L version, which measures
the longest common subsequences between a pair of phrases.

(iiil) BERTScore: It is a similarity metric for text generation tasks based on pre-
trained BERT contextual embeddings. BERTScore uses a weighted aggregate of cosine
similarities between two phrases’ tokens to determine how similar they are.

5.2 Standard Baselines

We have developed the following standard baselines for a fair comparison with our
proposed model.

Classification Baselines We have experimented with four standard baselines as pro-
posed in (Mathew et al] 2020) for the target group identification task. BERT Devlin et al.
(2018) is a language model based on a bidirectional transformer encoder with a multi-head
self-attention mechanism. We selected mBERT, which has been trained in 104 different
languages, including Hindi. mBERT generated sequence output has been considered as
input embedding to the first three baselines.

(1) CNN-GRU: The sequence output from BERT, with dimensions 128 x 768, is passed
through 1D CNN layers. These layers consist of three kernel sizes (1, 2, 3) and 100
filters for each size. The resulting convoluted features are then fed into a GRU layer.
The hidden output from the GRU layer is passed to a Fully Connected (FC) layer
with 100 neurons, followed by an output softmax layer.

fhttps://scikit-learn.org/stable/
8https://pytorch.org/
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(2) BiRNN: The input is fed into a Bidirectional GRU (Bi-GRU) with 128 hidden
units, generating a 256-dimensional hidden vector. This hidden vector is then passed
to an FC layer, followed by output layers for the final class prediction.

(3) BiRNN-Attention: Similar to the previous baseline model, but with the addition
of an attention layer between the Bi-GRU and FC layers.

(4) BERT-finetune: In this approach, the mBERT model is fine-tuned by adding an
output softmax layer on top of the "CLS” output.

Generation Baselines: We use mBART Liu et al! (2020) and T5 Raffel et al] (2020)
as the baseline text-to-text generation models. We fine-tune these models on the proposed
dataset with the training objective defined in Equation . In a single task setting, the
output sequence is either the stereotype or target group category, depending on which task
you want to solve. In the case of multitasking, the output sequence is the concatenation
of the stereotype and target group category.

Table 3. : Results of different baselines and the two proposed frameworks, CGenEz-Con
and CGenFEx-Fuse in a multi task setting. For the target tasks the results are in terms of
macro-F1 score (F1), Accuracy (Acc) and Matthews correlation coefficient (MCC) values.
F1, Acc and MCC metrics are given in %. The maximum scores attained are represented
by bold-faced values; Gray Highlight represents statistically significant results;

Model Stereotype Target

BLEU ROUGE-L BERTScore | Accuracy F1-Score MCC

Standard Baselines
CNN-GRU - - - 60.23 43.33 47.25
BiRNN - - - 60.81 43.99 48.12
BiRNN+Attention - - - 62.33 44.31 50.37
BERT-Finetune - - - 65.41 47.37 52.69
mT5-ST 36.38 39.87 78.52 62.43 45.78 50.61
mT5-MT 37.58 41.14 79.72 64.12 46.88 52.19
mBART-ST 41.47 45.72 81.12 81.23 67.35 70.23
mBART-MT 42.25 46.33 82.28 83.12 72.44 71.84
Proposed model (CGenEx) Single task
mT5:CGenEx-con 37.14 40.89 79.12 65.53 47.84 55.31
mT5:CGenEx-fuse 38.62 42.37 80.46 66.92 48.07 55.93
mBART:CGenEx-con ~ 41.87 45.93 82.77 83.54 72.66 74.52
mBART:CGenEx-fuse  42.95 46.74 83.09 83.83 72.78 74.72
Proposed model (CGenEx) Multi task

mT5:CGenEx-con 38.25 42.14 80.75 67.96 48.67 56.76
mT5:CGenEx-fuse 38.88 42.97 81.63 68.12 48.86 56.83
mBART:CGenEx-con  43.12 47.08 83.89 84.36 72.98 75.86
mBART:CGenEx-fuse  44.23 48.83 85.27 84.77 73.24 76.26
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5.3 Findings from Experiments

Table E shows and compares the results of stereotypical bias generation (SBG) and target
group category identification (TT) tasks of our proposed model, CGenEx with different
baseline models in both single tasks (one task at a time) and multitask settings. From all
these reported results, we can conclude the following:

(1) It can be observed from Table% that BERT-finetune performs better in T1 task as
compared to other standard baselines (CNN-GRU, BiRNN, BiRNN+Attention). However,
all the generative baselines based on mBART and our proposed models (CGenEx-Con and
CGenFEz-Fuse) can outperform the BERT-finetune model by a huge margin showing the
superiority of pre-trained sequence-to-sequence language models.

(2) When we compare the performance of generative baselines, mBART always per-
forms better than mT5 in both single-task (ST) and multitask (MT) settings. Like,
mBART-ST outperforms the mT5-ST model by a margin of 1) 18.80% and 21.57% in
accuracy and F1 score for TT task, respectively, and 2) 5.09%, 5.85% and 2.60% in BLEU,
ROUGE-L and BERTScore metrics for SBG task, respectively. Similar trends are also
observed for proposed models, i.e., any variants of our proposed model (CGenEx-con or
CGenEx-fuse), when embedded with mBART, perform better compared to one embedded
with mT5. This finding established that mBART is significantly better at handling Hindi
data than mT5.

(3) It is also evident from Table E that our proposed model CGenFEx-Fuse) always
outperforms the baselines by a significant margin for both tasks. mBART:CGenEx-fuse
outperforms the best generative baselines, mBART-MT, with an improvement of (i) 1.98%
and 2.09% in BLEU, and ROUGE-L metrics for the SBG task, respectively. and (ii) 0.94%
in F1 score for TI task. But another variant of our proposed model CGenFEz-con) slightly
underperforms the best baseline mBART-MT in single task settings (mBART-ST: 41.87,
45.93; ST-mBART:CGenEx-con: 41.47, 45.72) and almost comparable results (mBART-
MT: 72.25, 46.33; MT-mBART:CGenEx-con: 42.32, 46.38) in multitasking settings in
terms of BLEU and ROUGE-L metrics. We have_discussed the possible reasons for this
drop in performance by CGenFEzx-con) in section ﬁ

(4) Both CGenEx-Con and CGenEz-Fuse outperform the mBART-MT baseline by a
margin of 1.65% and 0.80% in terms of accuracy and F1 score for TT task, respectively.

(5) When we compare CGenFEz-Fuse and CGenFz-Fuse models, we observe CGenFEu-
Fuse model always outperforms the CGenFEz-Fuse for both tasks in any settings. Like,
mBART:CGenEx-fuse outperforms mBART:CGenEx-con with an improvement of 2.45%
and 1.38% in ROUGE-L and BERTScore metrics for the SBG task, respectively. This
observation establishes the efficacy of adding a commonsense aware encoder module in
our proposed model,

(6) From Table B, we can conclude that multitasking always performs better than
single-task settings in all the variants of our proposed model and standard generative
baselines. This observation establishes the benefit of multi-task learning, where two or
more related tasks are solved simultaneously and help each other to improve individual
performance. TableaH shows classwise precision, recall, and F1 scores of the Target iden-
tification task generated by single-task and multi-task variants of our proposed model
(mBART:CGenEx-fuse). From this table, we can observe that, except "Culture” target
class, the multi-task model performs better for other classes than the single task model.
Confusion matrices of single-task and multi-task variants of the mBART-CGenEx-fuse
model for target identification task are shown in Figure é

We performed a statistical t-test on values of 5 runs of the proposed models and baseline
models and obtained a p-value of = 0.005, which is less than 0.05 showing that the results
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are statistically significant. We employ scipy library functions stats.ttestiincﬁ for the
t-test. We have highlighted (gray color) the results in Table E which are statistically
significant.

Table 4. : Classwise Precision, Recall, and F1 score of the Target identification task
generated by single task and multitask variants of our proposed model (CGenEx-fuse)

Class Single Task Multi-task support
Precision Recall Fl-score | Precision Recall F1l-score
Disabled 0.92 0.76 0.83 0.99 0.73 0.84 102
Race 0.91 0.84 0.88 0.89 0.89 0.89 716
Body 0.70 0.30 0.42 0.77 0.43 0.55 47
Victim 0.82 0.32 0.46 0.41 0.66 0.51 124
Gender 0.68 0.97 0.80 0.85 0.82 0.84 439
Culture 0.81 0.87 0.84 0.80 0.84 0.82 421
Social 0.88 0.29 0.44 0.79 0.51 0.62 75
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Figure 3: Confusion matrices: Single task Vs Multi-task variants of mBART-CGenEx-fuse
model for target identification task.

5.3.1 Ablation Study

We performed an ablation study of our proposed models (CGepEX-con and CGenEx-fuse)
to show the effect of reinforcement learning training (Table B) It can be observed that
removing the RL training from both variations of models results in a drop in performance
in both tasks, Target classification, and Stereotype generation. Removing RL training
from CGenEx-con results in a drop in the performance of 3.25% in the accuracy of the
target classification task and 1.94% in BERTScore of the stereotype generation task.
Similarly, removing RL training from CGenEx-fuse results in a drop in the performance of

bhttps://docs.scipy.org/doc/scipy-1.6.3/reference/generated/scipy.stats.ttest_ind.html
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Table 5. : Ablation Study to show the effect of reinforcement learning based training

Multi-task setting
Model Target Stereotype
Acc F1 Bleu Rouge-L. BERTScore
mBART:CGenEx-con | 84.36 72.98 | 42.32 46.38 83.89
-RL 81.11 69.06 | 39.43 45.44 81.95
mBART:CGenEx-fuse | 84.77 73.24 | 44.23 48.83 85.27
-RL 82.82 7091 | 39.35 45.27 82.14

1.95% in the accuracy of the target classification task and 3.13% in the BERTScore of the
stereotype generation task. This shows that RL training plays a vital role in_improving the
performance for both tasks as the BLEU-based reward function (Equation [L{J) encourages
the model to generate an output sequence close to the golden sequence.

5.4 Performance on English SBIC Dataset

We have evaluated the English SBIC dataset to assess the effectiveness of our CGenEx
model on English language. Table E shows that our proposed models, mBART:CGenEx-
con and mBART:CGenEx-fuse, outperform the baseline models (GPT-1 and GPT-2)
significantly in both single-task and multitask settings. Interestingly, the multitask vari-
ants of our models consistently outperform the single-task settings. This finding suggests
that addressing both stereotype generation and targeted group identification together
leads to improved performance in each individual task. It indicates a strong correla-
tion between these tasks, where the performance on one task positively influences the
performance on the other.

Table 6. : Comparison of Performance on English SBIC Dataset: Proposed Models vs.
Baseline Models in Single-Task and Multi-Task Settings

Task
Model Implied statement
Target group category

(Stereotypes)

BLEU Rouge-L | Acc F1
SBF-GPT1 Sap et al| (20191) 49.9 40.2 - -
SBF-GPT2 Sap et al| (2019h) 49.6 43.5 - -
ST-mBART:CGenEx-con 51.43 55.12 82.76 72.08
ST-mBART:CGenEx-fuse 53.67 56.04 86.23 75.14
MT-mBART:CGenEx-con 53.28 57.06 83.98 72.85
MT-mBART:CGenEx-fuse 55.16 58.74 87.74 76.39
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5.5 Error Analysis

A detailed analysis of the results produced by the best-performing models on stereotype
generation in both single-task and multitask settings identjfied several instances where
the model can falter, some of which are discussed in TableuE‘

(1) Irrelevant stereotype generation: It can be seen from table H that in a Single
task setting, CGenEx-con models generate a stereotype for the post, but it doesn’t discuss
the underlying implicit hate speech or sarcasm of the post.

(2) Wrong target group prediction: It is also evident from table H that the
CGenEx-con model predicts the wrong target group for the post in both multi-task and
single-task settings. The true target group was culture, but the model predicts it as race
showing that models fail to distinguish between such closely related target groups.

(3) Wrong keyword generated: CGenEx-fuse model is able to generate a very
similar stereotype as to the true stereotype in the single-task setting. However, it replaces
the keyword holocaust with mass destruction, which changes the context completely.

(4) Similar meaning but different tokens: In multitask setting, we can see that
CGenEx-con generates a stereotype that has a semantic overlap with the true stereotype il-
lustrating why BERTScore has a consistently high value as compared to BLEU or ROUGE
score as BERTScore measures the semantic overlap between two text embeddings.

(5) Multi-task outperforms single-task model: Both CGenEx-fuse and CGenEx-
con in the multi-task setting are able to generate the correct stereotype for the input
post as compared to single task setting, showing that adding an additional task of target
classification is helping the model to understand the underlying stereotype and bias better.

Table 7. : Comparative study of stereotype and target of a post by proposed models
vs. actual annotations; ST: Single task, MT-Multit-task; mBART embedded models have
been selected for error analysis

. Predicted
Post True stereotype | True target Model Predicted Stereotype
Target
) . AEE AN A T A T
Tl T FAT L €2 HAMF A e A SBF-GPT Bap et all R0101) | & © bumed | (@ - :
\ - rans: Jewis s were burne: ture
o & aT 3 o T e 23 31 AT rans: Jewish folks were burned u
i } T STAT & BRI ERERIEREE] STt
Translation: Why do Jews stink? K ST:CGenEx-con
o Trans: Sheds light (Culture) Trans: Jews are gross (Race)
Because they are not falling in the o
on the genocide qRAT % AT H G STAam & .
bath again. - o Wi‘?‘f
ST:CGenEx-fuse Trans: sheds light on mass ©
(Culture)
destruction
ARHEIR & AT HAT st
MT:CGenEx-con %
Trans: Discusses about genocide (Race)
LG & AT H TLHT STAAT & FHET
MT:CGenEx-fuse N g o e
Trans: sheds light on the genocide | (Culture)

5.5.1 Failure of CGenEx-con model in the Hindi Language

It can be observed that incorporating commonsense reasoning through Conceptnet with
simple concatenation to input posts doesn’t improve the model’s performance. The reason
for this can be attributed to the fact there is not any multilingual commonsense database
available. To leverage ConceptNet for our dataset, we first translated the input post into
English language and then applied the commonsense extraction module, and then again
translated the generated commonsense reasoning to the Hindi language. As translation
happens twice, there is a high chance of semantic loss during these two steps, which leads
to ineffectual commonsense reasoning. To further bolster our argument, we conducted an
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Table 8. : Translation of Hindi posts to English and commonsense inference generated by
Conceptnet from English to Hindi.

L . . Translated Hindi
# Hindi Post Translated English Post English Commonsense
commonsense

g Eﬁ-q ) \Q—HT Edds % il ‘When bae says somethin
1 ATTRT T W%W that pisses you off but crazy is similar in T fEATAT ST

T BT BT ®© % fep o you're trying to not to meaning to brainsick Ed _qT Bk %

ATT g7 &1 be crazy anymore

e i i People talk about how hard i

N f : -~ cople talk about how hard it

AT 5 QE‘F %? i tpb black in A “' d

) is to be black in America nowadays...

T H AT A but what about being white? ' FIAT HTTEGI P

2 A HAC ﬁ_GEQT%’? EEE aT, ub what about being white! black is related to minority e s
. Messy as it is, we're really on an g Hﬂfaﬁ'%

BH AT H AT T A

N N almost equal playing field.

Y % AT T E. gAN TRT-ATT

- . As our grandparents it was easy.

% {9 H Ig ATH oI

T2 AT 1ol LA # AT What do bikes and black L
3 AR o o Difes and brac black is distinct from white | FTelT q5E & T §

W%’? AGAT men have in common?

~ During the holocaust the
holocaust & &I QE&?{TEﬁ J }g d 0
-~ ews had a secret language

leRRCRIEIRIEIE ISR N s o . ;

4 77 7 T ar that they spoke... It was jew is a ethnic group T TH I
o : . | something like, "Oh my God!
R AT & S A g | & e Y
I'm burning alive”

error analysis to analyze and study the effect of these translations to better understand the
semantic loss occurring while translating, which is shown in Table é) It can be seen from
the table that both translations happen correctly in the first two examples. However, in
the third example, the first translation fails to translate the input Hindi post correctly as
it misses the corresponding English word for Hindi word 2[€T, which completely changes
the context of the input sentence. In the fourth example, the first translation happens
correctly. However, the second translation (English commonsense to Hindi commonsense)
fails as it mistranslated the word ethnic, which can misguide the model rather than help
the model.

5.6 Limitations

In this work, we primarily focused on detecting and analyzing explicit hate speech in social
media posts. Detecting sarcasm accurately in text is a complex task, as it often relies on
contextual cues, tone, and understanding of cultural references. It goes beyond the scope
of our current study, which primarily focuses on explicit and overt forms of hate speech.
However, we acknowledge the significance of sarcasm as a potential element in hate speech
and its impact on targeted groups. It is an important aspect to consider in future research
and system development.

6. CONCLUSION AND FUTURE WORKS

As explainable Al systems help improve trustworthiness and confidence while deployed in
real-time, now there is a need to explain why a post is predicted as hate by any model.
To encourage more research on explainable hate speech detection in Hindi (the fourth-
most-spoken language in the world), we introduced a Hindi hate speech dataset (HHES)
that contains the stereotypical bias and target group category of a toxic post. In this
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work, a unified generative framework (CGenEx) based on commonsense knowledge and
reinforcement learning has been proposed to simultaneously solve two tasks (stereotypical
bias generation and target group category identification). We showed how a multitasking
problem can be formulated as a text-to-text generation task to leverage the knowledge
of large pre-trained sequences to sequence models in low-resource language settings. Our
proposed model (CGenEx-fuse) outperforms the best baseline with an improved f1 score
of 0.80% and ROUGE-L of 2.09% for the target group identification and bias generation
tasks, respectively. We have also examined that the simple concatenation-based (CGenEx-
con) model is not performing as expected due to the semantic loss during English to Hindi
commonsense knowledge translation.

In our future work, we plan to investigate potential modifications to the CGenEx-con
model to address the challenges associated with English to Hindi commonsense knowledge
translation. These modifications may involve integrating language-specific semantic and
syntactic rules, utilizing bilingual resources and pre-trained models, or exploring transfer
learning techniques to enhance the quality of translation. Future attempts will be made to
extend explainable hate speech detection in a multimodal setting considering image and
text modality.
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