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DECISION TREE-BASED STATE TYING FOR ACOUSTIC MODELING

EXECUTIVE SUMMARY

Most state-of-the-art Large Vocabulary Conversational Speech Recognition (LVCSR) systems use
context-dependent Hidden Markov Models (HMMs) to model speech data. In order to model the
variations in speaker characteristics and pronunciations, it is common for an LVCSR system to
comprise of several million parameters, which need to be estimated using several hours of speech
training data. This explosion in the number of parameters is primarily because of the need to
model acoustic units in terms of their context. However, many acoustic contexts are not observed
with sufficient frequency in the training data, and therefore estimating model parameters for each
context-dependent acoustic unit is difficult. Using discrete or semi-continuous density HMMs [2],
or continuous density HMMs with tied parameters can significantly reduce the total number of
model parameters to be estimated.

With continuous density HMMs which are popularly used in state-of-the-art LVCSR systems,
phonetic state tying and mixture tying are used to reduce the total number of HMM parameters
while maintaining the model accuracy. These can be implemented with traditional data-driven
techniques such as k-means clustering, or knowledge-driven techniques like statistical decision
trees. Decision tree-based state tying has gained popularity in recent years with successful
application to several speech recognition tasks with a wide variety of complexity [1, 8-10]. The
decision tree-based state tying algorithm uses both the training data as well as phonetically
derived questions to cluster the states. It is also capable of handling models with contexts that
rarely occur in the training data, if at all.

A similar decision tree-based module for phonetic state tying is now integrated in the ISIP STT
toolkit. The implementation of this algorithm is based on the Maximum Likelihood (ME)
principle, where the trees are grown till a significant increase in likelihood can be achieved. The
likelihood computation is based on state occupancy counts produced during HMM training. The
current implementation uses occupancy counts based on the Viterbi estimation algorithm.

The state tying module has two operating modes:

1. Training mode: During training, the decision trees are constructed in a top-down fashion
by iteratively splitting the leaf nodes using phonetic questions and state occupancy
counts. The terminal nodes of the tree represent the tied states.

2. Testing mode: The tree is used to generate models with unseen contexts. The result of
this mode is a set of models corresponding to an user-specified list of context-dependent
phones, as well as a list of clustered models.

The current implementation of the state tying module is specific to models with single Gaussian
mixture components. It also assumes all models to have an equal number of states. We are
currently in the process of using this model to train a context-dependent triphone system for
Switchboard. As all software generated at ISIP, this module is implemented in object-oriented
C++. The software and documentation are available in the public domain and can be accessed
from http://www.isip.msstate.edu/projects/speech/.
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1. ABSTRACT

In Large Vocabulary Conversational Speech Recognition (LVCSR) system, the dominantly
acoustic models are Hidden Markov Models (HMMs). These models are trained to represe
acoustic units, such as phones (or usually, context-dependent phones). Because of the va
of sounds and pronunciations in speech, the number of context-dependent models is very la
the parameters in those models are all distinct, the total number of model parameters wo
very huge. It is common for an LVCSR system to have several million model parameters tha
to be trained. Therefore parameter tying techniques are usually used to reduce the num
parameter, hence reduce the computation complexity. In this work, we implemented a de
tree-based state tying module, which uses both training data and phonetic knowledge to
states.

2. INTRODUCTION

The performance of a LVCSR system using HMM (Hidden Markov Models) depends on
accuracy of HMMs. It is expected that the more detailed models can more accurately repres
speech data. While since a typical LVCSR system requires thousands of models to account
possible sounds in all possible contexts, the total number of parameters in these mod
prohibitively large. The computation complexity to train all these parameters would
intolerable. On the other hand, the detailed models can accurately represent the speech da
if they are well trained by sufficient amount of training data. More parameters require m
training data. Some specific model contexts may occur only a few times in the training da
don’t occur at all. One will never provide sufficient training data to train all the detailed mod
Hence it’s not necessary to keep all the parameters, since they are not guaranteed to b
trained.

To reduce the total number of model parameters, one approach is to reduce the num
parameters in each model, the other is to reduce the total number of distinct models or param
Using discrete HMMs or semi-continuous HMMs [2] belongs to the former approach.
advantage of this kind of approaches is the speed. The drawback is the discrete
semi-continuous HMMs are not as accurate as the continuous HMMs. Using continuous H
with tied parameters — parameter tying, belongs to the latter approach. It reduces the par
count while maintaining the model accuracy, therefore it is popularly used in most state-of-th
LVCSR systems. Parameter tying includes tying the whole models or tying part of modes su
state tying [1] and mixture tying [3].

Parameter tying is a standard clustering problem in pattern recognition. It can use algorithm
as k-means and decision tree algorithm. The clustering can start from both top-down
bottom-up. The scheme we used in this work is a decision tree-based top-down state
technique, which has become increasingly popular in HMM-based LVCSR systems. We cho
decision tree algorithm, because it is both data-driven and knowledge-driven, it can hand
problem of unseen models. Unseen models refer to those models whose contexts occur onl
times or don’t occur in the training data. In the phonetic decision tree, each node is asso
with a set of states. These states are iteratively separated into child nodes by using ph
questions. The states in the same leaf node share the same distribution, i.e. these states
INSTITUTE FOR SIGNAL AND INFORMATION PROCESSING JUNE 15, 1999
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Once the decision trees are constructed, they can be used to estimate any logical HM
doesn’t matter whether the contexts represented by these models have occurred in the t
data or not.

3.  ACOUSTIC MODELS

In a speech recognition system, the analog speech signal is first converted into a seque
feature vectors by the acoustic front-end. The acoustic models are used to implement ph
classification. They need to provide a probability, or likelihood, of a word sequence to gen
such feature vectors, or observations. It is impractical to do this calculation for every pos
word in a large vocabulary application since it would require too many models to be proce
Hence, the word sequences are decomposed into basic sound units called phones.

3.1. Hidden Markov Models

A Hidden Markov Model (HMM) is used to model each phone (or usually, a context-depen
phone). An HMM is a doubly stochastic state machine that has a Markov distribution assoc
with transitions across various states, and a probability density function that models the outp
every state. Depending on the complexity of the recognition problem, this distribution ca
modeled as a discrete-valued or continuous-valued process. In speech recognition applicati
choice of this output probability function is crucial as it must model all of the intrinsic spec
variability of real speech. Most current state-of-the-art systems use a mixture of multiva
Gaussian distributions to model context-dependent sequences of three phones (triphone m

A Gaussian or a mixture of the continuous Gaussian probability density function (PDF) is:

(1)

where is the observation at time , and are the covariance matrix and mean vector

Gaussian distribution. is the order of the Gaussian distribution. Equation (1) gives

Pr xt µ C;;( ) 1

2π( )n
C

------------------------- 1
2
---– xt µ–( )T

C
1–

xt µ–( )⋅ ⋅ 
 exp⋅=

xt t C µ

n

Figure 1. Some typical HMM topologies used for acoustic modeling in large vocabulary speech recognition
— a) typical triphone b) short pause c) silence. The shaded states denote the start and stop states for each
model
INSTITUTE FOR SIGNAL AND INFORMATION PROCESSING JUNE 15, 1999
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probability of a state with the Gaussian distribution to generate  at time .

Figure 1 shows some topologies of the HMM typically used to model context-dependent ph
in LVCSR systems. Training an HMM to represent such a phone is to estimate the appro
parameters such as the state transition matrix and the PDF’s for each state. HMMs c
efficiently trained using the Baum-Welch forward-backward training algorithm [4] or the Vite
algorithm [5]. As mentioned earlier, in a state-of-the-art LVCSR system using context depe
HMMs, there are possibly several million parameters that need to be trained. A popular w
reduce the parameter count while maintaining the accuracy of the models is the parameter

3.2. Parameter Tying

Tying can be made at different levels. Two different but kind of similar models can share the
model or share some model parameters such as states or mixtures. There are two kinds o
approaches. One kind is the top-down approaches, and the other kind is the botto
approaches.

Top-down approaches start by less distinct contexts, and then split them into more sp
contexts. This is a standard classification problem. We can use classification techniques s
k-means and decision tree. A decision tree-based top-down approach uses phonetic kno
together with the training data to decide which contexts are acoustically similar. The advanta
this kind of approaches is once the decision trees are constructed, they can be used to e
unseen models. k-means is another commonly used classification technique. It is a data
technique, hence for the parameter tying problem, it can not handle unseen models as the d
tree algorithm does.

Bottom-up approaches on the contrary start by assuming that all contexts are distinct, an
merge the similar models to share parameters. These approaches use the distance
distributions to decide if two contexts are acoustically similar. The drawback of this kind
approaches is they require examples of each context to produce the initial estimates of the
parameter. For unseen models, usually it has to back-off to less specific models. In
probabilistic mapping method is proposed.

State tying is HMM parameter tying at the state level. It allows some states in different mod
share the same distribution, so the total number of distinct states in all the HMMs is red
Compared with tying the whole models, state tying makes finer distinctions between mode
allowing left and right contexts to be modelled separately. If the distribution of a stat
composed of multi-mixtures, the tying can be made one step further, that is the mixture
Mixture tying allows some Gaussian mixtures in different states to share the same distrib
Both state tying and mixture tying can be implemented by decision tree algorithm [1, 6-10].

4. DECISION TREE

Decision tree is a top-down approach mentioned above. It is a commonly used information-
classification technique.

xt t
INSTITUTE FOR SIGNAL AND INFORMATION PROCESSING JUNE 15, 1999
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4.1. Theory

A general decision tree consists of nodes, including non-leaf and leaf node. Each leaf
denotes a class. The input data consists of values of the different attributes. Initially, all
values are put inside the root node. By asking questions about the attributes, the decisio
splits the values into different nodes. Constructing a decision tree needs splitting rule
stopping rules. Once the decision tree is constructed, it can be used to evaluate other va
decide which classes they belong to.

The decision tree technique can be applied into the acoustic model state tying. In the ph
decision tree, the values are a set of states in HMMs. The questions are some phonetic qu
about the contexts. Each node in the tree contains a set of states, and there is a likelihood o
states generating the observation . According to their answers to the question, the states
separated into the left or right child node. For each child node, there is a new likelihoo
generate . The sum of these two child likelihoods should not be equal to the parent likelih
The decision tree splitting rule is to maximize the likelihood increase after splitting. The stop
rules are some thresholds, such as the likelihood increase and the minimum number o
occupancy at each node. Figure 2 shows an example of the phonetic decision tree for th
state of triphones with the central phone “zh”. By asking questions, states which have s

x
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Figure 2. A phonetic decision tree for the third state of triphones with the central phone “zh”. Note: this tree
was generated by the real algorithm. States at the leaf nodes are selected from the new models file.
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acoustic contexts enter into the same leaf node and are tied together. For example, from Fi
it can be seen that the third states of “uw-zh+er”, “uw-zh+aa” and “ah-zh+aa” are tied toge
because their left contexts are all UVowel, and right contexts are Vowel. They are acoust
similar, hence it makes sense to allow them share the same distribution.

The aim of splitting the phonetic decision tree is to maximize the likelihood of the tree
computing the likelihood of each node is crucial in constructing the trees.

4.2. Likelihood Computation

The total likelihood of a tree to generate the observation is the sum of the likelihood of eac

node. Let denote the likelihood of a node, which is approximated by the log probability o

distribution of this node to generate weighted by its state occupancy. State occupancy
occurrence count of a state.

(2)

where is a state at this node; is the observation at time ; is the state occupanc

at time and is a scalar. Since the distribution of every state is a Gaussian, the sum of Ga
distributions is still a Gaussian distribution, which can be viewed as the distribution of the

state of all the states at this node. Thus is the occupancy at time of the tied state.

and denote the covariance matrix and mean vector of the tied state. According to Equatio

(3)

The covariance matrix can be given by:

(4)

x

L

x

L Pr xt µ C;;( )( )ln ϒ
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s
t( )⋅

t
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s xt x t ϒs t( ) s

t
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s
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s
t( ) t C

µ
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1

2π( )n
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From (4), it can be derived that [see Appendix B].

(5)

Hence, from equation (2), (3) and (5), we got the likelihood

(6)

The sum of state occupancy over time can be gotten from previous Viterbi training

order of the sum of over and doesn’t matter because the occupancy is a s

Covariance  of the sum distribution at this node can also be calculated by

(7)

where and are the covariance matrix and mean vector of state , and are known fro

input untied states;  denotes , which is also known from the input.

Equation (6) and (7) are the two core equations used in the decision tree state tying algorit

4.3. Implementation

Figure 2 shows the flow of a general decision tree algorithm. There are two operation modes
and test. The decision tree algorithm for state tying also follows this flow. For each particular
in models with the same center phone, one decision tree is constructed. For example, for
triphone HMMs, if there are 80 monophones, 240 decision trees will be constructed.

In the train mode, at the beginning, this decision tree only has a root node. The states conta
this root node have a common attribute that they are at the same position in the models w
same central phone. Next, it needs to find the best split to split these states into child node
each leaf node, there exists an optimal question, by using which to split the node, the likel
increase is the maximum.

The likelihood increase is:

xt µ–( )T
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So for each leaf node, first, the algorithm loops though all the questions, computes the likel
increase, and finds the optimal question for that node. Then among all these leaf nodes, it c
the one by splitting which to give the maximum likelihood increase. If the likelihood increase
the state occupancy after split exceed the thresholds, split this node. Repeat above steps
split meets the thresholds. The states that result in the same leaf node are the tied states
have the same state index and the same distribution.

In the test mode, given a model to be estimated, the algorithm first finds its decision
corresponding to each state. Then by asking the optimal question associated with the no
state enters into a child node until reaching a leaf node. So this state will be assigned the
state index represented by that leaf node.
load data
and param

mode?

stop?
YES NO

TRAIN TEST

turn node
into leaf

output
tree built

find
best split

split data
according

to best split

load
tree

end

start

still
objects

classify
object

left?

YES NO

calculate
error

end
Figure 3. A general decision tree algorithm
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4.4. Software Overview

This decision tree state tying algorithm was implemented in C++ using public domain G
compiler. Four special classes — Decision_tree, Dt_node, Cd_model and Question
constructed for this module. The utility of state tying has two operation modes. One is the
mode which reads in HMMs, untied states, state occupancies and questions etc., and outp
tied states, the models with the updated state indices, and the decision trees. In the test m
reads in the decision trees, the list of phones to be estimated etc. The outputs are the mod
these phones and the clist file which shows which phones share the same model.

The parameters file of the state tying utility is listed in Appendix A. The software
documentation are freely available at  [11].

5. SUMMARY

We have implemented a decision tree-based state tying module for large vocabulary s
recognition system. It enables some states of different HMMs with similar contexts to shar
same distribution. The evaluation of the tied states and new models is currently in progress

6. FUTURE WORK

First, we will finish the evaluation of the state tying. We plan to train the multi-mixture mod
from single-mixture models generated by the state tying, then apply these models into
decoder, and evaluate the performance in terms of speed and accuracy.

Secondly, we plan to generalize the tied states. Currently the way we constructed the de
trees is only locally optimal. It is expected that the decision trees can be optimized by allo
both splitting and merging [1]. So in the next step, we are going to add a merging pass in
decision tree state tying module and improve the performance of the models further.
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APPENDIX A. UTILITIES OF STATE TYING

name: tie_state
synopsis: tie_state -p params.text

description:

this is the isip tie_state utility. All parameters are defined in the parameter file.

# parameters file for state tying using decision tree
#

# define the mode
#
# mode = train
mode = test

# common parameters for both mode
#
monophone_file = monophones.text
membership_file = isip_questions.text
out_models_file = new_models_test.text

input_mode = binary
output_mode = ascii
debug_level = 0

# special parameters for train mode
#
out_tree_file = data/trees.text
out_states_file = data/new_states.text

in_states_file = states.bin
in_models_file = new_models_train.text
special_models_file = spe_models.text
occupancy_file = occupancy_full.list

split_threshold = 15000.0
merge_threshold = -0.5
occupancy_threshold = 100
num_context = 1

# special parameters for test mode
#
in_tree_file = trees.text
in_phlist_file = all_wint_triphones.list
out_clist_file = clist.text

#
# end of file
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APPENDIX B. DERIVATION

This appendix is to derive , which is

missing from the derivation of the likelihood computation. In the following derivation, for

sake of simplicity, we use  to denote .

The covariance matrix
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What we want to get for computing the likelihood is
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