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DECISION TREE-BASED STATE TYING FOR ACOUSTIC MODELING

EXECUTIVE SUMMARY

Most state-of-the-art Large Vocabulary Conversational Speech Recognition (LVCSR) systems use
context-dependent Hidden Markov Models (HMMs) to model speech data. In order to model the
variations in speaker characteristics and pronunciations, it is common for an LVCSR system to
comprise of several million parameters, which need to be estimated using several hours of speech
training data. This explosion in the number of parameters is primarily because of the need to
model acoustic units in terms of their context. However, many acoustic contexts are not observed
with sufficient frequency in the training data, and therefore estimating model parameters for each
context-dependent acoustic unit is difficult. Using discrete or semi-continuous density HMMs [2],
or continuous density HMMs with tied parameters can significantly reduce the total number of
model parameters to be estimated.

With continuous density HMMs which are popularly used in state-of-the-art LVCSR systems,
phonetic state tying and mixture tying are used to reduce the total number of HMM parameters
while maintaining the model accuracy. These can be implemented with traditional data-driven
techniques such as k-means clustering, or knowledge-driven techniques like statistical decision
trees. Decision tree-based state tying has gained popularity in recent years with successful
application to several speech recognition tasks with a wide variety of complexity [1, 8-10]. The
decision tree-based state tying algorithm uses both the training data as well as phonetically
derived questions to cluster the states. It is also capable of handling models with contexts that
rarely occur in the training data, if at all.

A similar decision tree-based module for phonetic state tying is now integrated in the ISIP STT
toolkit. The implementation of this algorithm is based on the Maximum Likelihood (ME)
principle, where the trees are grown till a significant increase in likelihood can be achieved. The
likelihood computation is based on state occupancy counts produced during HMM training. The
current implementation uses occupancy counts based on the Viterbi estimation algorithm.

The state tying module has two operating modes:

1. Training mode: During training, the decision trees are constructed in a top-down fashion
by iteratively splitting the leaf nodes using phonetic questions and state occupancy
counts. The terminal nodes of the tree represent the tied states.

2. Testing mode: The tree is used to generate models with unseen contexts. The result of
this mode is a set of models corresponding to an user-specified list of context-dependent
phones, as well as a list of clustered models.

The current implementation of the state tying module is specific to models with single Gaussian
mixture components. It also assumes all models to have an equal number of states. We are
currently in the process of using this model to train a context-dependent triphone system for
Switchboard. As all software generated at ISIP, this module is implemented in object-oriented
C++. The software and documentation are available in the public domain and can be accessed
from http://www.isip.msstate.edu/projects/speech/
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1. ABSTRACT

In Large Vocabulary Conversational Speech Recognition (LVCSR) system, the dominantly used
acoustic models are Hidden Markov Models (HMMs). These models are trained to represent the
acoustic units, such as phones (or usually, context-dependent phones). Because of the variations
of sounds and pronunciations in speech, the number of context-dependent models is very large. If
the parameters in those models are all distinct, the total number of model parameters would be
very huge. Itis common for an LVCSR system to have several million model parameters that need
to be trained. Therefore parameter tying techniques are usually used to reduce the number of
parameter, hence reduce the computation complexity. In this work, we implemented a decision
tree-based state tying module, which uses both training data and phonetic knowledge to cluster
states.

2. INTRODUCTION

The performance of a LVCSR system using HMM (Hidden Markov Models) depends on the
accuracy of HMMs. It is expected that the more detailed models can more accurately represent the
speech data. While since a typical LVCSR system requires thousands of models to account for all
possible sounds in all possible contexts, the total number of parameters in these models is
prohibitively large. The computation complexity to train all these parameters would be
intolerable. On the other hand, the detailed models can accurately represent the speech data only
if they are well trained by sufficient amount of training data. More parameters require more
training data. Some specific model contexts may occur only a few times in the training data, or
don’t occur at all. One will never provide sufficient training data to train all the detailed models.
Hence it's not necessary to keep all the parameters, since they are not guaranteed to be well
trained.

To reduce the total number of model parameters, one approach is to reduce the number of
parameters in each model, the other is to reduce the total number of distinct models or parameters.
Using discrete HMMs or semi-continuous HMMs [2] belongs to the former approach. The
advantage of this kind of approaches is the speed. The drawback is the discrete and
semi-continuous HMMs are not as accurate as the continuous HMMs. Using continuous HMMs
with tied parameters — parameter tying, belongs to the latter approach. It reduces the parameter
count while maintaining the model accuracy, therefore it is popularly used in most state-of-the-art
LVCSR systems. Parameter tying includes tying the whole models or tying part of modes such as
state tying [1] and mixture tying [3].

Parameter tying is a standard clustering problem in pattern recognition. It can use algorithms such
as k-means and decision tree algorithm. The clustering can start from both top-down and
bottom-up. The scheme we used in this work is a decision tree-based top-down state tying
technique, which has become increasingly popular in HMM-based LVCSR systems. We chose the
decision tree algorithm, because it is both data-driven and knowledge-driven, it can handle the
problem of unseen models. Unseen models refer to those models whose contexts occur only a few
times or don’t occur in the training data. In the phonetic decision tree, each node is associated
with a set of states. These states are iteratively separated into child nodes by using phonetic
guestions. The states in the same leaf node share the same distribution, i.e. these states are tied.

INSTITUTE FOR SIGNAL AND INFORMATION PROCESSING JUNE 15, 1999



DECISION TREE-BASED STATE TYING FOR ACOUSTIC MODELING PAGE 2 OF 13

Figure 1. Some typical HMM topologies used for acoustic modeling in large vocabulary speech recognition
— a) typical triphone b) short pause c) silence. The shaded states denote the start and stop states for each
model

Once the decision trees are constructed, they can be used to estimate any logical HMMs. It
doesn’t matter whether the contexts represented by these models have occurred in the training
data or not.

3. ACOUSTIC MODELS

In a speech recognition system, the analog speech signal is first converted into a sequence of
feature vectors by the acoustic front-end. The acoustic models are used to implement phonetic
classification. They need to provide a probability, or likelihood, of a word sequence to generate
such feature vectors, or observations. It is impractical to do this calculation for every possible
word in a large vocabulary application since it would require too many models to be processed.
Hence, the word sequences are decomposed into basic sound units called phones.

3.1. Hidden Markov Models

A Hidden Markov Model (HMM) is used to model each phone (or usually, a context-dependent
phone). An HMM is a doubly stochastic state machine that has a Markov distribution associated
with transitions across various states, and a probability density function that models the output for
every state. Depending on the complexity of the recognition problem, this distribution can be
modeled as a discrete-valued or continuous-valued process. In speech recognition applications the
choice of this output probability function is crucial as it must model all of the intrinsic spectral
variability of real speech. Most current state-of-the-art systems use a mixture of multivariate
Gaussian distributions to model context-dependent sequences of three phones (triphone models).

A Gaussian or a mixture of the continuous Gaussian probability density function (PDF) is:

1

J(2m"(c|

wherex, is the observation attimeC, apd are the covariance matrix and mean vector of the

1 T -1
Pr(x;u;C) = Cexpe5 (% —H) (€7 Hx -7 &)

Gaussian distributionn  is the order of the Gaussian distribution. Equation (1) gives the
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probability of a state with the Gaussian distribution to genegate  attime

Figure 1 shows some topologies of the HMM typically used to model context-dependent phones
in LVCSR systems. Training an HMM to represent such a phone is to estimate the appropriate
parameters such as the state transition matrix and the PDF’s for each state. HMMs can be
efficiently trained using the Baum-Welch forward-backward training algorithm [4] or the Viterbi
algorithm [5]. As mentioned earlier, in a state-of-the-art LVCSR system using context dependent
HMMs, there are possibly several million parameters that need to be trained. A popular way to
reduce the parameter count while maintaining the accuracy of the models is the parameter tying.

3.2. Parameter Tying

Tying can be made at different levels. Two different but kind of similar models can share the same
model or share some model parameters such as states or mixtures. There are two kinds of tying
approaches. One kind is the top-down approaches, and the other kind is the bottom-up
approaches.

Top-down approaches start by less distinct contexts, and then split them into more specific
contexts. This is a standard classification problem. We can use classification techniques such as
k-means and decision tree. A decision tree-based top-down approach uses phonetic knowledge
together with the training data to decide which contexts are acoustically similar. The advantage of
this kind of approaches is once the decision trees are constructed, they can be used to estimate
unseen models. k-means is another commonly used classification technique. It is a data-driven
technique, hence for the parameter tying problem, it can not handle unseen models as the decision
tree algorithm does.

Bottom-up approaches on the contrary start by assuming that all contexts are distinct, and then
merge the similar models to share parameters. These approaches use the distance between
distributions to decide if two contexts are acoustically similar. The drawback of this kind of
approaches is they require examples of each context to produce the initial estimates of the model
parameter. For unseen models, usually it has to back-off to less specific models. In [6], a
probabilistic mapping method is proposed.

State tying is HMM parameter tying at the state level. It allows some states in different models to
share the same distribution, so the total number of distinct states in all the HMMs is reduced.
Compared with tying the whole models, state tying makes finer distinctions between models by
allowing left and right contexts to be modelled separately. If the distribution of a state is
composed of multi-mixtures, the tying can be made one step further, that is the mixture tying.
Mixture tying allows some Gaussian mixtures in different states to share the same distribution.
Both state tying and mixture tying can be implemented by decision tree algorithm [1, 6-10].

4. DECISION TREE

Decision tree is a top-down approach mentioned above. It is a commonly used information-based
classification technique.
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4.1. Theory

A general decision tree consists of nodes, including non-leaf and leaf node. Each leaf node
denotes a class. The input data consists of values of the different attributes. Initially, all these
values are put inside the root node. By asking questions about the attributes, the decision tree
splits the values into different nodes. Constructing a decision tree needs splitting rules and
stopping rules. Once the decision tree is constructed, it can be used to evaluate other values to
decide which classes they belong to.

The decision tree technique can be applied into the acoustic model state tying. In the phonetic
decision tree, the values are a set of states in HMMs. The questions are some phonetic questions
about the contexts. Each node in the tree contains a set of states, and there is a likelihood of these
states generating the observation . According to their answers to the question, the states can be
separated into the left or right child node. For each child node, there is a new likelihood to
generatex . The sum of these two child likelihoods should not be equal to the parent likelihood.
The decision tree splitting rule is to maximize the likelihood increase after splitting. The stopping
rules are some thresholds, such as the likelihood increase and the minimum number of state
occupancy at each node. Figure 2 shows an example of the phonetic decision tree for the third
state of triphones with the central phone “zh”. By asking questions, states which have similar

4 N

Third States
of *-zh+*
Y
R|ght
; Vowel T
uw-zh+er uw-zh
uw-zh+ax ah-zh
uw-zh+aa
ow-zh+er Oow- zh+|h aa-zh+ao aa- zh+ax
ow-zh+ax ih-zh+ao eh-zh+ax

K ih-zh+w ih-zh+ih /

Figure 2. A phonetic decision tree for the third state of triphones with the central phone “zh”. Note: this tree
was generated by the real algorithm. States at the leaf nodes are selected from the new models file.
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acoustic contexts enter into the same leaf node and are tied together. For example, from Figure 2,
it can be seen that the third states of “uw-zh+er”, “uw-zh+aa” and “ah-zh+aa” are tied together.
because their left contexts are all UVowel, and right contexts are Vowel. They are acoustically
similar, hence it makes sense to allow them share the same distribution.

The aim of splitting the phonetic decision tree is to maximize the likelihood of the tree. So
computing the likelihood of each node is crucial in constructing the trees.

4.2. Likelihood Computation

The total likelihood of a tree to generate the observation is the sum of the likelihood of each leaf
node. LetL denote the likelihood of a node, which is approximated by the log probability of the

distribution of this node to generate  weighted by its state occupancy. State occupancy is the
occurrence count of a state.

L = z[ln(Pr(xt;p;C)) EEY(t)} @
t s S

wheres is a state at this nodg;  is the observation  at timé(t) is the state occupancy of

attimet and is a scalar. Since the distribution of every state is a Gaussian, the sum of Gaussian
distributions is still a Gaussian distribution, which can be viewed as the distribution of the tied

state of all the states at this node. THEY" (t) is the occupancy attime of the tied staie. Let
s S

andu denote the covariance matrix and mean vector of the tied state. According to Equation (1),

] _
= exp3 304, - 1) €4 - WD

Neem"ic

o 1 01 T -1
ING——=0-5(%—H) C "(%—H) €)

Nem"igr

10 T -1 [
—5In(2m) + In(|C|) + (X, —1) C “(%—W)O
2 0

In(Pr(x;;1;C))

The covariance matrix can be given by:

;Eﬁvs(t)gt(xt—u)(xt—uf
S

C = 4)
22 Ys(h)
T's

(-
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From (4), it can be derived that [see Appendix B].

3| 0= T - TEY )] = n DHRAD ©

t

Hence, from equation (2), (3) and (5), we got the likelihood

L = 3 oa[nin(2m +In(ICl) +n] 05 ¥ (1 ©
[ s s [

_ _%[n(l +In(2m) + In(IC)]1 Oy 5 Y4(t)
St

The sum of state occupancy over tirjeY(t) can be gotten from previous Viterbi training, the
T

order of the sum ofY(t) oves and doesn't matter because the occupancy is a scalar.

CovarianceC of the sum distribution at this node can also be calculated by

-
Y [Yo(Cgt ughg)] %ZYS“SD:Z Ys“sDT
_[s s [l

2 2
C=E(X)-E(x)" = 2 i il i
%Ys D%YSEDEYSD

(@)

whereC, andyg are the covariance matrix and mean vector of state , and are known from the

input untied statesyg  denot§sY(t) , which is also known from the input.
T

Equation (6) and (7) are the two core equations used in the decision tree state tying algorithm.
4.3. Implementation

Figure 2 shows the flow of a general decision tree algorithm. There are two operation modes: train
and test. The decision tree algorithm for state tying also follows this flow. For each particular state
in models with the same center phone, one decision tree is constructed. For example, for 3 state
triphone HMMs, if there are 80 monophones, 240 decision trees will be constructed.

In the train mode, at the beginning, this decision tree only has a root node. The states contained in
this root node have a common attribute that they are at the same position in the models with the
same central phone. Next, it needs to find the best split to split these states into child nodes. For
each leaf node, there exists an optimal question, by using which to split the node, the likelihood
increase is the maximum.

The likelihood increase id: = L(parent) —L(leftchild) —L(rightchild)
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So for each leaf node, first, the algorithm loops though all the questions, computes the likelihood
increase, and finds the optimal question for that node. Then among all these leaf nodes, it chooses
the one by splitting which to give the maximum likelihood increase. If the likelihood increase and
the state occupancy after split exceed the thresholds, split this node. Repeat above steps until no
split meets the thresholds. The states that result in the same leaf node are the tied states, which
have the same state index and the same distribution.

In the test mode, given a model to be estimated, the algorithm first finds its decision trees
corresponding to each state. Then by asking the optimal question associated with the node, the
state enters into a child node until reaching a leaf node. So this state will be assigned the same
state index represented by that leaf node.

load data
and param

TRAIN TEST

mode? l

load
tree

find
best split

turn node
into leaf

still
objects

YES NO

L eft?
split data .
output 4 di classify calculate
tree built according bi
to best split object error

Figure 3. A general decision tree algorithm
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4.4, Software Overview

This decision tree state tying algorithm was implemented in C++ using public domain GNU
compiler. Four special classes — Decision_tree, Dt node, Cd_model and Question, are
constructed for this module. The utility of state tying has two operation modes. One is the train
mode which reads in HMMs, untied states, state occupancies and questions etc., and outputs the
tied states, the models with the updated state indices, and the decision trees. In the test mode, it
reads in the decision trees, the list of phones to be estimated etc. The outputs are the models for
these phones and the clist file which shows which phones share the same model.

The parameters file of the state tying utility is listed in Appendix A. The software and
documentation are freely available at [11].

5. SUMMARY

We have implemented a decision tree-based state tying module for large vocabulary speech
recognition system. It enables some states of different HMMs with similar contexts to share the
same distribution. The evaluation of the tied states and new models is currently in progress.

6. FUTURE WORK

First, we will finish the evaluation of the state tying. We plan to train the multi-mixture models
from single-mixture models generated by the state tying, then apply these models into ISIP
decoder, and evaluate the performance in terms of speed and accuracy.

Secondly, we plan to generalize the tied states. Currently the way we constructed the decision
trees is only locally optimal. It is expected that the decision trees can be optimized by allowing
both splitting and merging [1]. So in the next step, we are going to add a merging pass into the
decision tree state tying module and improve the performance of the models further.
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APPENDIX A. UTILITIES OF STATE TYING

name: tie_state
synopsis: tie_state -p params.text

description:

this is the isip tie_state utility. All parameters are defined in the parameter file.

# parameters file for state tying using decision tree
#

# define the mode
#

# mode = train
mode = test

# common parameters for both mode

#

monophone_file = monophones.text
membership_file = isip_questions.text
out_models_file = new_models_test.text

input_mode = binary
output_mode = ascii
debug_level =0

# special parameters for train mode

#

out_tree_file = data/trees.text
out_states file = data/new_states.text

in_states_file = states.bin
in_models_file = new_models_train.text
special_models_file = spe_models.text
occupancy_file = occupancy_full.list

split_threshold = 15000.0
merge_threshold = -0.5
occupancy_threshold = 100
num_context = 1

# special parameters for test mode
#

in_tree_file = trees.text

in_phlist_file = all_wint_triphones.list
out_clist_file = clist.text

#
# end of file

o
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INSTITUTE FOR SIGNAL AND INFORMATION PROCESSING

JUNE 15, 1999



DECISION TREE-BASED STATE TYING FOR ACOUSTIC MODELING PAGE 11 OF 13
APPENDIX B. DERIVATION

This appendix is to derivez[(xt—u)T [C_l (% — M) DZY(t)} = nly Y (1), which is
t s S t s S

missing from the derivation of the likelihood computation. In the following derivation, for the
sake of simplicity, we us¥(t) to dendgeY (t)
s S

The covariance matrix

Y[ - (% —p)']

C 1)
> Y(t)
i

Since the sum of occupanci€p Y(t) is a scalar, it can be moved to the left hand side.
t
-
= YIOEC = 3 [Y(1) DX — ) T — 1) ] 2)
t i

C isannx n matrix. Right muItipI)C_1 on both sides of equation (2), and we can get

0 o _
YD = SV Hx-p) T~ 1) ] e ' e

I o

3 [Y() C0q - —w' e

l o

5 BV(t) Tx — 1) (% — )T 0
t ]

wherel is an identity matrix of order n s the order of the Gaussian Distribution. ‘a’ follows
the distributive property of matrix(X + Y) [(Z = X[Z+ YOZ s6™'  can be moved into the
2 : ‘b’ follows the associative property of matri@< [IY) [(Z = X Y 2

Define B, = (x,—H) , which is a column vecto(.xt—p)T IS a row vect(ﬂf,_1 is ax n

matrix, s.o(xt—u)T [C_l is also a row vector. Defing = (xt—u)T [C_l . Now, equation (3)
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can be simplified as

SV B Ay = %%Y(t)gm @
What we want to get for computing the likelihood is

g[(xt—uf [T X, — ) OY(1)] = S YO O By (5)

Now we knowy { Y(t) [B, LA} = &Y(t)%[l from equation (4), what we need to do is to get
i t

the value ofy { Y(t) UA, [B,} using this information.
t

For multiplication of any row vectoA and any column vedBor |, thereis

b1 bla1 bla2 blan

b2a1 b2a2 b2an

BOA= |2 day a,...a) = ©

n-n

b _bnal bna2 ... b a

1
b
AB = [al a, ...,arJ 072 = ajb;+a,b,+... +a b, (7)

SoA[B = trace( BOA (8)

Fory {B; LA} and;{ A, [B;} ,whereeach; isarow vector,and eBch isa column vector,
|

Z{Ai (B} = Ztrace{ BOA} = trace&{ B DAi}E 9)
this is a scalar.

So now, knowing 5 {Y(t) [B, DA} = &Y(t)%[l , It's easy to get
T T
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%{Y(t) DA, (B} = trace&%{Y(t) (B, A} S

= trace%%\f(t)%[l% =n D%Y(t)

The n on the right hand side is the trace of the identity makrix of order

have definedd, = (xt—u)T [C_l Bi = (x;—H) ,we get
3 (4 -’ T X - W DY) = n oy Y

5|0 T O -W Y ] = n0y3Y
t s s t's s
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(10)

. Replace what we

(11)

(12)
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