Introduction to Statistical Speech Recognition Lecture 1

Instructor: Preethi Jyothi

Course Plan (I)

- Cascaded ASR System
 - Acoustic Model (AM)
 - Pronunciation Model (**PM**)
 - Language Model (LM)
- Weighted Finite State Transducers for ASR
- **AM**: HMMs, DNN and RNN-based models
- PM: Phoneme and Grapheme-based models
- LM: Ngram models (+smoothing), RNNLMs
- Decoding Algorithms, Lattices

Course Plan (II)

- End-to-end Neural Models for ASR \bullet
 - CTC loss function
 - **Encoder-decoder Architectures with Attention**
- Speaker Adaptation
- Speech Synthesis
- Recent Generative Models (GANs, VAEs) for Speech Processing

Check <u>www.cse.iitb.ac.in/~pjyothi/cs753</u> for latest updates

Moodle will be used for assignment/project-related submissions and all announcements

Speller

Image from: Chan et al., Listen, Attend and Spell: A NN for LVCSR, ICASSP 2016

Other Course Info

- Teaching Assistants (TAs):
 - Vinit Unni (vinit AT cse)
 - Saiteja Nalla (saitejan AT cse)
 - Naman Jain (namanjain AT cse)
- TA office hours: Wednesdays, 10 am to 12 pm (tentative) Instructor 1-1: Email me to schedule a time
- Readings:
 - as a good starting point.
 - All further readings will be posted online.

No fixed textbook. "Speech and Language Processing" by Jurafsky and Martin serves

• Audit requirements: Complete all assignments/quizzes and score $\geq 40\%$

Course Evaluation

- 3 Assignments OR 2 Assignments + 1 Quiz
 - At least one programming assignment
 - Set up ASR system based on a recipe & improve said recipe
- Midsem Exam + Final Exam
- Final Project
- Participation

15% + 25%

20%

5%

Attendance Policy? Strongly advised to attend lectures. Also, participation points hinges on it.

Academic Integrity Policy Assignments/Exams

- Follow proper citation guidelines.
- Unless specifically permitted, collaborations are not allowed.
- Do not copy or plagiarise. Will incur significant penalties.

• Always cite your sources (be it images, papers or existing code repos).

Academic Integrity Policy Assignments/Exams

- Always cite your sources (be it images, papers or existing code repos).
 Follow proper citation guidelines.
- Unless specifically permitted, collaborations are not allowed.
- Do not copy or plagiarise. Will incur significant penalties.

Final Project

- Projects can be on any topic related to speech/audio processing. Check website for abstracts from a previous offering.
- No individual projects and no more than 3 members in a team.
- Preliminary Project Evaluation: Short report detailing project statement, goals, specific tasks and preliminary experiments
- Final Evaluation:
 - Presentation (Oral or poster session, depending on final class strength)
 - Report (Use ML conference style files & provide details about the project)
- **Excellent Projects:** \bullet
 - Will earn extra credit that counts towards the final grade
 - Can be turned into a research paper

#1: Speech-driven Facial Animation

https://arxiv.org/pdf/1906.06337.pdf, June 2019

Videos from: https://sites.google.com/view/facial-animation

#2: Speech2Gesture

https://arxiv.org/abs/1906.04160, CVPR 2019

Image from: http://people.eecs.berkeley.edu/~shiry/projects/speech2gesture/

#3: Decoding Brain Signals Into Speech

https://www.nature.com/articles/s41586-019-1119-1, April 2019

Introduction to ASR

Automatic Speech Recognition

- Problem statement: Transform a spoken utterance into a sequence of tokens (words, syllables, phonemes, characters)
- Many downstream applications of ASR. Examples:
 - Speech understanding
 - Spoken translation
 - Audio information retrieval
- Speech demonstrates variabilities at multiple levels: Speaker style, accents, room acoustics, microphone properties, etc.

RADIO REX (1922)

SHOEBOX (IBM, 1962)

1 word

Freq. detector

1922 1932 1942 1952 1962 1972 1982 1992 2002 2012

16 words

Isolated word recognition

1 word

Freq.

detector

1922 1932 1942 1952 1962 1972 1982 1992 2002 2012

ADVANCED RESEARCH PROJECTS AGENCY

HARPY (CMU, 1976)

1 word 16 words

Freq. detector Isolated word recognition

1922 1932 1942 1952 1962 1972 1982 1992 2002 2012

1000 words

rd Connected ר speech

DEEP NEURAL NETWORK BASED SYSTEMS (>2010)

1 word

Isolated wordConnectedLVCSRrecognitionspeechsystems

Freq. detector

16 words

1922 1932 1942 1952 1962 1972 1982 1992 2002 2012

1000 words 10K+ words

How are ASR systems evaluated?

- Error rates computed on an unseen test set by comparing W* (decoded) sentence) against W_{ref} (reference sentence) for each test utterance
 - Sentence/Utterance error rate (trivial to compute!)
 - Word/Phone error rate
- Word/Phone error rate (ER) uses the Levenshtein distance measure: What are the minimum number of edits (insertions/deletions/substitutions) required to convert W^{*} to W_{ref}?

On a test set with N instances:

$$\mathrm{ER} = \frac{\sum_{j=1}^{N}}{N}$$

- $\operatorname{Ins}_j + \operatorname{Del}_j + \operatorname{Sub}_j$ $\sum_{i=1}^{N} \ell_i$
- Insi, Deli, Subi are number of insertions/deletions/substitutions in the jth ASR output ℓ_i is the total number of words/phones in the jth reference

Remarkable progress in ASR in the last decade

NIST STT Benchmark Test History – May. '09

Image from: http://www.itl.nist.gov/iad/mig/publications/ASRhistory/

Statistical Speech Recognition

Pioneer of ASR technology, Fred Jelinek (1932 - 2010): Cast ASR as a channel coding problem.

That is, $\mathbf{O} = \{O_1, \dots, O_T\}$, where $O_i \in \mathbb{R}^d$ refers to a d-dimensional acoustic feature vector and T is the length of the sequence.

- Let **O** be a sequence of acoustic features corresponding to a speech signal.
- Let W denote a word sequence. An ASR decoder solves the foll. problem:

Simple example of isolated word ASR

- Task: Recognize utterances which consist of speakers saying either "up" or "down" or "left" or "right" per recording.
- Vocabulary: Four words, "up", "down", "left", "right"
- Data splits
 - Training data: 30 utterances
 - Test data: 20 utterances
- Acoustic model: Let's parameteriz with parameters θ .

- Acoustic model: Let's parameterize $\Pr_{\theta}(\mathbf{O} \mid \mathbf{W})$ using a Markov model

Word-based acoustic model

- - $b_i(\mathbf{O}_i)$
 - Compute Pr(O | "up

 $a_{ii} \rightarrow$ Transition probabilities going from state *i* to state *j*

 \rightarrow Probability of generating O_i from state j

$$\mathbf{D}^{(n)} = \sum_{\mathbf{Q}} \Pr(\mathbf{O}, \mathbf{Q} | "up")$$

Efficient algorithm exists. Will appear in a later class.

Isolated w

ord rec	ognition
	$Pr(\mathbf{O} \mid "up")$
<section-header></section-header>	$ \operatorname{Pr}(\mathbf{O} \mid "down")$ $ \operatorname{Compute} \arg \max_{w} \operatorname{Pr}(\mathbf{O} \mid w)$ $ \operatorname{Pr}(\mathbf{O} \mid "left")$
	$ \Pr(\mathbf{O} "right")$

Small tweak

or "down" multiple times per recording.

Task: Recognize utterances which consist of speakers saying either "up"

Small tweak

or "down" multiple times per recording.

Task: Recognize utterances which consist of speakers saying either "up"

Search within this graph

Small vocabulary ASR

- words multiple times per recording.
- Not scalable anymore to use words as speech units
- Model using phones instead of words as individual speech units
 - Phonemes are abstract, subword units that distinguish one word from another (minimal pair; e.g. "pan" vs. "can")
 - Phones are actually sounds that are realized and not language-specific units
- What's an obvious advantage of using phones over entire words? Hint: Think of words with zero coverage in the training data.

Task: Recognize utterances which consist of speakers saying one of 1000

Architecture of an ASR system

Cascaded ASR \Rightarrow End-to-end ASR

Single end-to-end model that directly learns a mapping from speech to text

ASR Progress contd.

Voice Recognition Software Finally Beats Humans At Typing, Study Finds

Microsoft researchers achieve new conversational speech recognition milestone

Amazon's Al system could cut Alexa speech recognition errors by 15%

> https://venturebeat.com/2019/04/22/amazons-ai-system-could-cut-alexa-speech-recognition-errors-by-15/ https://www.microsoft.com/en-us/research/blog/microsoft-researchers-achieve-new-conversational-speech-recognition-milestone/ https://www.npr.org/sections/alltechconsidered/2016/08/24/491156218/voice-recognition-software-finally-beats-humans-at-typing-study-finds

What are some unsolved problems related to ASR?

- State-of-the-art ASR systems do not work well on regional accents, dialects
- Code-switching is hard for ASR systems to deal with
- How do we rapidly build competitive ASR systems for a new language? Low-resource ASR and keyword spotting.
- How do we recognize speech from meetings where a primary speaker is speaking amidst other speakers?

Next class: HMMs for Acoustic Modeling