### Language Modeling (Part II)



Instructor: Preethi Jyothi

### Lecture 10



### **Unseen Ngrams**

- By using estimates based on counts from large text corpora, there will still be many unseen bigrams/trigrams at test time that never appear in the training corpus
- If any unseen Ngram appears in a test sentence, the sentence will be assigned probability 0
- Problem with MLE estimates: Maximises the likelihood of the observed data by assuming anything unseen cannot happen and overfits to the training data
  - Smoothing methods: Reserve some probability mass to Ngrams that don't occur in the training corpus

### Add-one (Laplace) smoothing

Simple idea: Add one to all bigram counts. That means,

 $\Pr_{ML}(w_i|w_i)$ 

becomes

 $\Pr_{Lap}(w_i|w_{i-}$ 

where *V* is the vocabulary size

$$(i-1) = \frac{\pi(w_{i-1}, w_i)}{\pi(w_{i-1})}$$

$$_{1}) = \frac{\pi(w_{i-1}, w_{i}) + 1}{\pi(w_{i-1}) + V}$$

|         | i  | want | to  | eat | chinese | food | lunch | spend |
|---------|----|------|-----|-----|---------|------|-------|-------|
| i       | 5  | 827  | 0   | 9   | 0       | 0    | 0     | 2     |
| want    | 2  | 0    | 608 | 1   | 6       | 6    | 5     | 1     |
| to      | 2  | 0    | 4   | 686 | 2       | 0    | 6     | 211   |
| eat     | 0  | 0    | 2   | 0   | 16      | 2    | 42    | 0     |
| chinese | 1  | 0    | 0   | 0   | 0       | 82   | 1     | 0     |
| food    | 15 | 0    | 15  | 0   | 1       | 4    | 0     | 0     |
| lunch   | 2  | 0    | 0   | 0   | 0       | 1    | 0     | 0     |
| spend   | 1  | 0    | 1   | 0   | 0       | 0    | 0     | 0     |

| No        |
|-----------|
| smoothing |

|         | i  | want | to  | eat | chinese | food | lunch | spend |
|---------|----|------|-----|-----|---------|------|-------|-------|
| i       | 6  | 828  | 1   | 10  | 1       | 1    | 1     | 3     |
| want    | 3  | 1    | 609 | 2   | 7       | 7    | 6     | 2     |
| to      | 3  | 1    | 5   | 687 | 3       | 1    | 7     | 212   |
| eat     | 1  | 1    | 3   | 1   | 17      | 3    | 43    | 1     |
| chinese | 2  | 1    | 1   | 1   | 1       | 83   | 2     | 1     |
| food    | 16 | 1    | 16  | 1   | 2       | 5    | 1     | 1     |
| lunch   | 3  | 1    | 1   | 1   | 1       | 2    | 1     | 1     |
| spend   | 2  | 1    | 2   | 1   | 1       | 1    | 1     | 1     |

Laplace (Add-one) smoothing

### **Example: Bigram counts**

### **Example: Bigram probabilities**

|         | i       | want | to     | eat    | chinese | food   | lunch  | spend   |
|---------|---------|------|--------|--------|---------|--------|--------|---------|
| i       | 0.002   | 0.33 | 0      | 0.0036 | 0       | 0      | 0      | 0.00079 |
| want    | 0.0022  | 0    | 0.66   | 0.0011 | 0.0065  | 0.0065 | 0.0054 | 0.0011  |
| to      | 0.00083 | 0    | 0.0017 | 0.28   | 0.00083 | 0      | 0.0025 | 0.087   |
| eat     | 0       | 0    | 0.0027 | 0      | 0.021   | 0.0027 | 0.056  | 0       |
| chinese | 0.0063  | 0    | 0      | 0      | 0       | 0.52   | 0.0063 | 0       |
| food    | 0.014   | 0    | 0.014  | 0      | 0.00092 | 0.0037 | 0      | 0       |
| lunch   | 0.0059  | 0    | 0      | 0      | 0       | 0.0029 | 0      | 0       |
| spend   | 0.0036  | 0    | 0.0036 | 0      | 0       | 0      | 0      | 0       |

| No        |
|-----------|
| smoothing |

Laplace

(Add-one)

smoothing

|         | i       | want    | to      | eat     | chinese | food    | lunch   | spend   |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| i       | 0.0015  | 0.21    | 0.00025 | 0.0025  | 0.00025 | 0.00025 | 0.00025 | 0.00075 |
| want    | 0.0013  | 0.00042 | 0.26    | 0.00084 | 0.0029  | 0.0029  | 0.0025  | 0.00084 |
| to      | 0.00078 | 0.00026 | 0.0013  | 0.18    | 0.00078 | 0.00026 | 0.0018  | 0.055   |
| eat     | 0.00046 | 0.00046 | 0.0014  | 0.00046 | 0.0078  | 0.0014  | 0.02    | 0.00046 |
| chinese | 0.0012  | 0.00062 | 0.00062 | 0.00062 | 0.00062 | 0.052   | 0.0012  | 0.00062 |
| food    | 0.0063  | 0.00039 | 0.0063  | 0.00039 | 0.00079 | 0.002   | 0.00039 | 0.00039 |
| lunch   | 0.0017  | 0.00056 | 0.00056 | 0.00056 | 0.00056 | 0.0011  | 0.00056 | 0.00056 |
| spend   | 0.0012  | 0.00058 | 0.0012  | 0.00058 | 0.00058 | 0.00058 | 0.00058 | 0.00058 |

#### Laplace smoothing moves too much probability mass to unseen events!

#### Instead of 1, add $\alpha < 1$ to each count

 $\Pr_{\alpha}(w_i|w_{i-1})$ 

#### Choosing a:

- the development set

### Add- $\alpha$ Smoothing

$$) = \frac{\pi(w_{i-1}, w_i) + \alpha}{\pi(w_{i-1}) + \alpha V}$$

• Train model on training set using different values of  $\alpha$ 

• Choose the value of  $\alpha$  that minimizes cross entropy on

### **Smoothing or discounting**

- Smoothing can be viewed as discounting (lowering) some probability mass from seen Ngrams and redistributing discounted mass to unseen events
- i.e. probability of a bigram with Laplace smoothing

$$\Pr_{Lap}(w_i|w_{i-1}) =$$

• can be written as

 $\Pr_{Lap}(w_i|w_i)$ 

$$\frac{\pi(w_{i-1}, w_i) + 1}{\pi(w_{i-1}) + V}$$

$$_{-1}) = \frac{\pi^*(w_{i-1}, w_i)}{\pi(w_{i-1})}$$

• where discounted count  $\pi^*(w_{i-1}, w_i) = (\pi(w_{i-1}, w_i) + 1) \frac{\pi(w_{i-1})}{\pi(w_{i-1}) + V}$ 

### **Example: Bigram adjusted counts**

|           |         | i  | want | to  | eat | chinese | food | lunch | spend |
|-----------|---------|----|------|-----|-----|---------|------|-------|-------|
|           | i       | 5  | 827  | 0   | 9   | 0       | 0    | 0     | 2     |
|           | want    | 2  | 0    | 608 | 1   | 6       | 6    | 5     | 1     |
|           | to      | 2  | 0    | 4   | 686 | 2       | 0    | 6     | 211   |
| No        | eat     | 0  | 0    | 2   | 0   | 16      | 2    | 42    | 0     |
| smoothing | chinese | 1  | 0    | 0   | 0   | 0       | 82   | 1     | 0     |
| C         | food    | 15 | 0    | 15  | 0   | 1       | 4    | 0     | 0     |
|           | lunch   | 2  | 0    | 0   | 0   | 0       | 1    | 0     | 0     |
|           | spend   | 1  | 0    | 1   | 0   | 0       | 0    | 0     | 0     |

|         | i    | want  | to    | eat   | chinese | food | lunch | spend |
|---------|------|-------|-------|-------|---------|------|-------|-------|
| i       | 3.8  | 527   | 0.64  | 6.4   | 0.64    | 0.64 | 0.64  | 1.9   |
| want    | 1.2  | 0.39  | 238   | 0.78  | 2.7     | 2.7  | 2.3   | 0.78  |
| to      | 1.9  | 0.63  | 3.1   | 430   | 1.9     | 0.63 | 4.4   | 133   |
| eat     | 0.34 | 0.34  | 1     | 0.34  | 5.8     | 1    | 15    | 0.34  |
| chinese | 0.2  | 0.098 | 0.098 | 0.098 | 0.098   | 8.2  | 0.2   | 0.098 |
| food    | 6.9  | 0.43  | 6.9   | 0.43  | 0.86    | 2.2  | 0.43  | 0.43  |
| lunch   | 0.57 | 0.19  | 0.19  | 0.19  | 0.19    | 0.38 | 0.19  | 0.19  |
| spend   | 0.32 | 0.16  | 0.32  | 0.16  | 0.16    | 0.16 | 0.16  | 0.16  |

Laplace (Add-one) smoothing

### **Advanced Smoothing Techniques**

- Good-Turing Discounting •
- Backoff and Interpolation
  - Katz Backoff Smoothing
  - Absolute Discounting Interpolation •
- **Kneser-Ney Smoothing** •

### **Advanced Smoothing Techniques**

- Good-Turing Discounting •
- Backoff and Interpolation
  - Katz Backoff Smoothing
  - Absolute Discounting Interpolation •
- Kneser-Ney Smoothing

### Problems with Add- $\alpha$ Smoothing

- What's wrong with add- $\alpha$  smoothing?
- Assigns too much probability mass away from seen Ngrams to unseen events
- Does not discount high counts and low counts correctly
- Also, α is tricky to set
- Is there a more principled way to do this smoothing?
   A solution: Good-Turing estimation

### **Good-Turing estimation** (uses held-out data)

| r | Nr                  | r* in<br>heldout set | add-1 r*              |
|---|---------------------|----------------------|-----------------------|
| 1 | 2 × 10 <sup>6</sup> | 0.448                | 2.8x10 <sup>-11</sup> |
| 2 | 4 × 10 <sup>5</sup> | 1.25                 | 4.2x10 <sup>-11</sup> |
| 3 | 2 × 10 <sup>5</sup> | 2.24                 | 5.7x10 <sup>-11</sup> |
| 4 | 1 × 10 <sup>5</sup> | 3.23                 | 7.1x10 <sup>-11</sup> |
| 5 | 7 × 10 <sup>4</sup> | 4.21                 | 8.5x10 <sup>-11</sup> |

r = Count in a large corpus & N<sub>r</sub> is the number of bigrams with r counts r\* is estimated on a different held-out corpus

- go from r to the heldout-r\*

Add-1 smoothing hugely overestimates fraction of unseen events Good-Turing estimation uses observed data to predict how to

### **Good-Turing Estimation**

- Intuition for Good-Turing estimation using leave-one-out validation:
  - Let N<sub>r</sub> be the number of words (tokens, bigrams, etc.) that occur r times
  - Split a given set of N word tokens into a training set of (N-1) samples + 1 • sample as the held-out set; repeat this process N times so that all N samples appear in the held-out set
  - In what fraction of these N trials is the held-out word unseen during training? •  $N_1/N$
  - In what fraction of these N trials is the held-out word seen exactly k times • during training?  $(k+1)N_{k+1}/N$
  - There are  $(\cong)N_k$  words with training count k.
    - Probability of each being chosen as held-out:  $(k+1)N_{k+1}/(N \times N_k)$ •
  - Expected count of each of the N<sub>k</sub> words in a corpus of size N:  $k^* = \theta(k) = (k+1) N_{k+1}/N_k$



### **Good-Turing Estimates**

| r | Nr                      | r*-GT    | r*-heldout |
|---|-------------------------|----------|------------|
| 0 | 7.47 × 10 <sup>10</sup> | .0000270 | .0000270   |
| 1 | 2 × 10 <sup>6</sup>     | 0.446    | 0.448      |
| 2 | 4 × 10 <sup>5</sup>     | 1.26     | 1.25       |
| 3 | 2 × 10 <sup>5</sup>     | 2.24     | 2.24       |
| 4 | 1 × 10 <sup>5</sup>     | 3.24     | 3.23       |
| 5 | 7 × 104                 | 4.22     | 4.21       |
| 6 | 5 × 104                 | 5.19     | 5.23       |
| 7 | 3.5 × 104               | 6.21     | 6.21       |
| 8 | 2.7 × 104               | 7.24     | 7.21       |
| 9 | 2.2 × 104               | 8.25     | 8.26       |

[CG91]: Church and Gale, "A comparison of enhanced Good-Turing...", CSL, 1991

#### Table showing frequencies of bigrams from 0 to 9 In this example, for r > 0, $r^*-GT \approx r^*$ -heldout and $r^*-GT$ is always less than r

## **Good-Turing Smoothing**

- Thus, Good-Turing smoothing states that for any Ngram that occurs r times, we should use an adjusted count  $r^* = \theta(r) = (r + 1)N_{r+1}/N_r$
- Good-Turing smoothed counts for unseen events:  $\theta(0) = N_1/N_0$
- Example: 10 bananas, 5 apples, 2 papayas, 1 melon, 1 guava, 1 pear
  - How likely are we to see a guava next? The GT estimate is  $\theta(1)/N$
  - Here, N = 20, N<sub>2</sub> = 1, N<sub>1</sub> = 3. Computing  $\theta(1)$ :  $\theta(1) = 2 \times 1/3 = 2/3$
  - Thus,  $Pr_{GT}(guava) = \theta(1)/20 = 1/30 = 0.0333$

### **Good-Turing Estimation**

- One issue: For large r, many instances of  $N_{r+1} = 0!$ 
  - This would lead to  $\theta(r) = (r + 1)N_{r+1}/N_r$  being set to 0.
- Solution: Discount only for small counts  $r \le k$  (e.g. k = 9) and  $\theta(r) = r$  for r > k
- Another solution: Smooth N<sub>r</sub> using a best-fit power law once counts start getting small
- Good-Turing smoothing tells us how to discount some probability mass to unseen events. Could we redistribute this mass across observed counts of lower-order Ngram events?

# Advanced Smoothing Techniques

- Good-Turing Discounting
- Backoff and Interpolation •
  - Katz Backoff Smoothing
  - Absolute Discounting Interpolation
- Kneser-Ney Smoothing

### **Backoff and Interpolation**

- General idea: It helps to use lesser context to generalise for contexts that the model doesn't know enough about
- Backoff:
  - Use trigram probabilities if there is sufficient evidence
  - Else use bigram or unigram probabilities
- Interpolation
  - Mix probability estimates combining trigram, bigram and unigram counts

### Interpolation

 Linear interpolation: Linea models

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1 P(w_n|w_{n-2}w_{n-1}) +\lambda_2 P(w_n|w_{n-1}) +\lambda_3 P(w_n)$$

#### where $\lambda_1 + \lambda_2 + \lambda_3 = 1$

#### How to set the $\lambda$ 's?

Linear interpolation: Linear combination of different Ngram

### Interpolation

models

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1 P(w_n|w_{n-2}w_{n-1}) +\lambda_2 P(w_n|w_{n-1}) +\lambda_3 P(w_n)$$

where  $\lambda_1 + \lambda_2 + \lambda_3 = 1$ 

1. Estimate N-gram probabilities on a training set.

2. Then, search for  $\lambda$ 's that maximises the probability of a held-out set

Linear interpolation: Linear combination of different Ngram

### **Advanced Smoothing Techniques**

### Good-Turing Discounting

- Backoff and Interpolation •
  - Katz Backoff Smoothing
  - Absolute Discounting Interpolation •
- Kneser-Ney Smoothing

## Katz Smoothing

- Good-Turing discounting determines the volume of probability mass that is allocated to unseen events
- Katz Smoothing distributes this remaining mass proportionally across "smaller" Ngrams
  - i.e. no trigram found, use backoff probability of bigram and if no bigram found, use backoff probability of unigram

### Katz Backoff Smoothing

- For a Katz bigram model, let us define:
  - $\Psi(w_{i-1}) = \{ w: \pi(w_{i-1}, w) > 0 \}$
- of a unigram model as follows:

$$P_{\text{Katz}}(w_i|w_{i-1}) = \begin{cases} \frac{\pi^*(w_i)}{\pi(w_i)} \\ \alpha(w_i) \end{cases}$$

where 
$$\alpha(w_{i-1}) = \frac{\left(1 - \sum_{w \in \Psi(w_{i-1})} \frac{\pi^*(w_{i-1}, w)}{\pi(w_{i-1})}\right)}{\sum_{w_i \notin \Psi(w_{i-1})} P_{\text{Katz}}(w_i)}$$

A bigram model with Katz smoothing can be written in terms

 $\frac{w_{i-1}, w_i}{(w_{i-1})} \quad \text{if } w_i \in \Psi(w_{i-1})$  $v_{i-1} P_{\text{Katz}}(w_i) \quad \text{if } w_i \notin \Psi(w_{i-1})$ 

### Katz Backoff Smoothing



where  $\alpha(w_{i-1}) =$ 

- A bigram with a non-zero count is discounted using Good-Turing estimation
- The left-over probability mass from discounting for the unigram model ...
- ... is distributed over  $w_i \notin \Psi(w_{i-1})$  proportionally to  $P_{Katz}(w_i)$

$$\left(1 - \sum_{w \in \Psi(w_{i-1})} \frac{\pi^*(w_{i-1}, w)}{\pi(w_{i-1})}\right)$$
$$\sum_{w_i \notin \Psi(w_{i-1})} P_{\text{Katz}}(w_i)$$

### **Advanced Smoothing Techniques**

### Good-Turing Discounting

- Backoff and Interpolation
  - Katz Backoff Smoothing
  - Absolute Discounting Interpolation •
- Kneser-Ney Smoothing

### **Recall Good-Turing estimates**

| r | Nr                      | θ(r)     |
|---|-------------------------|----------|
| 0 | 7.47 × 10 <sup>10</sup> | .0000270 |
| 1 | 2 × 10 <sup>6</sup>     | 0.446    |
| 2 | 4 × 10 <sup>5</sup>     | 1.26     |
| 3 | 2 × 10 <sup>5</sup>     | 2.24     |
| 4 | 1 × 10 <sup>5</sup>     | 3.24     |
| 5 | 7 × 104                 | 4.22     |
| 6 | 5 × 10 <sup>4</sup>     | 5.19     |
| 7 | 3.5 × 10 <sup>4</sup>   | 6.21     |
| 8 | 2.7 × 10 <sup>4</sup>   | 7.24     |
| 9 | 2.2 × 10 <sup>4</sup>   | 8.25     |

#### For r > 0, we observe that $\theta(r) \approx r - 0.75$ i.e. an absolute discounting

[CG91]: Church and Gale, "A comparison of enhanced Good-Turing...", CSL, 1991

### **Absolute Discounting Interpolation**

- Absolute discounting motivated by Good-Turing estimation
- Just subtract a constant d from the non-zero counts to get the discounted count
- Also involves linear interpolation with lower-order models

$$\Pr_{\text{abs}}(w_i|w_{i-1}) = \frac{\max\{\pi(w_{i-1}, w_i) - d, 0\}}{\pi(w_{i-1})} + \lambda(w_{i-1})\Pr(w_i)$$

### **Advanced Smoothing Techniques**

- Good-Turing Discounting
- Backoff and Interpolation
  - Katz Backoff Smoothing
  - Absolute Discounting Interpolation
- **Kneser-Ney Smoothing** •

### **Kneser-Ney discounting**

$$\Pr_{\mathrm{KN}}(w_i|w_{i-1}) = \frac{\max\{\pi(w_{i-1}, w_i) - d, 0\}}{\pi(w_{i-1})} + \frac{\lambda_{\mathrm{KN}}(w_{i-1})\Pr_{\mathrm{cont}}(w_i)}{\pi(w_{i-1})}$$

#### c.f., absolute discounting

 $\Pr_{abs}(w_i|w_{i-1}) = \frac{\max\{\pi(u_i)\}}{\pi(u_i)}$ 

$$\frac{w_{i-1}, w_i) - d, 0}{\pi(w_{i-1})} + \frac{\lambda(w_{i-1})\Pr(w_i)}{\lambda(w_{i-1})}$$

### **Kneser-Ney discounting**

$$\Pr_{\mathrm{KN}}(w_i|w_{i-1}) = \frac{\max\{\pi(w_{i-1}, w_i) - d, 0\}}{\pi(w_{i-1})} + \frac{\lambda_{\mathrm{KN}}(w_{i-1})\Pr_{\mathrm{cont}}(w_i)}{\pi(w_{i-1})}$$

common in our corpus.

as curry is (red curry, chicken curry, potato curry, ...)

Moral: Should use probability of being a continuation!

c.f., absolute discounting

 $\Pr_{abs}(w_i|w_{i-1}) = \frac{\max\{\pi(u)\}}{\max\{\pi(u)\}}$ 

- Consider an example: "Today I cooked some yellow <u>curry</u>"
- Suppose  $\pi$ (yellow, curry) = 0. Pr<sub>abs</sub>[w | yellow ] =  $\lambda$ (yellow)Pr(w)
- Now, say Pr[Francisco] >> Pr[curry], as San Francisco is very
- But Francisco is not as common a "continuation" (follows only San)

$$\frac{w_{i-1}, w_i) - d, 0}{\pi(w_{i-1})} + \frac{\lambda(w_{i-1}) \Pr(w_i)}{\lambda(w_{i-1})}$$

### **Kneser-Ney discounting**

$$\begin{aligned} \Pr_{\mathrm{KN}}(w_{i}|w_{i-1}) &= \frac{\max\{\pi(w_{i-1}, w_{i}) - d, 0\}}{\pi(w_{i-1})} + \lambda_{\mathrm{KN}}(w_{i-1}) \Pr_{\mathrm{cont}}(w_{i}) \\ \Pr_{\mathrm{cont}}(w_{i}) &= \frac{|\Phi(w_{i})|}{|B|} \quad \text{and} \quad \lambda_{\mathrm{KN}}(w_{i-1}) = \frac{d}{\pi(w_{i-1})} |\Psi(w_{i-1})| \\ \Phi(w_{i}) &= \{w_{i-1} : \pi(w_{i-1}, w_{i}) > 0\} \\ B &= \{(w_{i-1}, w_{i}) : \pi(w_{i-1}, w_{i}) > 0\} \quad \underbrace{\frac{d \cdot |\Psi(w_{i-1})| \cdot |\Phi(w_{i})|}{\pi(w_{i-1}) \cdot |B|}} \end{aligned}$$

$$\Pr_{\rm KN}(w_i|w_{i-1}) = \frac{\max\{\pi(w_{i-1}, w_i) - d, 0\}}{\pi(w_{i-1})} + \lambda_{\rm KN}(w_{i-1})\Pr_{\rm cont}(w_i)$$

$$\Pr_{\rm cont}(w_i) = \frac{|\Phi(w_i)|}{|B|} \quad \text{and} \quad \lambda_{\rm KN}(w_{i-1}) = \frac{d}{\pi(w_{i-1})}|\Psi(w_{i-1})|$$

$$\Phi(w_i) = \{w_{i-1} : \pi(w_{i-1}, w_i) > 0\}$$

$$\frac{d \cdot |\Psi(w_{i-1})| \cdot |\Phi(w_i)|}{\pi(w_{i-1}) \cdot |B|}$$

$$\begin{aligned} \Pr_{\mathrm{KN}}(w_{i}|w_{i-1}) &= \frac{\max\{\pi(w_{i-1}, w_{i}) - d, 0\}}{\pi(w_{i-1})} + \lambda_{\mathrm{KN}}(w_{i-1}) \Pr_{\mathrm{cont}}(w_{i}) \\ \Pr_{\mathrm{cont}}(w_{i}) &= \frac{|\Phi(w_{i})|}{|B|} \quad \text{and} \quad \lambda_{\mathrm{KN}}(w_{i-1}) = \frac{d}{\pi(w_{i-1})} |\Psi(w_{i-1})| \\ \Phi(w_{i}) &= \{w_{i-1} : \pi(w_{i-1}, w_{i}) > 0\} \\ B &= \{(w_{i-1}, w_{i}) : \pi(w_{i-1}, w_{i}) > 0\} \quad \frac{d \cdot |\Psi(w_{i-1})| \cdot |\Phi(w_{i})|}{\pi(w_{i-1}) \cdot |B|} \end{aligned}$$

#### c.f., absolute discounting

 $\Pr_{abs}(w_i|w_{i-1}) = \frac{\max\{\pi(u)\}}{\max\{\pi(u)\}}$ 

$$\frac{w_{i-1}, w_i) - d, 0}{\pi(w_{i-1})} + \frac{\lambda(w_{i-1}) \Pr(w_i)}{\lambda(w_{i-1})}$$

### **Kneser-Ney: An Alternate View**

- A mix of bigram and unigram models
- A bigram ab could be generated in two ways:
  - In context a, output b, or
  - In context a, forget context and then output b (i.e., as "aεb")
- In a given set of bigrams, for each bigram ab, assume that d<sub>ab</sub> of its occurrences were produced in the second way
- Will compute probabilities for each transition under this assumption



### **Kneser-Ney: An Alternate View**

- "aeb"
  - $\Pr[b|a] = [\pi(a,b) d_{ab}] / \pi(a)$
  - $\Pr[\varepsilon | a] = [\Sigma_v d_{av}] / \pi(a)$
  - $\Pr[b|\varepsilon] = \left[\sum_{x} d_{xb}\right] / \left[\sum_{xv} d_{xv}\right]$
  - $\Pr_{KN}[b \mid a] = \Pr[b \mid a] + \Pr[\varepsilon \mid a] \cdot \Pr[b \mid \varepsilon]$
- Kneser-Ney: Take  $d_{xy} = d$  for all bigrams xy that do appear (assuming they all appear at least d times - kosher, e.g., if d = 1)
- Then  $\Sigma_y d_{ay} = d \cdot |\Psi(a)|, \Sigma_x d_{xb} = d \cdot |\Phi(b)|, \text{ and } \Sigma_{xy} d_{xy} = d \cdot |B|$ • where  $\Psi(a) = \{y : \pi(a,y) > 0\}, \Phi(b) = \{x : \pi(x,b) > 0\}, B = \{xy : \pi(x,y) > 0\}$

$$\Pr_{KN}(b|a) = \frac{\max\{\pi(a,b) - d, 0\}}{\pi(a)} + \frac{d \cdot |\Psi(a)| \cdot |\Phi(b)|}{\pi(a) \cdot |B|}$$

Assuming  $\pi(a,b)$  -  $d_{ab}$  occurrences as "ab", and  $d_{ab}$  occurrences as



### Ngram models as WFSAs

- With no optimizations, an Ngram over a vocabulary of V words defines a WFSA with  $V^{N-1}$  states and  $V^{N}$  edges.
- Example: Consider a trigram model for a two-word • vocabulary, A B.
  - 4 states representing bigram histories, A\_A, A\_B, B\_A, B\_B 8 arcs transitioning between these states
- Clearly not practical when V is large. •
  - Resort to backoff language models

### WFSA for backoff language model



### **Putting it all together:** How do we recognise an utterance?

- A: speech utterance

$$W^* = \operatorname*{arg\,max}_W$$

- probability to O<sub>A</sub>
- How do we estimate  $Pr(O_A | W)$  and Pr(W)?
- How do we decode?

•  $O_A$ : acoustic features corresponding to the utterance A

 $\operatorname{x}\operatorname{Pr}(O_A|W)\operatorname{Pr}(W)$ 

Return the word sequence that jointly assigns the highest

### Acoustic model

$$W^* = \arg \max_{W} W$$
$$\Pr(O_A | W) = \sum_{Q} \Pr(O_A, Q)$$
$$= \sum_{q_1^T, w_1^N} \prod_{t=1}^T \Pr$$
First-order HMM  
assumptions
$$\approx \sum_{q_1^T, w_1^N} \prod_{t=1}^T \Pr$$
Viterbi approximation
$$\approx \max_{q_1^T, w_1^N} \prod_{t=1}^T \Pr$$

 $\operatorname{ax} \Pr(O_A | W) \Pr(W)$ 

Q|W)

 $r(O_t|O_1^{t-1}, q_1^t, w_1^N) \Pr(q_t|q_1^{t-1}, w_1^N)$ 

 $r(O_t|q_t, w_1^N) \Pr(q_t|q_{t-1}, w_1^N)$ 

 $r(O_t|q_t, w_1^N) Pr(q_t|q_{t-1}, w_1^N)$ 



Modeled using a mixture of Gaussians

$$\Pr(O|q; w_1^N) = \sum_{\ell=1}^{L_q} c_{q\ell} \mathcal{N}(O|\mu)$$

# Language Model

W

 $\Pr(W) = \Pr(w)$ 

 $= \Pr(w)$ 

m-gram language model

• lower-order Ngram models

## $W^* = \underset{W}{\operatorname{arg\,max}} \operatorname{Pr}(O_A | W) \operatorname{Pr}(W)$

$$(1, w_2, \dots, w_N)$$
  
 $(1, 1) \dots \Pr(w_N | w_{N-m+1}^{N-1})$ 

# Further optimized using smoothing and interpolation with

### Decoding

$$W^* = \operatorname*{arg\,max}_W$$

$$W^* = \underset{w_1^N, N}{\operatorname{arg\,max}} \left\{ \left[ \prod_{n=1}^N \Pr(w_n | w_{n-m+1}^{n-1}) \right] \left[ \sum_{q_1^T, w_1^N} \prod_{t=1}^T \Pr(O_t | q_t, w_1^N) \Pr(q_t | q_{t-1}, w_1^N) \right] \right\}$$

$$\underset{w_{1}^{N},N}{\overset{\text{Viterbi}}{\approx}} \left\{ \left[ \prod_{n=1}^{N} \Pr(w_{n} | w_{n-m+1}^{n-1}) \right] \left[ \max_{q_{1}^{T}, w_{1}^{N}} \prod_{t=1}^{T} \Pr(O_{t} | q_{t}, w_{1}^{N}) \Pr(q_{t} | q_{t-1}, w_{1}^{N}) \right] \right\}$$

- only promising parts of the search space

 $\operatorname{x}\operatorname{Pr}(O_A|W)\operatorname{Pr}(W)$ 

 Viterbi approximation divides the above optimisation problem into subproblems that allows the efficient application of dynamic programming

• Search space still very huge for LVCSR tasks! Use approximate decoding techniques (A\* decoding, beam-width decoding, etc.) to visit