Language Modeling (Part Il)

Lecture 10

Unseen Ngrams

By using estimates based on counts from large text corpora,
there will still be many unseen bigrams/trigrams at test time
that never appear in the training corpus

If any unseen Ngram appears in a test sentence, the
sentence will be assigned probability O

Problem with MLE estimates: Maximises the likelihood of the
observed data by assuming anything unseen cannot happen
and overfits to the training data

Smoothing methods: Reserve some probability mass to Ngrams that
don’t occur in the training corpus

Add-one (Laplace) smoothing

Simple idea: Add one to all bigram counts. That means,

W(wi—la wz)

7'('(?1]7;_1)

Prar(wi|lw;—1) =

becomes

m(wi—1,w;) + 1
W(wi_l) -+ V

Prrop(wi|lw;—1) =

where V' is the vocabulary size

No
smoothing

Laplace
(Add-one)
smoothing

Example: Bigram counts

i want to eat chinese food lunch spend
i S 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food | 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 | 0 0 0 0 0

i want to eat chinese food Ilunch spend
i 6 828 1 10 | 1 1 3
want 3 4 609 2 7 7 6 2
to 3 S 687 3 1 7 212
eat 1 3 A 17 3 43 A
chinese 2 1 1 33 2
food 16 16 2 S ‘
lunch 3 1 | 2
spend 2 2 | |

Example: Bigram probabilities

i want to eat chinese food lunch spend
i 0.002 0.33 0 0.0036 0O 0 0 0.00079
want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
No to 0.00083 0O 0.0017 10.28 0.00083 0O 0.0025 0.087
smoothing eat 0 0 0.0027 0 0.021 0.0027 0.056 0O
chinese 0.0063 0 0 0 0 0.52 0.0063 0
food 0.014 0 0.014 0O 0.00092 0.0037 0O 0
lunch 0.0059 0O 0 0 0 0.0029 0 0
spend 0.0036 O 0.0036 0O 0 0 0 0
i want to eat chinese food lunch spend
| 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075
want 0.0013 0.00042 10.26 0.00084 0.0029 0.0029 0.0025 0.00084
Laplace to 0.00078 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055
(Add-one) eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046
smoothing chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062

food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039
lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056
spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058

Laplace smoothing moves too much probability mass to unseen events!

Add-o¢ Smoothing

Instead of 1, add a < 1 to each count

m(wi—1,w;) + a
7'('(?1]7;_1) oV

Pro (w;|w;—1) =

Choosing a:
- Train model on training set using different values of a

Choose the value of a that minimizes cross entropy on
the development set

Smoothing or discounting

Smoothing can be viewed as discounting (lowering) some
probability mass from seen Ngrams and redistributing
discounted mass to unseen events

l.e. probabillity of a bigram with Laplace smoothing

ﬂ-(wi—lawi) -+ 1
W(wi_l) —+ V

Prrap(w;|w;—1) =

- can be written as

T (W;i—1, Ww;)

W(wi_l)

Prrap(w;|wi—1) =

7'('(?1]2'_1)
7'('(?1]7;_1) —+ V

- where discounted count 7*(w;_1,w;) = (w(w;—1,w;) + 1)

No
smoothing

Laplace
(Add-one)
smoothing

Example: Bigram adjusted counts

i want to eat chinese food lunch spend

i 5 827 0 9 0 0 0 2

want 2 0 608 | 6 6 5 |

to 2 0 4 686 2 0 6 211

eat 0 0 2 0 16 2 42 0

chinese | 0 0 0 0 82 | 0

food 15 0O 15 0 | 4 0 0

lunch 2 0 0 0 0 1 0 0

spend 1 0 | 0 0 0 0 0

i want to eat chinese food Ilunch spend

1 3.8 527 0.64 6.4 0.64 0.64 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63 44 133
eat 0.34 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098 0.098 0.098 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32 0.16 0.32 0.16 0.16 0.16 0.16 0.16

Advanced Smoothing Techniques

+ @Good-Turing Discounting

Backoff and Interpolation
- Katz Backoff Smoothing
- Absolute Discounting Interpolation

Kneser-Ney Smoothing

Advanced Smoothing Techniques

+ @Good-Turing Discounting

Problems with Add-o¢ Smoothing

- What’s wrong with add-a smoothing?

- Assigns too much probability mass away from seen Ngrams

o unseen events

Does not discount high counts and low counts correctly

- Also, a is tricky to set

Is there a more principled way to do this smoothing?
A solution: Good-Turing estimation

Good-Turing estimation
(uses held-out data)

r Nr r* in add-1 r*
heldout set

1 2 x 106 0.448 2.8x10-11

2 4 x 10° 1.25 4,2x10-11

3 2 x 10° 2.24 5.7x10-11

4 1 x10° 3.23 7/.1x10-11

5 / x 104 4,21 8.5x10-1

r = Count in a large corpus & Ny is the number of bigrams with r counts
r* i1s estimated on a different held-out corpus

Add-1 smoothing hugely overestimates fraction of unseen events

Good-Turing estimation uses observed data to predict how to
go from r to the heldout-r*

[CG91]: Church and Gale, “A comparison of enhanced Good-Turing...”, CSL, 1991

Good-Turing Estimation

Intuition for Good-Turing estimation using leave-one-out validation:
Let N be the number of words (tokens,bigrams,etc.) that occur r times

Split a given set of N word tokens into a training set of (N-1) samples + 1
sample as the held-out set; repeat this process N times so that all N samples
appear in the held-out set

In what fraction of these N trials is the held-out word unseen during training?
N+/N

In what fraction of these N trials is the held-out word seen exactly k times
during training? (k+1)Nk+1/N

There are (=)Nk words with training count k.

Probability of each being chosen as held-out: (k+1)Nk.1/(N x Ng)
Expected count of each of the Nxwords in a corpus of size N: k™ = 6(k) = (k+1) Nks+1/Nk

Good-Turing Estimates

r N, r*-GT r*-heldout
0 7.47 x 1010 .0000270 .0000270
1 2 x 106 0.446 0.448
7 4 x 105 1.26 1.25

3 2 x 105 2.24 2.24

4 1 x 105 3.24 3.23

5 7 x 104 4.22 4.21

6 5 x 104 5.19 5.23

7 3.5 x 104 6.21 6.21

8 2.7 x 104 /.24 /.21

9 2.2 x 104 3.25 3.26

Table showing frequencies of bigrams from 0 to 9
In this example, for r > 0, r*-GT = r*-heldout and r*-GT is always less than r

[CG91]: Church and Gale, “A comparison of enhanced Good-Turing...”, CSL, 1991

Good-Turing Smoothing

-+ Thus, Good-Turing smoothing states that for any Ngram that occurs
r times, we should use an adjusted count r* = 8(r) = (r + 1)Nr+1/N¢

Good-Turing smoothed counts for unseen events: 8(0) = N1/No

Example: 10 bananas, 5 apples, 2 papayas, 1 melon, 1 guava, 1
pear

How likely are we to see a guava next? The GT estimate is 6(1)/N
Here, N =20, N2=1, Ny =3. Computing 6(1): 6(1) =2 x 1/3 = 2/3

- Thus, Prgr(guava) = 6(1)/20 = 1/30 = 0.0333

Good-Turing Estimation

One issue: For large r, many instances of N1 = 0!

This would lead to 6(r) = (r + 1)Nr1/N¢ being set to 0.

Solution: Discount only for small counts r <= k (e.g. k = 9) and
O(r) =rforr>Kk

Another solution: Smooth N using a best-fit power law once
counts start getting small

Good-Turing smoothing tells us how to discount some
probability mass to unseen events. Could we redistribute this
mass across observed counts of lower-order Ngram events?

Advanced Smoothing Techniques

- Backoff and Interpolation

Backoff and Interpolation

General idea: It helps to use lesser context to generalise for
contexts that the model doesn’t know enough about

Backofft:
Use trigram probabillities if there is sufficient evidence
Else use bigram or unigram probabilities

Interpolation

Mix probability estimates combining trigram, bigram and
unigram counts

Interpolation

Linear interpolation: Linear combination of different Ngram
models

P(walwy—awn—1) = AMP(Wn|Wn_own_1)
+AP(Wn|Wy—1)
+A3P(wy,)

where A1 + 1, + A3 =1

How to set the A's?

Interpolation

Linear interpolation: Linear combination of different Ngram
models

P(walwy—awn—1) = AMP(Wn|Wn_own_1)
+AP(Wn|Wy—1)
+A3P(wy,)

where A1 + 1, + A3 =1

1. Estimate N-gram probabilities on a training set.

2. Then, search for A’s that maximises the probability of a
held-out set

Advanced Smoothing Techniques

- Backoff and Interpolation

- Katz Backoff Smoothing

Katz Smoothing

Good-Turing discounting determines the volume of
probability mass that is allocated to unseen events

Katz Smoothing distributes this remaining mass
proportionally across “smaller” Ngrams

l.e. no trigram found, use backoff probability of bigram and
If no bigram found, use backoff probability of unigram

Katz Backoff Smoothing

For a Katz bigram model, let us define:
 Wwi) ={w: m(wi-iw) >0}

- A bigram model with Katz smoothing can be written in terms
of a unigram model as follows:

u (wi—l 7wi)

PKatz(wi|wi_1) — m(w;—1) lf W; & \Ij(w@'_l)
a(wi—l)PKatz(wi) it w; ¢ \Ij(wi—l)

W*(wi_l,w)
(1 - Zwé\lf(wi_l) m(wi—1))
Zwig\p(wi_l) PKatz(wi)

where a(w;_1) =

Katz Backoff Smoothing

u (wi—l 7w7l)

it w; & \ W; _
PKatz(wi|wz‘_1> — { m(wi—1) (1)

a(Wi—1 WPratz(w;)| if w; € Y(w;_1)

A bigram with a non-zero count is discounted using Good-
Turing estimation

The left-over probability mass from discounting for the
unigram model ...

... is distributed over wi ¢ W(wi-1) proportionally to Pkatz(wi)

Advanced Smoothing Techniques

- Backoff and Interpolation

- Absolute Discounting Interpolation

Recall Good-Turing estimates

r Nr O(r)
0 7.47 x 1010 .0000270
1 2 x 106 0.446
yi 4 x 105 1.26
3 2 x 10° 2.24
4 1 x 105 3.24
5 7/ x 104 4,22
6 5 x 104 5.19
7 3.5 x 104 6.21
8 2.7 x 107 /.24
0 2.2 x 104 8.25

Forr >0, we observe that B(r) = r - 0.75 i.e. an absolute discounting

[CG91]: Church and Gale, “A comparison of enhanced Good-Turing...”, CSL, 1991

Absolute Discounting Interpolation

- Absolute discounting motivated by Good-Turing estimation

- Just subtract a constant d from the non-zero counts to get

the discounted count

+Also involves linear interpolation with lower-order models

max{ﬂ'(w@'_l,wz’)_dao} |)\(w,)Pr(w-)
W(wi_l) | 1—1 (

Prabs (wz ‘wi— 1) —

Advanced Smoothing Techniques

- Kneser-Ney Smoothing

Kneser-Ney discounting

max{w(wi_l, wz) — d, O}

7T(w7;_1)

PrKN (wi‘wi—l) — | >\KN (wi—l)Prcont (wz)

c.f., absolute discounting

max{7(w;—1,w;) —d,0} ” (a0
m(wi_1) A1) Pr(w)

Prabs (wz ‘wi— 1) —

Kneser-Ney discounting

max{w(wz-_l, wz) — d, O}

7T(UJ7;_1)

Prin (w;|w;—1) = F AN (Wi —1)Preont (w;)

Consider an example: “Today | cooked some yellow curry”

Suppose n(yellow, curry) = 0. Praos[w | yellow | = A(yellow)Pr(w)

Now, say Pr[Francisco] >> Pr[curry], as San Francisco is very
common in our Corpus.

But Francisco is not as common a “continuation” (follows only San)
as curry is (red curry, chicken curry, potato curry, ...)

Moral: Should use probability of being a continuation!

c.f., absolute discoJﬁting

max{m(w;—1,w;) —d,0}

Prabs(wi‘wi—l) — W(wz‘_l) | A(wz—l)Pr(wz)

max{w(wi_l, wz) — d, O}

Kneser-Ney discounting

Prien (w;|w;—1) = (w1

P (w;
Prcont (wz) ‘ |(;J‘)‘ and)\KN (wz—l)
(I)(wz) — {wi—l 7T<wz—17wz)
where B = {(wi—1,w;) : m(wi—1, w;)

c.f., absolute discounting

max{m(w;—1,w;) —d,0}

- AKN (Wi—1)Preont (w;)

Prabs(wi‘wi—l) — 7'('(10' 1)

|)\(wz_l)Pr(wz)

B m(wi_1) i)
>0} d- W (wi—q)| - |P(w;)]
> 0} m(wi—1) - | B

- A mix of bigram and unigram models

Kneser-Ney: An Alternate View

- A bigram ab could be generated in two ways: @
a

In context a, output b, or > @

In context a, forget context and then output b (i.e., as “agb”)

In a given set of bigrams, for each bigram ab, assume that dao
of its occurrences were produced in the second way

- Will compute probabilities for each transition under this

assumption

Kneser-Ney: An Alternate View

-+ Assuming n(a,b) - d.» OCcurrences as “ab”, and d,» occurrences as

“aSb”

« Pr[bla]l = [(a,b) - duw] /| 71(a)] @
« Prielal =]2ydsy]/ (a) Q

» Prible]l=[2cdw] /[2Zx dxy] a & 1] 0
 Prxn| bl a | = Pr[bla] + Prle la]- Pr|b lg] © @

Kneser-Ney: Take dxy = d for all bigrams xy that do appear
(assuming they all appear at least d times — kosher, e.g., ifd = 1)

- Then 2, d,y = dIW(a)l, 2, dw = d-|P(b)|, and 2, d.y = d"|BI
where W(a) ={y: m(ay) >0}, Pb)=4{x:mw(xb) >0}, B={xy:a(xy) >0}

max{m(a,b) — d,0} - d- W(a)|-|P(b)

e = T T T w18

Ngram models as WFSAs

- With no optimizations, an Ngram over a vocabulary of V

words defines a WFSA with VN-1 states and VN edges.

Example: Consider a trigram model for a two-word
vocabulary, A B.

- 4 states representing bigram histories, A_A,A_B,B_A, B_B
8 arcs transitioning between these states

Clearly not practical when V is large.
Resort to backoff language models

WFSA for backoff language model

Qc/Pr(clab
slaat\ / e/ab
c / Pr(clb) —

"o

&

——

Putting it all together:
How do we recognise an utterance?

- A: speech utterance

+ Oa: acoustic features corresponding to the utterance A

W* = argmax Pr(O4|W) Pr(W)
7%

Return the word sequence that jointly assigns the highest
probability to Oa

How do we estimate Pr(O4 W) and Pr(W)?

How do we decode?

Acoustic model

W* = argmax Pr(O4|W) Pr(W)
7%

Pr(04|W) =) Pr(04,QW)
Q

T
> 1IPr(0dOT, gf, wi’) Pr(gelar " wi')

¢

T
First-order HMM N N
assumptions Z H Pr(Ot‘Qtv Wy)PT(Qt‘Qt—la Wy)
qdi1 ,Wq

T
max H Pr(Oylq:, wy) Pr(qe|qi—1, wy)

T
1101 =

X

Viterbi approximation

Acoustic Model

Transition

probabilities
T /

Pr(Oa|W) = max HPr O¢lge, wy) Pr(qe|ge—1, wy')

SR

Emission Derived from a
probabilities DNN or TDNN model
Modeled using a

b _ Pr(q| O; wy)
mixture of Gaussians (O‘q’wl o — qu’/\/ O"qu’ q£,w1 r(\q,w PT(Q)

Language Model

W* = argmax Pr(O4|W) Pr(W)
7%

Pr(W) = Pr(wy,wsa,...,wN)

— Pr(wl) . Pr(wN‘w%:r,lnjq)

m-gram language model

Further optimized using smoothing and interpolation with
lower-order Ngram models

Decoding

W* = argmax Pr(O|W) Pr(W)
W

N
wy N

- N — B T]
W argmax{ HPr(wn|wZ:,,1n+1) H r(O¢lge, w7) Prge|ge—1, wy') }

_— "N - T]
Viterbi
> arg max{ H Pr(wn|w3:}n+1) max HPY Ot\Qt,Uﬁ) Pr(q|q:— 1awfiv) }

N
wi N n=1 | ql Wy t—1

Viterbi approximation divides the above optimisation problem into sub-
problems that allows the efficient application of dynamic programming

Search space still very huge for LVCSR tasks! Use approximate
decoding techniques (A* decoding, beam-width decoding, etc.) to visit
only promising parts of the search space

