
Instructor: Preethi Jyothi

Language Modeling (Part II)

Lecture 10

CS 753

Unseen Ngrams

• By using estimates based on counts from large text corpora,
there will still be many unseen bigrams/trigrams at test time
that never appear in the training corpus

• If any unseen Ngram appears in a test sentence, the
sentence will be assigned probability 0

• Problem with MLE estimates: Maximises the likelihood of the
observed data by assuming anything unseen cannot happen
and overfits to the training data

• Smoothing methods: Reserve some probability mass to Ngrams that
don’t occur in the training corpus

Add-one (Laplace) smoothing

Simple idea: Add one to all bigram counts. That means,

becomes

PrML(wi|wi�1) =
⇡(wi�1, wi)

⇡(wi�1)

where V is the vocabulary size

PrLap(wi|wi�1) =
⇡(wi�1, wi) + 1

⇡(wi�1) + V

Example: Bigram counts
6 CHAPTER 4 • LANGUAGE MODELING WITH N-GRAMS

i want to eat chinese food lunch spend

i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Figure 4.1 Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restau-
rant Project corpus of 9332 sentences. Zero counts are in gray.

i want to eat chinese food lunch spend

i 0.002 0.33 0 0.0036 0 0 0 0.00079
want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087
eat 0 0 0.0027 0 0.021 0.0027 0.056 0
chinese 0.0063 0 0 0 0 0.52 0.0063 0
food 0.014 0 0.014 0 0.00092 0.0037 0 0
lunch 0.0059 0 0 0 0 0.0029 0 0
spend 0.0036 0 0.0036 0 0 0 0 0

Figure 4.2 Bigram probabilities for eight words in the Berkeley Restaurant Project corpus
of 9332 sentences. Zero probabilities are in gray.

Now we can compute the probability of sentences like I want English food or
I want Chinese food by simply multiplying the appropriate bigram probabilities to-
gether, as follows:

P(<s> i want english food </s>)
= P(i|<s>)P(want|i)P(english|want)

P(food|english)P(</s>|food)
= .25⇥ .33⇥ .0011⇥0.5⇥0.68
= = .000031

We leave it as Exercise 4.2 to compute the probability of i want chinese food.
What kinds of linguistic phenomena are captured in these bigram statistics?

Some of the bigram probabilities above encode some facts that we think of as strictly
syntactic in nature, like the fact that what comes after eat is usually a noun or an
adjective, or that what comes after to is usually a verb. Others might be a fact about
the personal assistant task, like the high probability of sentences beginning with
the words I. And some might even be cultural rather than linguistic, like the higher
probability that people are looking for Chinese versus English food.

Some practical issues: Although for pedagogical purposes we have only described
bigram models, in practice it’s more common to use trigram models, which con-trigram

dition on the previous two words rather than the previous word, or 4-gram or even4-gram

5-gram models, when there is sufficient training data. Note that for these larger N-5-gram

grams, we’ll need to assume extra context for the contexts to the left and right of the
sentence end. For example, to compute trigram probabilities at the very beginning
of sentence, we can use two pseudo-words for the first trigram (i.e., P(I|<s><s>).

We always represent and compute language model probabilities in log format

14 CHAPTER 4 • LANGUAGE MODELING WITH N-GRAMS

i want to eat chinese food lunch spend

i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Figure 4.5 Add-one smoothed bigram counts for eight of the words (out of V = 1446) in
the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

For add-one smoothed bigram counts, we need to augment the unigram count by
the number of total word types in the vocabulary V :

P⇤
Laplace(wn|wn�1) =

C(wn�1wn)+1
C(wn�1)+V

(4.21)

Thus, each of the unigram counts given in the previous section will need to be
augmented by V = 1446. The result is the smoothed bigram probabilities in Fig. 4.6.

i want to eat chinese food lunch spend

i 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075
want 0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084
to 0.00078 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055
eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046
chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062
food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039
lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056
spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058

Figure 4.6 Add-one smoothed bigram probabilities for eight of the words (out of V = 1446) in the BeRP
corpus of 9332 sentences. Previously-zero probabilities are in gray.

It is often convenient to reconstruct the count matrix so we can see how much a
smoothing algorithm has changed the original counts. These adjusted counts can be
computed by Eq. 4.22. Figure 4.7 shows the reconstructed counts.

c⇤(wn�1wn) =
[C(wn�1wn)+1]⇥C(wn�1)

C(wn�1)+V
(4.22)

i want to eat chinese food lunch spend

i 3.8 527 0.64 6.4 0.64 0.64 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63 4.4 133
eat 0.34 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098 0.098 0.098 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32 0.16 0.32 0.16 0.16 0.16 0.16 0.16

Figure 4.7 Add-one reconstituted counts for eight words (of V = 1446) in the BeRP corpus
of 9332 sentences. Previously-zero counts are in gray.

No  
smoothing

Laplace  
(Add-one) 
smoothing

6 CHAPTER 4 • LANGUAGE MODELING WITH N-GRAMS

i want to eat chinese food lunch spend

i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Figure 4.1 Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restau-
rant Project corpus of 9332 sentences. Zero counts are in gray.

i want to eat chinese food lunch spend

i 0.002 0.33 0 0.0036 0 0 0 0.00079
want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087
eat 0 0 0.0027 0 0.021 0.0027 0.056 0
chinese 0.0063 0 0 0 0 0.52 0.0063 0
food 0.014 0 0.014 0 0.00092 0.0037 0 0
lunch 0.0059 0 0 0 0 0.0029 0 0
spend 0.0036 0 0.0036 0 0 0 0 0

Figure 4.2 Bigram probabilities for eight words in the Berkeley Restaurant Project corpus
of 9332 sentences. Zero probabilities are in gray.

Now we can compute the probability of sentences like I want English food or
I want Chinese food by simply multiplying the appropriate bigram probabilities to-
gether, as follows:

P(<s> i want english food </s>)
= P(i|<s>)P(want|i)P(english|want)

P(food|english)P(</s>|food)
= .25⇥ .33⇥ .0011⇥0.5⇥0.68
= = .000031

We leave it as Exercise 4.2 to compute the probability of i want chinese food.
What kinds of linguistic phenomena are captured in these bigram statistics?

Some of the bigram probabilities above encode some facts that we think of as strictly
syntactic in nature, like the fact that what comes after eat is usually a noun or an
adjective, or that what comes after to is usually a verb. Others might be a fact about
the personal assistant task, like the high probability of sentences beginning with
the words I. And some might even be cultural rather than linguistic, like the higher
probability that people are looking for Chinese versus English food.

Some practical issues: Although for pedagogical purposes we have only described
bigram models, in practice it’s more common to use trigram models, which con-trigram

dition on the previous two words rather than the previous word, or 4-gram or even4-gram

5-gram models, when there is sufficient training data. Note that for these larger N-5-gram

grams, we’ll need to assume extra context for the contexts to the left and right of the
sentence end. For example, to compute trigram probabilities at the very beginning
of sentence, we can use two pseudo-words for the first trigram (i.e., P(I|<s><s>).

We always represent and compute language model probabilities in log format

Example: Bigram probabilities

No  
smoothing

14 CHAPTER 4 • LANGUAGE MODELING WITH N-GRAMS

i want to eat chinese food lunch spend

i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Figure 4.5 Add-one smoothed bigram counts for eight of the words (out of V = 1446) in
the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

For add-one smoothed bigram counts, we need to augment the unigram count by
the number of total word types in the vocabulary V :

P⇤
Laplace(wn|wn�1) =

C(wn�1wn)+1
C(wn�1)+V

(4.21)

Thus, each of the unigram counts given in the previous section will need to be
augmented by V = 1446. The result is the smoothed bigram probabilities in Fig. 4.6.

i want to eat chinese food lunch spend

i 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075
want 0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084
to 0.00078 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055
eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046
chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062
food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039
lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056
spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058

Figure 4.6 Add-one smoothed bigram probabilities for eight of the words (out of V = 1446) in the BeRP
corpus of 9332 sentences. Previously-zero probabilities are in gray.

It is often convenient to reconstruct the count matrix so we can see how much a
smoothing algorithm has changed the original counts. These adjusted counts can be
computed by Eq. 4.22. Figure 4.7 shows the reconstructed counts.

c⇤(wn�1wn) =
[C(wn�1wn)+1]⇥C(wn�1)

C(wn�1)+V
(4.22)

i want to eat chinese food lunch spend

i 3.8 527 0.64 6.4 0.64 0.64 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63 4.4 133
eat 0.34 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098 0.098 0.098 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32 0.16 0.32 0.16 0.16 0.16 0.16 0.16

Figure 4.7 Add-one reconstituted counts for eight words (of V = 1446) in the BeRP corpus
of 9332 sentences. Previously-zero counts are in gray.

Laplace  
(Add-one) 
smoothing

Laplace smoothing moves too much probability mass to unseen events!

Add-α Smoothing

Instead of 1, add α < 1 to each count

Pr↵(wi|wi�1) =
⇡(wi�1, wi) + ↵

⇡(wi�1) + ↵V

Choosing α:

• Train model on training set using different values of α

• Choose the value of α that minimizes cross entropy on
the development set

Smoothing or discounting

• Smoothing can be viewed as discounting (lowering) some
probability mass from seen Ngrams and redistributing
discounted mass to unseen events

• i.e. probability of a bigram with Laplace smoothing

• can be written as

PrLap(wi|wi�1) =
⇡(wi�1, wi) + 1

⇡(wi�1) + V

⇡⇤(wi�1, wi) = (⇡(wi�1, wi) + 1)
⇡(wi�1)

⇡(wi�1) + V

PrLap(wi|wi�1) =
⇡⇤(wi�1, wi)

⇡(wi�1)

• where discounted count

Example: Bigram adjusted counts
6 CHAPTER 4 • LANGUAGE MODELING WITH N-GRAMS

i want to eat chinese food lunch spend

i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Figure 4.1 Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restau-
rant Project corpus of 9332 sentences. Zero counts are in gray.

i want to eat chinese food lunch spend

i 0.002 0.33 0 0.0036 0 0 0 0.00079
want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087
eat 0 0 0.0027 0 0.021 0.0027 0.056 0
chinese 0.0063 0 0 0 0 0.52 0.0063 0
food 0.014 0 0.014 0 0.00092 0.0037 0 0
lunch 0.0059 0 0 0 0 0.0029 0 0
spend 0.0036 0 0.0036 0 0 0 0 0

Figure 4.2 Bigram probabilities for eight words in the Berkeley Restaurant Project corpus
of 9332 sentences. Zero probabilities are in gray.

Now we can compute the probability of sentences like I want English food or
I want Chinese food by simply multiplying the appropriate bigram probabilities to-
gether, as follows:

P(<s> i want english food </s>)
= P(i|<s>)P(want|i)P(english|want)

P(food|english)P(</s>|food)
= .25⇥ .33⇥ .0011⇥0.5⇥0.68
= = .000031

We leave it as Exercise 4.2 to compute the probability of i want chinese food.
What kinds of linguistic phenomena are captured in these bigram statistics?

Some of the bigram probabilities above encode some facts that we think of as strictly
syntactic in nature, like the fact that what comes after eat is usually a noun or an
adjective, or that what comes after to is usually a verb. Others might be a fact about
the personal assistant task, like the high probability of sentences beginning with
the words I. And some might even be cultural rather than linguistic, like the higher
probability that people are looking for Chinese versus English food.

Some practical issues: Although for pedagogical purposes we have only described
bigram models, in practice it’s more common to use trigram models, which con-trigram

dition on the previous two words rather than the previous word, or 4-gram or even4-gram

5-gram models, when there is sufficient training data. Note that for these larger N-5-gram

grams, we’ll need to assume extra context for the contexts to the left and right of the
sentence end. For example, to compute trigram probabilities at the very beginning
of sentence, we can use two pseudo-words for the first trigram (i.e., P(I|<s><s>).

We always represent and compute language model probabilities in log format

No  
smoothing

Laplace  
(Add-one) 
smoothing

14 CHAPTER 4 • LANGUAGE MODELING WITH N-GRAMS

i want to eat chinese food lunch spend

i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Figure 4.5 Add-one smoothed bigram counts for eight of the words (out of V = 1446) in
the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

For add-one smoothed bigram counts, we need to augment the unigram count by
the number of total word types in the vocabulary V :

P⇤
Laplace(wn|wn�1) =

C(wn�1wn)+1
C(wn�1)+V

(4.21)

Thus, each of the unigram counts given in the previous section will need to be
augmented by V = 1446. The result is the smoothed bigram probabilities in Fig. 4.6.

i want to eat chinese food lunch spend

i 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075
want 0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084
to 0.00078 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055
eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046
chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062
food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039
lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056
spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058

Figure 4.6 Add-one smoothed bigram probabilities for eight of the words (out of V = 1446) in the BeRP
corpus of 9332 sentences. Previously-zero probabilities are in gray.

It is often convenient to reconstruct the count matrix so we can see how much a
smoothing algorithm has changed the original counts. These adjusted counts can be
computed by Eq. 4.22. Figure 4.7 shows the reconstructed counts.

c⇤(wn�1wn) =
[C(wn�1wn)+1]⇥C(wn�1)

C(wn�1)+V
(4.22)

i want to eat chinese food lunch spend

i 3.8 527 0.64 6.4 0.64 0.64 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63 4.4 133
eat 0.34 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098 0.098 0.098 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32 0.16 0.32 0.16 0.16 0.16 0.16 0.16

Figure 4.7 Add-one reconstituted counts for eight words (of V = 1446) in the BeRP corpus
of 9332 sentences. Previously-zero counts are in gray.

• Good-Turing Discounting

• Backoff and Interpolation

• Katz Backoff Smoothing

• Absolute Discounting Interpolation

• Kneser-Ney Smoothing

Advanced Smoothing Techniques

• Good-Turing Discounting

• Backoff and Interpolation

• Katz Backoff Smoothing

• Absolute Discounting Interpolation

• Kneser-Ney Smoothing

Advanced Smoothing Techniques

Problems with Add-α Smoothing

• What’s wrong with add-α smoothing?

• Assigns too much probability mass away from seen Ngrams
to unseen events

• Does not discount high counts and low counts correctly

• Also, α is tricky to set

• Is there a more principled way to do this smoothing?  
A solution: Good-Turing estimation

Good-Turing estimation  
(uses held-out data)

r Nr r* in  
heldout set

add-1 r*

1 2 × 106 0.448 2.8x10-11

2 4 × 105 1.25 4.2x10-11

3 2 × 105 2.24 5.7x10-11

4 1 × 105 3.23 7.1x10-11

5 7 × 104 4.21 8.5x10-11

[CG91]: Church and Gale, “A comparison of enhanced Good-Turing…”, CSL, 1991

r = Count in a large corpus & Nr is the number of bigrams with r counts 
r* is estimated on a different held-out corpus

• Add-1 smoothing hugely overestimates fraction of unseen events
• Good-Turing estimation uses observed data to predict how to  

go from r to the heldout-r*

Good-Turing Estimation

• Intuition for Good-Turing estimation using leave-one-out validation:
• Let Nr be the number of words (tokens,bigrams,etc.) that occur r times
• Split a given set of N word tokens into a training set of (N-1) samples + 1

sample as the held-out set; repeat this process N times so that all N samples
appear in the held-out set

• In what fraction of these N trials is the held-out word unseen during training?

• In what fraction of these N trials is the held-out word seen exactly k times
during training?

• There are (≅)Nk words with training count k.
• Probability of each being chosen as held-out:

• Expected count of each of the Nk words in a corpus of size N:

N1/N

(k+1)Nk+1/N

(k+1)Nk+1/(N × Nk)
 k* = θ(k) = (k+1) Nk+1/Nk

Good-Turing Estimates

r Nr r*-GT r*-heldout

0 7.47 × 1010 .0000270 .0000270

1 2 × 106 0.446 0.448

2 4 × 105 1.26 1.25

3 2 × 105 2.24 2.24

4 1 × 105 3.24 3.23

5 7 × 104 4.22 4.21

6 5 × 104 5.19 5.23

7 3.5 × 104 6.21 6.21

8 2.7 × 104 7.24 7.21

9 2.2 × 104 8.25 8.26

[CG91]: Church and Gale, “A comparison of enhanced Good-Turing…”, CSL, 1991

Table showing frequencies of bigrams from 0 to 9  
In this example, for r > 0, r*-GT ≅ r*-heldout and r*-GT is always less than r

Good-Turing Smoothing

• Thus, Good-Turing smoothing states that for any Ngram that occurs
r times, we should use an adjusted count r* = θ(r) = (r + 1)Nr+1/Nr

• Good-Turing smoothed counts for unseen events: θ(0) = N1/N0

• Example: 10 bananas, 5 apples, 2 papayas, 1 melon, 1 guava, 1
pear

• How likely are we to see a guava next? The GT estimate is θ(1)/N

• Here, N = 20 , N2 = 1, N1 = 3. Computing θ(1): θ(1) = 2 × 1/3 = 2/3

• Thus, PrGT(guava) = θ(1)/20 = 1/30 = 0.0333

Good-Turing Estimation

• One issue: For large r, many instances of Nr+1 = 0!

• This would lead to θ(r) = (r + 1)Nr+1/Nr being set to 0.

• Solution: Discount only for small counts r <= k (e.g. k = 9) and  
θ(r) = r for r > k

• Another solution: Smooth Nr using a best-fit power law once
counts start getting small

• Good-Turing smoothing tells us how to discount some
probability mass to unseen events. Could we redistribute this
mass across observed counts of lower-order Ngram events?

• Good-Turing Discounting

• Backoff and Interpolation

• Katz Backoff Smoothing

• Absolute Discounting Interpolation

• Kneser-Ney Smoothing

Advanced Smoothing Techniques

Backoff and Interpolation
• General idea: It helps to use lesser context to generalise for

contexts that the model doesn’t know enough about

• Backoff:

• Use trigram probabilities if there is sufficient evidence

• Else use bigram or unigram probabilities

• Interpolation

• Mix probability estimates combining trigram, bigram and
unigram counts

Interpolation

• Linear interpolation: Linear combination of different Ngram
models

4.4 • SMOOTHING 15

Note that add-one smoothing has made a very big change to the counts. C(want to)
changed from 608 to 238! We can see this in probability space as well: P(to|want)
decreases from .66 in the unsmoothed case to .26 in the smoothed case. Looking at
the discount d (the ratio between new and old counts) shows us how strikingly the
counts for each prefix word have been reduced; the discount for the bigram want to
is .39, while the discount for Chinese food is .10, a factor of 10!

The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.

4.4.2 Add-k smoothing

One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P⇤
Add-k(wn|wn�1) =

C(wn�1wn)+ k
C(wn�1)+ kV

(4.23)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

4.4.3 Backoff and Interpolation

The discounting we have been discussing so far can help solve the problem of zero
frequency N-grams. But there is an additional source of knowledge we can draw
on. If we are trying to compute P(wn|wn�2wn�1) but we have no examples of a
particular trigram wn�2wn�1wn, we can instead estimate its probability by using
the bigram probability P(wn|wn�1). Similarly, if we don’t have counts to compute
P(wn|wn�1), we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this N-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order N-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the probability estimatesinterpolation

from all the N-gram estimators, weighing and combining the trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different order N-grams by linearly
interpolating all the models. Thus, we estimate the trigram probability P(wn|wn�2wn�1)
by mixing together the unigram, bigram, and trigram probabilities, each weighted
by a l :

P̂(wn|wn�2wn�1) = l1P(wn|wn�2wn�1)

+l2P(wn|wn�1)

+l3P(wn) (4.24)

such that the l s sum to 1: X

i

li = 1 (4.25)

where λ1 + λ2 + λ3 = 1

How to set the λ’s?

Interpolation

• Linear interpolation: Linear combination of different Ngram
models

4.4 • SMOOTHING 15

Note that add-one smoothing has made a very big change to the counts. C(want to)
changed from 608 to 238! We can see this in probability space as well: P(to|want)
decreases from .66 in the unsmoothed case to .26 in the smoothed case. Looking at
the discount d (the ratio between new and old counts) shows us how strikingly the
counts for each prefix word have been reduced; the discount for the bigram want to
is .39, while the discount for Chinese food is .10, a factor of 10!

The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.

4.4.2 Add-k smoothing

One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P⇤
Add-k(wn|wn�1) =

C(wn�1wn)+ k
C(wn�1)+ kV

(4.23)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

4.4.3 Backoff and Interpolation

The discounting we have been discussing so far can help solve the problem of zero
frequency N-grams. But there is an additional source of knowledge we can draw
on. If we are trying to compute P(wn|wn�2wn�1) but we have no examples of a
particular trigram wn�2wn�1wn, we can instead estimate its probability by using
the bigram probability P(wn|wn�1). Similarly, if we don’t have counts to compute
P(wn|wn�1), we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this N-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order N-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the probability estimatesinterpolation

from all the N-gram estimators, weighing and combining the trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different order N-grams by linearly
interpolating all the models. Thus, we estimate the trigram probability P(wn|wn�2wn�1)
by mixing together the unigram, bigram, and trigram probabilities, each weighted
by a l :

P̂(wn|wn�2wn�1) = l1P(wn|wn�2wn�1)

+l2P(wn|wn�1)

+l3P(wn) (4.24)

such that the l s sum to 1: X

i

li = 1 (4.25)

where λ1 + λ2 + λ3 = 1

1. Estimate N-gram probabilities on a training set.

2. Then, search for λ’s that maximises the probability of a  
held-out set

• Good-Turing Discounting

• Backoff and Interpolation

• Katz Backoff Smoothing

• Absolute Discounting Interpolation

• Kneser-Ney Smoothing

Advanced Smoothing Techniques

Katz Smoothing

• Good-Turing discounting determines the volume of
probability mass that is allocated to unseen events

• Katz Smoothing distributes this remaining mass
proportionally across “smaller” Ngrams

• i.e. no trigram found, use backoff probability of bigram and
if no bigram found, use backoff probability of unigram

Katz Backoff Smoothing

• For a Katz bigram model, let us define:

• Ψ(wi-1) = {w: π(wi-1,w) > 0}

• A bigram model with Katz smoothing can be written in terms
of a unigram model as follows:

PKatz(wi|wi�1) =

(
⇡⇤(wi�1,wi)

⇡(wi�1)
if wi 2 (wi�1)

↵(wi�1)PKatz(wi) if wi 62 (wi�1)

where ↵(wi�1) =

⇣
1�

P
w2 (wi�1)

⇡⇤(wi�1,w)
⇡(wi�1)

⌘

P
wi 62 (wi�1)

PKatz(wi)

Katz Backoff Smoothing

• A bigram with a non-zero count is discounted using Good-
Turing estimation

• The left-over probability mass from discounting for the
unigram model …

• … is distributed over wi ∉ Ψ(wi -1) proportionally to PKatz(wi)

PKatz(wi|wi�1) =

(
⇡⇤(wi�1,wi)

⇡(wi�1)
if wi 2 (wi�1)

↵(wi�1)PKatz(wi) if wi 62 (wi�1)

where ↵(wi�1) =

⇣
1�

P
w2 (wi�1)

⇡⇤(wi�1,w)
⇡(wi�1)

⌘

P
wi 62 (wi�1)

PKatz(wi)

• Good-Turing Discounting

• Backoff and Interpolation

• Katz Backoff Smoothing

• Absolute Discounting Interpolation

• Kneser-Ney Smoothing

Advanced Smoothing Techniques

Recall Good-Turing estimates

r Nr θ(r)
0 7.47 × 1010 .0000270

1 2 × 106 0.446

2 4 × 105 1.26

3 2 × 105 2.24

4 1 × 105 3.24

5 7 × 104 4.22

6 5 × 104 5.19

7 3.5 × 104 6.21

8 2.7 × 104 7.24

9 2.2 × 104 8.25

[CG91]: Church and Gale, “A comparison of enhanced Good-Turing…”, CSL, 1991

For r > 0, we observe that θ(r) ≅ r - 0.75 i.e. an absolute discounting

Absolute Discounting Interpolation

• Absolute discounting motivated by Good-Turing estimation

• Just subtract a constant d from the non-zero counts to get
the discounted count

• Also involves linear interpolation with lower-order models

Prabs(wi|wi�1) =
max{⇡(wi�1, wi)� d, 0}

⇡(wi�1)
+ �(wi�1)Pr(wi)

• Good-Turing Discounting

• Backoff and Interpolation

• Katz Backoff Smoothing

• Absolute Discounting Interpolation

• Kneser-Ney Smoothing

Advanced Smoothing Techniques

Kneser-Ney discounting

c.f., absolute discounting

PrKN(wi|wi�1) =
max{⇡(wi�1, wi)� d, 0}

⇡(wi�1)
+ �KN(wi�1)Prcont(wi)

Prabs(wi|wi�1) =
max{⇡(wi�1, wi)� d, 0}

⇡(wi�1)
+ �(wi�1)Pr(wi)

Kneser-Ney discounting

c.f., absolute discounting

PrKN(wi|wi�1) =
max{⇡(wi�1, wi)� d, 0}

⇡(wi�1)
+ �KN(wi�1)Prcont(wi)

Prabs(wi|wi�1) =
max{⇡(wi�1, wi)� d, 0}

⇡(wi�1)
+ �(wi�1)Pr(wi)

Consider an example: “Today I cooked some yellow curry”

Suppose π(yellow, curry) = 0. Prabs[w | yellow] = λ(yellow)Pr(w)

Now, say Pr[Francisco] >> Pr[curry], as San Francisco is very
common in our corpus.

But Francisco is not as common a “continuation” (follows only San)
as curry is (red curry, chicken curry, potato curry, …)

Moral: Should use probability of being a continuation!

Kneser-Ney discounting

where

c.f., absolute discounting

PrKN(wi|wi�1) =
max{⇡(wi�1, wi)� d, 0}

⇡(wi�1)
+ �KN(wi�1)Prcont(wi)

Prabs(wi|wi�1) =
max{⇡(wi�1, wi)� d, 0}

⇡(wi�1)
+ �(wi�1)Pr(wi)

Prcont(wi) =
|�(wi)|
|B|

�(wi) = {wi�1 : ⇡(wi�1, wi) > 0}
B = {(wi�1, wi) : ⇡(wi�1, wi) > 0}
 (wi�1) = {wi : ⇡(wi�1, wi) > 0}

and �KN(wi�1) =
d

⇡(wi�1)
| (wi�1)|

d · | (wi�1)| · |�(wi)|
⇡(wi�1) · |B|

Kneser-Ney: An Alternate View

• A mix of bigram and unigram models

• A bigram ab could be generated in two ways:
• In context a, output b, or

• In context a, forget context and then output b (i.e., as “aεb”)

• In a given set of bigrams, for each bigram ab, assume that dab
of its occurrences were produced in the second way

• Will compute probabilities for each transition under this
assumption

a

b

ε

b
b

ε
a

Kneser-Ney: An Alternate View
• Assuming π(a,b) - dab occurrences as “ab”, and dab occurrences as

“aεb”
• Pr[b|a] = [π(a,b) - dab] / π(a)
• Pr[ε |a] = [Σy day] / π(a)
• Pr[b |ε] = [Σx dxb] / [Σxy dxy]
• PrKN[b | a] = Pr[b|a] + Pr[ε |a]⋅ Pr[b |ε]

• Kneser-Ney: Take dxy = d for all bigrams xy that do appear
(assuming they all appear at least d times — kosher, e.g., if d = 1)

a

b

ε

b
b

ε
a

PrKN(b|a) =
max{⇡(a, b)� d, 0}

⇡(a)
+

d · | (a)| · |�(b)|
⇡(a) · |B|

• Then Σy day = d⋅|Ψ(a)|, Σx dxb = d⋅|Φ(b)|, and Σxy dxy = d⋅|B|  
where Ψ(a) = {y : π(a,y) > 0}, Φ(b) = {x : π(x,b) > 0}, B = {xy : π(x,y) > 0}

Ngram models as WFSAs

• With no optimizations, an Ngram over a vocabulary of V
words defines a WFSA with VN-1 states and VN edges.

• Example: Consider a trigram model for a two-word
vocabulary, A B.

• 4 states representing bigram histories, A_A, A_B, B_A, B_B
• 8 arcs transitioning between these states

• Clearly not practical when V is large.
• Resort to backoff language models

WFSA for backoff language model

a,b b,c

b

ε

c

c / Pr(c|a,b)

ε / α(a,b)
c / Pr(c|b)

ε / α(b,c)

ε / α(b) c / Pr(c)

Putting it all together:
How do we recognise an utterance?

• A: speech utterance

• OA: acoustic features corresponding to the utterance A

• Return the word sequence that jointly assigns the highest
probability to OA

• How do we estimate Pr(OA|W) and Pr(W)?

• How do we decode?

W
⇤ = argmax

W
Pr(OA|W) Pr(W)

Acoustic model

Pr(OA|W) =
X

Q

Pr(OA, Q|W)

=
X

qT1 ,wN
1

TY

t=1

Pr(Ot|Ot�1
1 , q

t
1, w

N
1) Pr(qt|qt�1

1 , w
N
1)

⇡
X

qT1 ,wN
1

TY

t=1

Pr(Ot|qt, wN
1) Pr(qt|qt�1, w

N
1)

⇡ max
qT1 ,wN

1

TY

t=1

Pr(Ot|qt, wN
1) Pr(qt|qt�1, w

N
1)

W
⇤ = argmax

W
Pr(OA|W) Pr(W)

Pr(OA|W) =
X

Q

Pr(OA, Q|W)

=
X

qT1 ,wN
1

TY

t=1

Pr(Ot|Ot�1
1 , q

t
1, w

N
1) Pr(qt|qt�1

1 , w
N
1)

⇡
X

qT1 ,wN
1

TY

t=1

Pr(Ot|qt, wN
1) Pr(qt|qt�1, w

N
1)

⇡ max
qT1 ,wN

1

TY

t=1

Pr(Ot|qt, wN
1) Pr(qt|qt�1, w

N
1)

Pr(OA|W) =
X

Q

Pr(OA, Q|W)

=
X

qT1 ,wN
1

TY

t=1

Pr(Ot|Ot�1
1 , q

t
1, w

N
1) Pr(qt|qt�1

1 , w
N
1)

⇡
X

qT1 ,wN
1

TY

t=1

Pr(Ot|qt, wN
1) Pr(qt|qt�1, w

N
1)

⇡ max
qT1 ,wN

1

TY

t=1

Pr(Ot|qt, wN
1) Pr(qt|qt�1, w

N
1)

Pr(OA|W) =
X

Q

Pr(OA, Q|W)

=
X

qT1 ,wN
1

TY

t=1

Pr(Ot|Ot�1
1 , q

t
1, w

N
1) Pr(qt|qt�1

1 , w
N
1)

⇡
X

qT1 ,wN
1

TY

t=1

Pr(Ot|qt, wN
1) Pr(qt|qt�1, w

N
1)

⇡ max
qT1 ,wN

1

TY

t=1

Pr(Ot|qt, wN
1) Pr(qt|qt�1, w

N
1)

First-order HMM
assumptions

Viterbi approximation

Acoustic Model

Pr(OA|W) = max
qT1 ,wN

1

TY

t=1

Pr(Ot|qt, wN
1) Pr(qt|qt�1, w

N
1)

Emission 
probabilities

Pr(O|q;wN
1) =

LqX

`=1

cq`N (O|µq`,⌃q`;w
N
1)

Modeled using a  
mixture of Gaussians

Transition 
probabilities

Pr(O |q; wN
1) ∝

Pr(q |O; wN
1)

Pr(q)

Derived from a
DNN or TDNN model

Language Model
W

⇤ = argmax
W

Pr(OA|W) Pr(W)

m-gram language model

• Further optimized using smoothing and interpolation with
lower-order Ngram models

Pr(W) = Pr(w1, w2, . . . , wN)

= Pr(w1) . . .Pr(wN |wN�1
N�m+1)

Decoding

W
⇤ = argmax

W
Pr(OA|W) Pr(W)

W
⇤ = argmax

wN
1 ,N

8
<

:

"
NY

n=1

Pr(wn|wn�1
n�m+1)

#2

4
X

qT1 ,wN
1

TY

t=1

Pr(Ot|qt, wN
1) Pr(qt|qt�1, w

N
1)

3

5

9
=

;

⇡ argmax
wN

1 ,N

("
NY

n=1

Pr(wn|wn�1
n�m+1)

#"
max
qT1 ,wN

1

TY

t=1

Pr(Ot|qt, wN
1) Pr(qt|qt�1, w

N
1)

#)
Viterbi

• Viterbi approximation divides the above optimisation problem into sub-
problems that allows the efficient application of dynamic programming

• Search space still very huge for LVCSR tasks! Use approximate
decoding techniques (A* decoding, beam-width decoding, etc.) to visit
only promising parts of the search space

