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Tied-state Triphone Models



State Tying
• Observation probabilities are shared across triphone states 

which generate acoustically similar data

Triphone HMMs (No sharing)

p/a/k b/a/gb/a/k

Triphone HMMs (State Tying)

p/a/k b/a/gb/a/k



Tied state HMMs
Four main steps in building a tied state HMM 
system:
1. Create and train 3-state monophone 

HMMs with single Gaussian 
observation probability densities

2. Clone these monophone 
distributions to initialise a set of 
untied triphone models. Train them 
using Baum-Welch estimation. 
Transition matrix remains common 
across all triphones of each phone.

3. For all triphones derived from the 
same monophone, cluster states 
whose parameters should be tied 
together.

4. Number of mixture components in 
each tied state is increased and 
models re-estimated using BW

Image from: Young et al., “Tree-based state tying for high accuracy acoustic modeling”, ACL-HLT, 1994
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Tied state HMMs: Step 2

Image from: Young et al., “Tree-based state tying for high accuracy acoustic modeling”, ACL-HLT, 1994

Clone these monophone distributions to initialise a set of untied triphone models
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Tied state HMMs: Step 3

Image from: Young et al., “Tree-based state tying for high accuracy acoustic modeling”, ACL-HLT, 1994

Use decision trees to determine which states should be tied together



Example: Phonetic Decision Tree (DT)

ow2
DT for center  
state of [ow] 

Uses all training data  
tagged with *-ow2+*

One tree is constructed for each state of each monophone to cluster all the  
corresponding triphone states

Head node  
aa2/ow2/f2, aa2/ow2/s2, 
aa2/ow2/d2, h2/ow2/p2, 
aa2/ow2/n2, aa2/ow2/g2, 
… 



Training data for DT nodes
• Align training instance x = (x1, …, xT) where xi ∈ ℝd  with a set 

of triphone HMMs
• Use Viterbi algorithm to find the best HMM triphone state 

sequence corresponding to each x
• Tag each xt  with ID of current phone along with left-context 

and right-context

{ { {xt

sil-b+aa b-aa+g aa-g+sil

xt is tagged with ID b2-aa2+g2 i.e. xt is aligned with the second state 
of the 3-state HMM corresponding to the triphone b-aa+g

• Training data corresponding to state j in phone p: Gather all 
xt’s that are tagged with ID *-pj+*



Example: Phonetic Decision Tree (DT)

ow1 ow2 Ow3
DT for center  
state of [ow] 

Is left ctxt a vowel?

Yes No

Leaf A  
aa2/ow2/f2, 
aa2/ow2/s2, 
… 

Is right ctxt a 
fricative? Is right ctxt nasal?

Yes No

Leaf B  
aa2/ow2/d2, 
aa2/ow2/g2, 
… 

Leaf E  
aa2/ow2/n2, 
aa2/ow2/m2, 
… 

YesNo

Is right ctxt a 
glide?

Leaf C  
h2/ow2/l2, 
b2/ow2/r2, 
… 

Leaf D  
h2/ow2/p2, 
b2/ow2/k2, 
… 

Yes No

Uses all training data  
tagged as *-ow2+*

One tree is constructed for each state of each monophone to cluster all the  
corresponding triphone states

Head node  
aa2/ow2/f2, aa2/ow2/s2, 
aa2/ow2/d2, h2/ow2/p2, 
aa2/ow2/n2, aa2/ow2/g2, 
… 



1. What questions are used? 
 
Linguistically-inspired binary questions: “Does the left or right phone come 
from a broad class of phones such as vowels, stops, etc.?” “Is the left or 
right phone [k] or [m]?”

2. What is the training data for each phone state, pj? (root node of DT) 
 
All speech frames that align with the jth state of every triphone HMM that 
has p as the middle phone  

3. What criterion is used at each node to find the best question to split the 
data on?  
 
Find the question which partitions the states in the parent node so as to 
give the maximum increase in log likelihood

How do we build these phone DTs?



• If a cluster of HMM states, S = {s1, s2, …, sM} consists of M states 
and a total of K acoustic observation vectors are associated with 
S, {x1, x2 …, xK} , then the log likelihood associated with S is:

• For a question q that splits S into Syes and Sno, compute the 
following quantity:

• Go through all questions, find Δq for each question q and choose 
the question for which Δq is the biggest

• Terminate when: Final Δq is below a threshold or data associated 
with a split falls below a threshold

Likelihood of a cluster of states

L(S) =
KX

i=1

X

s2S

log Pr(xi;µS ,⌃S)�s(xi)

�q = L(Sq
yes) + L(Sq

no)� L(S)
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WFSTs for ASR
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H

a-a+b

a-b+b

.

.

.
y-x+z

One 3-state  
HMM for  

each  
triphone

f1:ε

} FST Union + 
Closure

Resulting
FST

H

f2:ε

f3:ε f4:ε

f4:ε f6:ε
f0:a-a+bε

WFST-based ASR System
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�  : cϵ
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Figure reproduced from “Weighted Finite State Transducers in Speech Recognition”, Mohri et al., 2002

M. Mohri: Weighted FSTs in Speech Recognition 5

(a)

0 1
using:using/1 2data:data/0.66

3
intuition:intuition/0.33

4

is:is/0.5

are:are/0.5

is:is/1

5
better:better/0.7

worse:worse/0.3

(b)

0

1d:data/1

5
d:dew/1

2
ey:ε/0.5

ae:ε/0.5

6
uw:ε/1

3
t:ε/0.3

dx:ε/0.7
4

ax: ε /1

Figure 2: Weighted finite-state transducer examples.

and path weight are those given earlier for acceptors. A path’s output label is
the concatenation of output labels of its transitions.

The examples in Figure 2 encode (a superset of) the information in the WFSAs
of Figure 1a-b as WFSTs. Figure 2a represents the same language model as
Figure 1a by giving each transition identical input and output labels. This adds
no new information, but is a convenient way of interpreting any acceptor as a
transducer that we will use often.

Figure 2b represents a toy pronunciation lexicon as a mapping from phone
sequences to words in the lexicon, in this example data and dew, with proba-
bilities representing the likelihoods of alternative pronunciations. Since a word
pronunciation may be a sequence of several phones, the path corresponding to
each pronunciation has ϵ-output labels on all but the word-initial transition. This
transducer has more information than the WFSA in Figure 1b. Since words are
encoded by the output label, it is possible to combine the pronunciation trans-
ducers for more than one word without losing word identity. Similarly, HMM
structures of the form given in Figure 1c can can be combined into a single
transducer that preserves phone model identity while sharing distribution sub-
sequences whenever possible.

2.3. Weighted Transducer Algorithms

Speech recognition architectures commonly give the run-time decoder the task
of combining and optimizing transducers such as those in Figure 1. The decoder
finds word pronunciations in its lexicon and substitutes them into the grammar.
Phonetic tree representations may be used to improve search efficiency at this
point [Ortmanns et al., 1996]. The decoder then identifies the correct context-
dependent models to use for each phone in context, and finally substitutes them
to create an HMM-level transducer. The software that performs these opera-

WFST-based ASR System
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animals/1.789

are/0.693
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If fi maps to state j, 
this is -log(bj(Oi))

Decoding
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“Weighted Finite State Transducers in Speech Recognition”, Mohri et al., Computer Speech & Language, 2002

Carefully construct a decoding graph D using optimization algorithms: 

D = min(det(H ⚬ det(C ⚬ det(L ⚬ G))))

Given a test utterance O, how do I decode it?  
Assuming ample compute, first construct the following machine X from O.

f0:10.578

f1:14.221

f1000:5.678

f500:8.123
⠇

f0:9.21

f1:5.645

f1000:15.638

f500:11.233
⠇

f0:19.12

f1:13.45

f1000:11.11

f500:20.21
⠇ …………

f0:18.52

f1:12.33

f1000:15.99

f500:10.21
⠇

fi maps to a distinct 
triphone HMM state  



Decoding
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H C L G
Carefully construct a decoding graph D using optimization algorithms: 

D = min(det(H ⚬ det(C ⚬ det(L ⚬ G))))

Given a test utterance O, how do I decode it?  
Assuming ample compute, first construct the following machine X from O.

f0:10.

f1:14.

f1000:5.

f500:8.
⠇

f0:9.
f1:5.

f1000:15.

f500:11.
⠇

f0:19
f1:13

f1000:1

f500:20
⠇ …………

f0:18
f1:12

f1000:1

f500:10
⠇

X

W ⇤ = argmin
W=out[⇡]

X ⚬ D

where �  is a path in the composed FST  
�  is the output label sequence of �

π
out[π] π

X is never typically constructed; 
D is traversed dynamically using approximate search algorithms 

(discussed later in the semester)



Ngram LM Smoothing



Good-Turing Discounting

• Good-Turing discounting states that for any token that occurs r 
times, we should use an adjusted count r* = θ(r) = (r + 1)Nr+1/Nr  
where Nr is the number of tokens with r counts

• Good-Turing counts for unseen events: θ(0) = N1/N0

• For large r, many instances of Nr+1 = 0.  
          A solution: Smooth Nr using a best-fit power law  
                           once counts start getting small

• Good Turing discounting always used in conjunction with 
backoff or interpolation



Katz Backoff Smoothing

• For a Katz bigram model, let us define:

• Ψ(wi-1) = {w: π(wi-1,w) > 0}

• A bigram model with Katz smoothing can be written in terms 
of a unigram model as follows:

PKatz(wi|wi�1) =

(
⇡⇤(wi�1,wi)

⇡(wi�1)
if wi 2  (wi�1)

↵(wi�1)PKatz(wi) if wi 62  (wi�1)

where ↵(wi�1) =

⇣
1�

P
w2 (wi�1)

⇡⇤(wi�1,w)
⇡(wi�1)

⌘

P
wi 62 (wi�1)

PKatz(wi)



Absolute Discounting Interpolation
• Absolute discounting motivated by Good-Turing estimation

• Just subtract a constant d from the non-zero counts to get 
the discounted count

• Also involves linear interpolation with lower-order models

Prabs(wi|wi�1) =
max{⇡(wi�1, wi)� d, 0}

⇡(wi�1)
+ �(wi�1)Pr(wi)

• However, interpolation with unigram probabilities has its limitations

• Cue in, Kneser-Ney smoothing that replaces unigram probabilities (how  
often does the word occur) with continuation probabilities (how often is 
the word a continuation)



Kneser-Ney discounting

c.f., absolute discounting

PrKN(wi|wi�1) =
max{⇡(wi�1, wi)� d, 0}

⇡(wi�1)
+ �KN(wi�1)Prcont(wi)

Prabs(wi|wi�1) =
max{⇡(wi�1, wi)� d, 0}

⇡(wi�1)
+ �(wi�1)Pr(wi)

Consider an example: “Today I cooked some yellow curry”

Suppose π(yellow, curry) = 0.  Prabs[w | yellow ] = λ(yellow)Pr(w)

Now, say Pr[Francisco] >> Pr[curry], as San Francisco is very 
common in our corpus.

But Francisco is not as common a “continuation” (follows only San) 
as curry is (red curry, chicken curry, potato curry, …)

Moral: Should use probability of being a continuation!



Kneser-Ney discounting

where 

c.f., absolute discounting

PrKN(wi|wi�1) =
max{⇡(wi�1, wi)� d, 0}

⇡(wi�1)
+ �KN(wi�1)Prcont(wi)

Prabs(wi|wi�1) =
max{⇡(wi�1, wi)� d, 0}

⇡(wi�1)
+ �(wi�1)Pr(wi)

Prcont(wi) =
|�(wi)|
|B|

�(wi) = {wi�1 : ⇡(wi�1, wi) > 0}
B = {(wi�1, wi) : ⇡(wi�1, wi) > 0}
 (wi�1) = {wi : ⇡(wi�1, wi) > 0}

and �KN(wi�1) =
d

⇡(wi�1)
| (wi�1)|

d · | (wi�1)| · |�(wi)|
⇡(wi�1) · |B|



Midsem Exam

• September 17th, 2019 (Tuesday)

• Time: 8.30 am to 10.30 am

• Venue: CC 101, 103 and 105

• Closed book exam. Will allow 1 A4 (two-sided) sheet of notes.

• Can bring calculators to the exam hall.



Midsem Syllabus
• HMMs (Forward/Viterbi/Baum-Welch (EM) algorithms)
• Tied-state HMM models
• WFST algorithms
• WFSTs in ASR
• Feedforward NN-based acoustic models (Hybrid/Tandem/TDNNs)
• Language modeling (Ngram models + Smoothing techniques)
• There could be (no more than) one question on basic probability

• Topics covered in class that won’t appear in the exam:
• Basics of speech production
• Role of epsilon filters in composition
• RNN-based models



Question 1: Phone recogniser
Suppose you are building a simple ASR system which recognizes only four words bowl, bore, pour, 
poll involving five phones p, b, ow, l, r (with obvious pronunciations for the words). We are given a 
phone recognizer which converts a spoken word into a sequence of phones, which is known to have 
the following behaviour:

Phone p ow r b l

p 0.8 0 0 0.2 0

ow 0 1 0 0 0

r 0 0 0.6 0 0.4

b 0.2 0 0 0.8 0

l 0 0 0.4 0 0.6

The probability of recognizing a spoken phone x as a 
phone y is given in the row labeled by x and the 
column labeled by y. Let us assume a simple 
language model for our task: Pr(bowl) = 0.1, 
Pr(bore) = 0.4, Pr(pour) = 0.3 and Pr(poll) = 0.2. 
Determine the most likely word (and the 
corresponding probability) given that the output 
from the phone recognizer is “p ow l”.



Question 2: WFSTs for ASR

Recall the WFST-based framework for ASR that was described in class. Given a test utterance x, 
let  be a WFST over the tropical semiring (with weights specialized to the given utterance) such 
that decoding the utterance corresponds to finding the shortest path in . Suppose we modify  
by adding γ (> 0) to each arc in Dx that emits a word. Let’s call the resulting WFST . 

A) Describe informally, what effect increasing γ would have on the word sequence obtained by 
decoding � . 

B) Recall that decoding  was used as an approximation for  \argmax Pr(x|W) Pr(W). What would 
be the analogous expression for decoding from � ? 

Dx
Dx Dx

D′�x

D′�x

Dx
D′�x



Question 3: FSTs in ASR

Words in a language can be composed of sub-word units called morphemes. For simplicity, in this 
problem, we consider there to be three sets of morphemes, Vpre,Vstem and Vsuf – corresponding to 
prefixes, stems and suffixes. Further, we will assume that every word consists of a single stem, and 
zero or more prefixes and suffixes. That is, a word is of the form w=p1···pkσs1···sl where k,l≥0, and 
pi ∈ Vpre, si ∈ Vsuf and σ ∈ Vstem. For example, a word like fair consists of a single morpheme (a 
stem), where as the word unfairness is composed of three morphemes, un + fair + ness, which are a 
prefix, a stem and a suffix, respectively. 

A) Suppose we want to build an ASR system for a language using morphemes instead of words as 
the basic units of language. Which WFST(s) in the H ◦ C ◦ L ◦ G framework should be modified 
in order to utilize morphemes? 

B) Draw an FSA over morphemes (Vpre ∪Vstem ∪Vsuf) that accepts only words with at most four 
morphemes. Your FSA should not have more than 15 states. You may draw a single arc labeled 
with a set to indicate a collection of arcs, each labeled with an element in the set. 



Question 4: Probabilities in HMMs

Consider the HMM shown in the figure. (The transition probabilities are 
shown in the finite-state machine and the observation probabilities 
corresponding to each state are shown on the left.) This model generates 
hidden state sequences and observation sequences of length 4. If S1, S2, S3, 
S4 represent the hidden states and O1, O2, O3, O4 represent the 
observations, then Si ∈ {q1,...,q6} and Oi ∈ {a,b,c}. Pr(S1 = q1) = 1 i.e. the 
state sequence starts in q1. 

Problem 1: HMMs (25 points)

(A) Consider the HMM shown in the figure below. (The transition probabilities are shown in

the finite-state machine on the left and the observation probabilities corresponding to each

state are shown on the right.) This model generates hidden state sequences and observation

sequences of length 4. If S1, S2, S3, S4 represent the hidden states and O1, O2, O3, O4 represent

the observations, then Si 2 {q1, . . . , q6} and Oi 2 {a, b, c}. Pr(S1 = q1) = 1 i.e. the state

sequence starts in q1.

q1 q2 q3 q6

0.1

0.5 q4 q5

0.8

0.90.5

1

1
a b c

q1 0.5 0.3 0.2
q2 0.3 0.4 0.3
q3 0.2 0.1 0.7
q4 0.4 0.5 0.1
q5 0.3 0.3 0.4
q6 0.9 0 0.1

0.2

State whether the following three statements are true or false and justify your responses. If

the statement is false, then state how the left expression is related to the right expression,

using either =,< or > operators. (We use the following shorthand in the statements below:

Pr(O = abbc) denotes Pr(O1 = a,O2 = b, O3 = b, O4 = c). [15 points]

(i) Pr(O = bbca, S1 = q1, S4 = q6) = Pr(O = bbca|S1 = q1, S4 = q6)
Ans: True, because Pr(S1 = q1, S4 = q6) = 1.

(ii) Pr(O = acac, S2 = q2, S3 = q5) > Pr(O = acac, S2 = q4, S3 = q3)
Ans: True. Pr(O = acac, S2 = q2, S3 = q5) = K⇥ 0.09 and Pr(O = acac, S2 = q4, S3 = q3) =
K ⇥ 0.04.

(iii) Pr(O = cbcb|S2 = q2, S3 = q5) = Pr(O = baac, S2 = q4, S3 = q5)
Ans: False. Pr(O4 = b|S4 = q6) = 0. Therefore, Pr(O = cbcb|S2 = q2, S3 = q5) < Pr(O =

baac, S2 = q4, S3 = q5).

1

State whether the following three statements are true or false and justify your responses. If the statement is 
false, then state how the left expression is related to the right expression, using either =,< or > operators. (We 
use the following shorthand in the statements below: Pr(O = abbc) denotes Pr(O1 = a,O2 = b,O3 = b,O4 = c) 

A) Pr(O = bbca, S1 = q1, S4 = q6) = Pr(O = bbca | S1 = q1, S4 = q6) 
B) Pr(O = acac, S2 = q2, S3 = q5) > Pr(O = acac, S2 = q4, S3 = q3)
C) Pr(O = cbcb | S2 = q2, S3 = q5) = Pr(O = baac, S2 = q4, S3 = q5)



Question 5: HMM training

Suppose we are given N observation sequences, Xi, i = 1 to N where each Xi is a sequence 
 of length Ti where  is an acoustic vector ∈ Rd. To estimate the parameters of an 

HMM with Gaussian output probabilities from this data, the Baum-Welch EM algorithm uses 
empirical estimates  for the probability of being in state s at time t and sʹ at time t + 1 given 
the observation sequence Xi and  for the probability of occupying state s at time t given Xi. 

In a variant of EM known as Viterbi training, for each i, one computes the single most likely state 
sequence  for  Xi  by Viterbi  decoding,  and defines  and  assuming that  Xi  was 
produced deterministically by this path. Give the expressions for �  and �  in this case. 

(x1
i , …, xTi

i ) xt
i

ξi,t(s, s′�)
γi,t(s)

S1
i , …, STi

i ξi,t γi,t
ξi,t(s, s′�) γi,t(s)


