
Instructor: Preethi Jyothi

(R)NN-based Language Models

Lecture 12

CS 753

Word representations in Ngram models

• In standard Ngram models, words are represented in the
discrete space involving the vocabulary

• Limits the possibility of truly interpolating probabilities of
unseen Ngrams

• Can we build a representation for words in the continuous
space?

Word representations

• 1-hot representation:

• Each word is given an index in {1, … , V}. The 1-hot vector  
fi ∈ RV contains zeros everywhere except for the ith dimension
being 1

• 1-hot form, however, doesn’t encode information about word
similarity

• Distributed (or continuous) representation: Each word is associated
with a dense vector. Based on the “distributional hypothesis”.  
E.g. dog → {-0.02, -0.37, 0.26, 0.25, -0.11, 0.34}

Word embeddings

• These distributed representations in a continuous space are
also referred to as “word embeddings”

• Low dimensional
• Similar words will have similar vectors

• Word embeddings capture semantic properties (such as
man is to woman as boy is to girl, etc.) and morphological
properties (glad is similar to gladly, etc.)

[C01]: Collobert et al.,01

Word embeddings

Relationships learned from embeddings

[M13]: Mikolov et al.,13

Bilingual embeddings

[S13]: Socher et al.,13

Word embeddings

• These distributed representations in a continuous space are
also referred to as “word embeddings”

• Low dimensional
• Similar words will have similar vectors

• Word embeddings capture semantic properties (such as
man is to woman as boy is to girl, etc.) and morphological
properties (glad is similar to gladly, etc.)

• The word embeddings could be learned via the first layer of
a neural network [B03].

[B03]: Bengio et al., “A neural probabilistic LM”, JMLR, 03

Word embeddings

• Introduced the architecture that
forms the basis of all current neural
language and word embedding
models

• Embedding layer

• One or more middle/hidden layers

• Softmax output layer

[B03]: Bengio et al., “A neural probabilistic LM”, JMLR, 03

Continuous space language models
3 Continuous Space Language Models

The architecture of the neural network LM is
shown in Figure 2. A standard fully-connected
multi-layer perceptron is used. The inputs to
the neural network are the indices of the n�1
previous words in the vocabulary hj=wj�n+1,
. . . , wj�2, wj�1 and the outputs are the posterior
probabilities of all words of the vocabulary:

P (wj = i|hj) �i � [1, N] (2)

where N is the size of the vocabulary. The input
uses the so-called 1-of-n coding, i.e., the ith word
of the vocabulary is coded by setting the ith ele-
ment of the vector to 1 and all the other elements
to 0. The ith line of the N � P dimensional pro-
jection matrix corresponds to the continuous rep-
resentation of the ith word. Let us denote cl these
projections, dj the hidden layer activities, oi the
outputs, pi their softmax normalization, and mjl,
bj , vij and ki the hidden and output layer weights
and the corresponding biases. Using these nota-
tions, the neural network performs the following
operations:

dj = tanh
�

�

l

mjl cl + bj

�

(3)

oi =
�

j

vij dj + ki (4)

pi = eoi /
N�

r=1

eor (5)

The value of the output neuron pi corresponds di-
rectly to the probability P (wj = i|hj). Training is
performed with the standard back-propagation al-
gorithm minimizing the following error function:

E =
N�

i=1

ti log pi + �

�

�
�

jl

m2
jl +

�

ij

v2
ij

�

� (6)

where ti denotes the desired output, i.e., the prob-
ability should be 1.0 for the next word in the train-
ing sentence and 0.0 for all the other ones. The
first part of this equation is the cross-entropy be-
tween the output and the target probability dis-
tributions, and the second part is a regulariza-
tion term that aims to prevent the neural network
from overfitting the training data (weight decay).
The parameter � has to be determined experimen-
tally. Training is done using a resampling algo-
rithm (Schwenk and Gauvain, 2005).

projection
layer hidden

layer

output
layerinput

projections
shared

LM probabilities
for all words

probability estimation

Neural Network

discrete
representation:

indices in wordlist

continuous
representation:

P dimensional vectors

N

wj�1 P

H

N

P (wj=1|hj)
wj�n+1

wj�n+2

P (wj=i|hj)

P (wj=N|hj)

cl

oiM

Vdj

p1 =

pN =

pi =

Figure 2: Architecture of the continuous space
LM. hj denotes the context wj�n+1, . . . , wj�1. P
is the size of one projection and H ,N is the size
of the hidden and output layer respectively. When
short-lists are used the size of the output layer is
much smaller then the size of the vocabulary.

It can be shown that the outputs of a neural net-
work trained in this manner converge to the poste-
rior probabilities. Therefore, the neural network
directly minimizes the perplexity on the train-
ing data. Note also that the gradient is back-
propagated through the projection-layer, which
means that the neural network learns the projec-
tion of the words onto the continuous space that is
best for the probability estimation task.
The complexity to calculate one probability

with this basic version of the neural network LM is
quite high due to the large output layer. To speed
up the processing several improvements were used
(Schwenk, 2004):

1. Lattice rescoring: the statistical machine
translation decoder generates a lattice using
a 3-gram back-off LM. The neural network
LM is then used to rescore the lattice.

2. Shortlists: the neural network is only used to
predict the LM probabilities of a subset of the
whole vocabulary.

3. Efficient implementation: collection of all
LM probability requests with the same con-
text ht in one lattice, propagation of several
examples at once through the neural network
and utilization of libraries with CPU opti-
mized matrix-operations.

The idea behind short-lists is to use the neural

726

[S06]: Schwenk et al., “Continuous space language models for SMT”, ACL, 06

NN language model

• Project all the words of the
context hj = wj-n+1,…,wj-1 to
their dense forms

• Then, calculate the
language model probability
Pr(wj =i| hj) for the given
context hj

3 Continuous Space Language Models

The architecture of the neural network LM is
shown in Figure 2. A standard fully-connected
multi-layer perceptron is used. The inputs to
the neural network are the indices of the n�1
previous words in the vocabulary hj=wj�n+1,
. . . , wj�2, wj�1 and the outputs are the posterior
probabilities of all words of the vocabulary:

P (wj = i|hj) �i � [1, N] (2)

where N is the size of the vocabulary. The input
uses the so-called 1-of-n coding, i.e., the ith word
of the vocabulary is coded by setting the ith ele-
ment of the vector to 1 and all the other elements
to 0. The ith line of the N � P dimensional pro-
jection matrix corresponds to the continuous rep-
resentation of the ith word. Let us denote cl these
projections, dj the hidden layer activities, oi the
outputs, pi their softmax normalization, and mjl,
bj , vij and ki the hidden and output layer weights
and the corresponding biases. Using these nota-
tions, the neural network performs the following
operations:

dj = tanh
�

�

l

mjl cl + bj

�

(3)

oi =
�

j

vij dj + ki (4)

pi = eoi /
N�

r=1

eor (5)

The value of the output neuron pi corresponds di-
rectly to the probability P (wj = i|hj). Training is
performed with the standard back-propagation al-
gorithm minimizing the following error function:

E =
N�

i=1

ti log pi + �

�

�
�

jl

m2
jl +

�

ij

v2
ij

�

� (6)

where ti denotes the desired output, i.e., the prob-
ability should be 1.0 for the next word in the train-
ing sentence and 0.0 for all the other ones. The
first part of this equation is the cross-entropy be-
tween the output and the target probability dis-
tributions, and the second part is a regulariza-
tion term that aims to prevent the neural network
from overfitting the training data (weight decay).
The parameter � has to be determined experimen-
tally. Training is done using a resampling algo-
rithm (Schwenk and Gauvain, 2005).

projection
layer hidden

layer

output
layerinput

projections
shared

LM probabilities
for all words

probability estimation

Neural Network

discrete
representation:

indices in wordlist

continuous
representation:

P dimensional vectors

N

wj�1 P

H

N

P (wj=1|hj)
wj�n+1

wj�n+2

P (wj=i|hj)

P (wj=N|hj)

cl

oiM

Vdj

p1 =

pN =

pi =

Figure 2: Architecture of the continuous space
LM. hj denotes the context wj�n+1, . . . , wj�1. P
is the size of one projection and H ,N is the size
of the hidden and output layer respectively. When
short-lists are used the size of the output layer is
much smaller then the size of the vocabulary.

It can be shown that the outputs of a neural net-
work trained in this manner converge to the poste-
rior probabilities. Therefore, the neural network
directly minimizes the perplexity on the train-
ing data. Note also that the gradient is back-
propagated through the projection-layer, which
means that the neural network learns the projec-
tion of the words onto the continuous space that is
best for the probability estimation task.
The complexity to calculate one probability

with this basic version of the neural network LM is
quite high due to the large output layer. To speed
up the processing several improvements were used
(Schwenk, 2004):

1. Lattice rescoring: the statistical machine
translation decoder generates a lattice using
a 3-gram back-off LM. The neural network
LM is then used to rescore the lattice.

2. Shortlists: the neural network is only used to
predict the LM probabilities of a subset of the
whole vocabulary.

3. Efficient implementation: collection of all
LM probability requests with the same con-
text ht in one lattice, propagation of several
examples at once through the neural network
and utilization of libraries with CPU opti-
mized matrix-operations.

The idea behind short-lists is to use the neural

726

NN language model

• Dense vectors of all the words in
context are concatenated forming
the first hidden layer of the neural
network

• Second hidden layer:

 dj = tanh(Σmjlcl + bj) ∀j = 1, …, H

• Output layer:

 oi = Σvijdj + b’i ∀i = 1, …, N

• pi → softmax output from the ith
neuron → Pr(wj = i | hj)

3 Continuous Space Language Models

The architecture of the neural network LM is
shown in Figure 2. A standard fully-connected
multi-layer perceptron is used. The inputs to
the neural network are the indices of the n�1
previous words in the vocabulary hj=wj�n+1,
. . . , wj�2, wj�1 and the outputs are the posterior
probabilities of all words of the vocabulary:

P (wj = i|hj) �i � [1, N] (2)

where N is the size of the vocabulary. The input
uses the so-called 1-of-n coding, i.e., the ith word
of the vocabulary is coded by setting the ith ele-
ment of the vector to 1 and all the other elements
to 0. The ith line of the N � P dimensional pro-
jection matrix corresponds to the continuous rep-
resentation of the ith word. Let us denote cl these
projections, dj the hidden layer activities, oi the
outputs, pi their softmax normalization, and mjl,
bj , vij and ki the hidden and output layer weights
and the corresponding biases. Using these nota-
tions, the neural network performs the following
operations:

dj = tanh
�

�

l

mjl cl + bj

�

(3)

oi =
�

j

vij dj + ki (4)

pi = eoi /
N�

r=1

eor (5)

The value of the output neuron pi corresponds di-
rectly to the probability P (wj = i|hj). Training is
performed with the standard back-propagation al-
gorithm minimizing the following error function:

E =
N�

i=1

ti log pi + �

�

�
�

jl

m2
jl +

�

ij

v2
ij

�

� (6)

where ti denotes the desired output, i.e., the prob-
ability should be 1.0 for the next word in the train-
ing sentence and 0.0 for all the other ones. The
first part of this equation is the cross-entropy be-
tween the output and the target probability dis-
tributions, and the second part is a regulariza-
tion term that aims to prevent the neural network
from overfitting the training data (weight decay).
The parameter � has to be determined experimen-
tally. Training is done using a resampling algo-
rithm (Schwenk and Gauvain, 2005).

projection
layer hidden

layer

output
layerinput

projections
shared

LM probabilities
for all words

probability estimation

Neural Network

discrete
representation:

indices in wordlist

continuous
representation:

P dimensional vectors

N

wj�1 P

H

N

P (wj=1|hj)
wj�n+1

wj�n+2

P (wj=i|hj)

P (wj=N|hj)

cl

oiM

Vdj

p1 =

pN =

pi =

Figure 2: Architecture of the continuous space
LM. hj denotes the context wj�n+1, . . . , wj�1. P
is the size of one projection and H ,N is the size
of the hidden and output layer respectively. When
short-lists are used the size of the output layer is
much smaller then the size of the vocabulary.

It can be shown that the outputs of a neural net-
work trained in this manner converge to the poste-
rior probabilities. Therefore, the neural network
directly minimizes the perplexity on the train-
ing data. Note also that the gradient is back-
propagated through the projection-layer, which
means that the neural network learns the projec-
tion of the words onto the continuous space that is
best for the probability estimation task.
The complexity to calculate one probability

with this basic version of the neural network LM is
quite high due to the large output layer. To speed
up the processing several improvements were used
(Schwenk, 2004):

1. Lattice rescoring: the statistical machine
translation decoder generates a lattice using
a 3-gram back-off LM. The neural network
LM is then used to rescore the lattice.

2. Shortlists: the neural network is only used to
predict the LM probabilities of a subset of the
whole vocabulary.

3. Efficient implementation: collection of all
LM probability requests with the same con-
text ht in one lattice, propagation of several
examples at once through the neural network
and utilization of libraries with CPU opti-
mized matrix-operations.

The idea behind short-lists is to use the neural

726

NN language model

• Model is trained to minimise the following loss function:

• Here, ti is the target output 1-hot vector (1 for next word in
the training instance, 0 elsewhere)

• First part: Cross-entropy between the target distribution and
the distribution estimated by the NN

• Second part: Regularization term

L =
NX

i=1

ti log pi + ✏

X

kl

m2
kl +

X

ik

v2ik

!

Decoding with NN LMs

• Two main techniques used to make the NN LM tractable for
large vocabulary ASR systems:

1. Lattice rescoring

2. Shortlists

Use NN language model via lattice rescoring

• Lattice — Graph of possible word sequences from the ASR system using an
Ngram backoff LM

• Each lattice arc has both acoustic/language model scores.
• LM scores on the arcs are replaced by scores from the NN LM

Decoding with NN LMs

• Two main techniques used to make the NN LM tractable for
large vocabulary ASR systems:

1. Lattice rescoring

2. Shortlists

Shortlist

• Softmax normalization of the output layer is an expensive
operation esp. for large vocabularies

• Solution: Limit the output to the s most frequent words.

• LM probabilities of words in the short-list are calculated by
the NN

• LM probabilities of the remaining words are from Ngram
backoff models

Results

and 347 M words of broadcast news data. The word list consists of 50 k words. All available data was used to
train the language model of the third system: 27.3 M words of in-domain (complete release of Fisher data) and
901 M words of broadcast news. The acoustic model was trained on 450 h. The word list consists of 51 k words.

The neural network language model was trained on the in-domain data only (CTS corpora). Two types of
experiments were conducted for all three systems:

(1) The neural network language model was interpolated with a back-off language model that was also
trained on the CTS corpora only and compared to this CTS back-off language model.

(2) The neural network language model was interpolated with the full back-off language model (trained on
CTS and BN data) and compared to this full language model.

The first experiment allows us to assess the real benefit of the neural language model since the two smooth-
ing approaches (back-off and hybrid) are compared on the same data. In the second experiment all the avail-
able data was used for the back-off model to obtain the overall best results. The perplexities of the hybrid and
the back-off language model are given in Table 3.

A perplexity reduction of about 9% relative is obtained independently of the size of the language model
training data. This gain decreases to approximately 6% after interpolation with the back-off language model
trained on the additional BN corpus of out-of domain data. It can be seen that the perplexity of the hybrid
language model trained only on the CTS data is better than that of the back-off reference language model
trained on all of the data (45.5 with respect to 47.5). Despite these rather small gains in perplexity, consistent
word error reductions were observed (see Fig. 4).

Although the size of the language model training data has almost quadrupled from 7.2 M to 27.3 M words,
use of the hybrid language model resulted in a consistent absolute word error reduction of about 0.5%. In all
of these experiments, it seems that the word error reductions achieved by the hybrid language model are inde-
pendent of the other improvements, in particular those obtained by better acoustic modeling and by adding

Table 3
Perplexities on the 2003 evaluation data for the back-off and the hybrid LM as a function of the size of the CTS training data

CTS corpus (words) 7.2 M 12.3 M 27.3 M

In-domain data only
Back-off LM 62.4 55.9 50.1
Hybrid LM 57.0 50.6 45.5

Interpolated with all data
Back-off LM 53.0 51.1 47.5
Hybrid LM 50.8 48.0 44.2

 18

 20

 22

 24

 26

 28

27.3M12.3M7.2M

E
va

l0
3

w
or

d
er

ro
r r

at
e

in-domain LM training corpus size

25.27%

23.04%

19.94%

24.09%

22.32%

19.30%

24.51%

22.19%

19.10%

23.70%

21.77%

18.85%

System 1

System 2

System 3

backoff LM, CTS data
 hybrid LM, CTS data

backoff LM, CTS+BN data
 hybrid LM, CTS+BN data

Fig. 4. Word error rates on the 2003 evaluation test set for the back-off LM and the hybrid LM, trained only on CTS data (left bars for
each system) and interpolated with the broadcast news LM (right bars for each system).

H. Schwenk / Computer Speech and Language 21 (2007) 492–518 505

and 347 M words of broadcast news data. The word list consists of 50 k words. All available data was used to
train the language model of the third system: 27.3 M words of in-domain (complete release of Fisher data) and
901 M words of broadcast news. The acoustic model was trained on 450 h. The word list consists of 51 k words.

The neural network language model was trained on the in-domain data only (CTS corpora). Two types of
experiments were conducted for all three systems:

(1) The neural network language model was interpolated with a back-off language model that was also
trained on the CTS corpora only and compared to this CTS back-off language model.

(2) The neural network language model was interpolated with the full back-off language model (trained on
CTS and BN data) and compared to this full language model.

The first experiment allows us to assess the real benefit of the neural language model since the two smooth-
ing approaches (back-off and hybrid) are compared on the same data. In the second experiment all the avail-
able data was used for the back-off model to obtain the overall best results. The perplexities of the hybrid and
the back-off language model are given in Table 3.

A perplexity reduction of about 9% relative is obtained independently of the size of the language model
training data. This gain decreases to approximately 6% after interpolation with the back-off language model
trained on the additional BN corpus of out-of domain data. It can be seen that the perplexity of the hybrid
language model trained only on the CTS data is better than that of the back-off reference language model
trained on all of the data (45.5 with respect to 47.5). Despite these rather small gains in perplexity, consistent
word error reductions were observed (see Fig. 4).

Although the size of the language model training data has almost quadrupled from 7.2 M to 27.3 M words,
use of the hybrid language model resulted in a consistent absolute word error reduction of about 0.5%. In all
of these experiments, it seems that the word error reductions achieved by the hybrid language model are inde-
pendent of the other improvements, in particular those obtained by better acoustic modeling and by adding

Table 3
Perplexities on the 2003 evaluation data for the back-off and the hybrid LM as a function of the size of the CTS training data

CTS corpus (words) 7.2 M 12.3 M 27.3 M

In-domain data only
Back-off LM 62.4 55.9 50.1
Hybrid LM 57.0 50.6 45.5

Interpolated with all data
Back-off LM 53.0 51.1 47.5
Hybrid LM 50.8 48.0 44.2

 18

 20

 22

 24

 26

 28

27.3M12.3M7.2M

E
va

l0
3

w
or

d
er

ro
r r

at
e

in-domain LM training corpus size

25.27%

23.04%

19.94%

24.09%

22.32%

19.30%

24.51%

22.19%

19.10%

23.70%

21.77%

18.85%

System 1

System 2

System 3

backoff LM, CTS data
 hybrid LM, CTS data

backoff LM, CTS+BN data
 hybrid LM, CTS+BN data

Fig. 4. Word error rates on the 2003 evaluation test set for the back-off LM and the hybrid LM, trained only on CTS data (left bars for
each system) and interpolated with the broadcast news LM (right bars for each system).

H. Schwenk / Computer Speech and Language 21 (2007) 492–518 505

[S07]: Schwenk et al., “Continuous space language models”, CSL, 07

word2vec (to learn word embeddings)

Image from: Mikolov et al., “Efficient Estimation of Word Representations in Vector Space”, ICLR 13

Continuous bag-of-words
CBOW Skip-gram

Bias in word embeddings

Image from:http://wordbias.umiacs.umd.edu/

Longer word context?

• What have we seen so far: A feedforward NN used to
compute an Ngram probability Pr(wj = i∣hj) (where hj

encodes the Ngram history)

• We know Ngrams are limiting:  
Alice who had attempted the assignment asked the lecturer

• How can we predict the next word based on the entire
sequence of preceding words? Use recurrent neural
networks (RNNs)

Simple RNN language model

Recurrent neural network based language model

Tomáš Mikolov
1,2

, Martin Karafiát
1
, Lukáš Burget

1
, Jan “Honza” Černocký

1
, Sanjeev Khudanpur

2

1Speech@FIT, Brno University of Technology, Czech Republic
2 Department of Electrical and Computer Engineering, Johns Hopkins University, USA

{imikolov,karafiat,burget,cernocky}@fit.vutbr.cz, khudanpur@jhu.edu

Abstract

A new recurrent neural network based language model (RNN
LM) with applications to speech recognition is presented. Re-
sults indicate that it is possible to obtain around 50% reduction
of perplexity by using mixture of several RNN LMs, compared
to a state of the art backoff language model. Speech recognition
experiments show around 18% reduction of word error rate on
the Wall Street Journal task when comparing models trained on
the same amount of data, and around 5% on the much harder
NIST RT05 task, even when the backoff model is trained on
much more data than the RNN LM. We provide ample empiri-
cal evidence to suggest that connectionist language models are
superior to standard n-gram techniques, except their high com-
putational (training) complexity.
Index Terms: language modeling, recurrent neural networks,
speech recognition

1. Introduction

Sequential data prediction is considered by many as a key prob-
lem in machine learning and artificial intelligence (see for ex-
ample [1]). The goal of statistical language modeling is to
predict the next word in textual data given context; thus we
are dealing with sequential data prediction problem when con-
structing language models. Still, many attempts to obtain such
statistical models involve approaches that are very specific for
language domain - for example, assumption that natural lan-
guage sentences can be described by parse trees, or that we
need to consider morphology of words, syntax and semantics.
Even the most widely used and general models, based on n-
gram statistics, assume that language consists of sequences of
atomic symbols - words - that form sentences, and where the
end of sentence symbol plays important and very special role.

It is questionable if there has been any significant progress
in language modeling over simple n-gram models (see for ex-
ample [2] for review of advanced techniques). If we would mea-
sure this progress by ability of models to better predict sequen-
tial data, the answer would be that considerable improvement
has been achieved - namely by introduction of cache models
and class-based models. While many other techniques have
been proposed, their effect is almost always similar to cache
models (that describe long context information) or class-based
models (that improve parameter estimation for short contexts by
sharing parameters between similar words).

If we would measure success of advanced language model-
ing techniques by their application in practice, we would have
to be much more skeptical. Language models for real-world
speech recognition or machine translation systems are built on
huge amounts of data, and popular belief says that more data
is all we need. Models coming from research tend to be com-

INPUT(t) OUTPUT(t)

CONTEXT(t)

CONTEXT(t-1)

Figure 1: Simple recurrent neural network.

plex and often work well only for systems based on very limited
amounts of training data. In fact, most of the proposed advanced
language modeling techniques provide only tiny improvements
over simple baselines, and are rarely used in practice.

2. Model description

We have decided to investigate recurrent neural networks for
modeling sequential data. Using artificial neural networks in
statistical language modeling has been already proposed by
Bengio [3], who used feedforward neural networks with fixed-
length context. This approach was exceptionally successful
and further investigation by Goodman [2] shows that this sin-
gle model performs better than mixture of several other models
based on other techniques, including class-based model. Later,
Schwenk [4] has shown that neural network based models pro-
vide significant improvements in speech recognition for several
tasks against good baseline systems.

A major deficiency of Bengio’s approach is that a feedfor-
ward network has to use fixed length context that needs to be
specified ad hoc before training. Usually this means that neural
networks see only five to ten preceding words when predicting
the next one. It is well known that humans can exploit longer
context with great success. Also, cache models provide comple-
mentary information to neural network models, so it is natural
to think about a model that would encode temporal information
implicitly for contexts with arbitrary lengths.

Recurrent neural networks do not use limited size of con-
text. By using recurrent connections, information can cycle in-

Copyright © 2010 ISCA 26 -30 September 2010, Makuhari, Chiba, Japan

INTERSPEECH 2010

1045

• Current word, xt 
Hidden state, st  
Output, yt

Image from: Mikolov et al., “Recurrent neural network based language model”, Interspeech 10

• RNN is trained using the  
cross-entropy criterion

st = f(Uxt +Wst�1)

ot = softmax(V st)

U V

W

RNN-LMs

• Optimizations used for NNLMs are relevant to RNN-LMs as
well (rescoring Nbest lists or lattices, using a shortlist, etc.)

• Perplexity reductions over Kneser-Ney models: Table 1: Performance of models on WSJ DEV set when increas-

ing size of training data.

Model # words PPL WER
KN5 LM 200K 336 16.4
KN5 LM + RNN 90/2 200K 271 15.4
KN5 LM 1M 287 15.1
KN5 LM + RNN 90/2 1M 225 14.0
KN5 LM 6.4M 221 13.5
KN5 LM + RNN 250/5 6.4M 156 11.7

where Crare is number of words in the vocabulary that occur
less often than the threshold. All rare words are thus treated
equally, ie. probability is distributed uniformly between them.

Schwenk [4] describes several possible approaches that can
be used for further performance improvements. Additional pos-
sibilities are also discussed in [10][11][12] and most of them
can be applied also to RNNs. For comparison, it takes around 6
hours for our basic implementation to train RNN model based
on Brown corpus (800K words, 100 hidden units and vocab-
ulary threshold 5), while Bengio reports 113 days for basic
implementation and 26 hours with importance sampling [10],
when using similar data and size of neural network. We use
only BLAS library to speed up computation.

3. WSJ experiments

To evaluate performance of simple recurrent neural network
based language model, we have selected several standard
speech recognition tasks. First we report results after rescor-
ing 100-best lists from DARPA WSJ’92 and WSJ’93 data sets
- the same data sets were used by Xu [8] and Filimonov [9].
Oracle WER is 6.1% for dev set and 9.5% for eval set. Training
data for language model are the same as used by Xu [8].

The training corpus consists of 37M words from NYT sec-
tion of English Gigaword. As it is very time consuming to train
RNN LM on large data, we have used only up to 6.4M words
for training RNN models (300K sentences) - it takes several
weeks to train the most complex models. Perplexity is evalu-
ated on held-out data (230K words). Also, we report results
for combined models - linear interpolation with weight 0.75 for
RNN LM and 0.25 for backoff LM is used in all these experi-
ments. In further experiments, we denote modified Kneser-Ney
smoothed 5-gram as KN5. Configurations of neural network
LMs, such as RNN 90/2, indicate that the hidden layer size is
90 and threshold for merging words to rare token is 2. To cor-
rectly rescore n-best lists with backoff models that are trained
on subset of data used by recognizer, we use open vocabulary
language models (unknown words are assigned small probabil-
ity). To improve results, outputs from various RNN LMs with
different architectures can be linearly interpolated (diversity is
also given by random weight initialization).

The results, reported in Tables 1 and 2, are by no means
among the largest improvements reported for the WSJ task ob-
tained just by changing the language modeling technique. The
improvement keeps getting larger with increasing training data,
suggesting that even larger improvements may be achieved sim-
ply by using more data. As shown in Table 2, WER reduc-
tion when using mixture of 3 dynamic RNN LMs against 5-
gram with modified Kneser-Ney smoothing is about 18%. Also,
perplexity reductions are one of the largest ever reported, al-
most 50% when comparing KN 5gram and mixture of 3 dy-

Table 2: Comparison of various configurations of RNN LMs

and combinations with backoff models while using 6.4M words

in training data (WSJ DEV).

PPL WER
Model RNN RNN+KN RNN RNN+KN
KN5 - baseline - 221 - 13.5
RNN 60/20 229 186 13.2 12.6
RNN 90/10 202 173 12.8 12.2
RNN 250/5 173 155 12.3 11.7
RNN 250/2 176 156 12.0 11.9
RNN 400/10 171 152 12.5 12.1
3xRNN static 151 143 11.6 11.3
3xRNN dynamic 128 121 11.3 11.1

Table 3: Comparison of WSJ results obtained with various mod-

els. Note that RNN models are trained just on 6.4M words.

Model DEV WER EVAL WER
Lattice 1 best 12.9 18.4
Baseline - KN5 (37M) 12.2 17.2
Discriminative LM [8] (37M) 11.5 16.9
Joint LM [9] (70M) - 16.7
Static 3xRNN + KN5 (37M) 11.0 15.5
Dynamic 3xRNN + KN5 (37M) 10.7 16.34

namic RNN LMs - actually, by mixing static and dynamic RNN
LMs with larger learning rate used when processing testing data
(↵ = 0.3), the best perplexity result was 112.

All LMs in the preceding experiments were trained on only
6.4M words, which is much less than the amount of data used
by others for this task. To provide a comparison with Xu [8] and
Filimonov [9], we have used 37M words based backoff model
(the same data were used by Xu, Filimonov used 70M words).
Results are reported in Table 3, and we can conclude that RNN
based models can reduce WER by around 12% relatively, com-
pared to backoff model trained on 5x more data3.

4. NIST RT05 experiments

While previous experiments show very interesting improve-
ments over a fair baseline, a valid criticism would be that the
acoustic models used in those experiments are far from state
of the art, and perhaps obtaining improvements in such cases
is easier than improving well tuned system. Even more crucial
is the fact that 37M or 70M words used for training baseline
backoff models is by far less than what is possible for the task.

To show that it is possible to obtain meaningful improve-
ments in state of the art system, we experimented with lattices
generated by AMI system used for NIST RT05 evaluation [13].
Test data set was NIST RT05 evaluation on independent headset
condition.

The acoustic HMMs are based on cross-word tied-states tri-
phones trained discriminatively using MPE criteria. Feature ex-

3We have also tried to combine RNN models and discriminatively
trained LMs [8], with no significant improvement.

4Apparently strange result obtained with dynamic models on eval-
uation set is probably due to the fact that sentences in eval set do not
follow each other. As dynamic changes in model try to capture longer
context information between sentences, sentences must be presented
consecutively to dynamic models.

1047

Image from: Mikolov et al., “Recurrent neural network based language model”, Interspeech 10

LSTM-LMs

ing units. The final unit is depicted in Fig. 1, where we have
included two modifications of the original LSTM unit proposed
in [12] and [13].

Figure 1: LSTM memory cell with gating units

A standard neural network unit i only consists of the input
activation ai and the output activation bi which are related—
when a tanh activation function is used—by

bi = tanh(ai).

The LSTM unit adds several intermediate steps: After applying
the activation function to ai, the result is multiplied by a fac-
tor b◆. Then the inner activation value of the previous time step,
multiplied by the quantity b� is added due to the recurrent self-
connection. Finally, the result is scaled by b! and fed to another
activation function, yielding bi. The factors b◆, b�, b! 2 (0, 1),
indicated by the small white circles, are controlled by additional
units (depicted as blue circles) called input, output, and forget
gate, respectively. The gating units sum the activations of the
previous hidden layer and the activations of the current layer
from the previous time step as well as the inner activation of
the LSTM unit. The resulting value is squashed by a logistic
sigmoid function which then is set to b◆, b�, or b! , respectively.

For brevity, we omit the rather extensive equations describ-
ing the LSTM network. These can be found e. g. in [14]1.

The whole LSTM unit including the gating units may be in-
terpreted as a differentiable version of computer memory ([14]).
For this reason, LSTM units sometimes are also referred to as
LSTM memory cells. Whether one adheres to the proposed in-
terpretation of the gating units or not, the LSTM architecture
solves the vanishing gradient problem at small computational
extra-costs. In addition, it has the desirable property of includ-
ing standard recurrent neural network units as a special case.

3. Neural network language models
Although there are several differences in the neural network lan-
guage models that have been successfully applied so far, all of
them share some basic principles:

• The input words are encoded by 1-of-K coding where K
is the number of words in the vocabulary.

• At the output layer, a softmax activation function is used
to produce correctly normalized probability values.

1As opposed to our LSTM version, in [14] the gating units do not
receive the activations of the previous hidden layer

• As training criterion the cross entropy error is used
which is equivalent to maximum likelihood.

We also follow this approach. It is generally advised to normal-
ize the input data of a neural network ([15]) which means that a
linear transformation is applied so that the data have zero mean
and unit variance. When using 1-of-K coding, this is obviously
not the case.

Giving up the sparseness of the input features (which is usu-
ally exploited to speed up matrix computations, cf. [16]), the
data can easily be normalized because there exist closed-form
solutions for the mean and variance of the 1-of-K encoded input
features that depend only on the unigram counts of the words
observed in the training data. On the contrary we observed that
convergence was considerably slowed down by normalization.
It seems that it suffices when the input data in each dimension
lie in the same [0, 1] range.

As the input features are highly correlated (e. g., we have
xi = 1 �

P
i 6=j xi) for the i-th dimension of an input vari-

able x), applying a whitening transform to the features appears
to be more promising. Because of the high dimensionality, this
seems practically unfeasible.

Regarding the network topology, in [6] a single recurrent
hidden layer was used, while in [3] an architecture with two
hidden layers was applied, the first layer having the interpreta-
tion of projecting the input words to a continuous space. In a
similar spirit, we stick to the topology shown in Fig. 2 where
we plug in LSTM units into the second recurrent layer, combin-
ing it with different projection layers of standard neural network
units.

Figure 2: Neural network LM architecture

For large-vocabulary language modeling, training is
strongly dominated by the computation of the input activa-
tions ai of the softmax output layer which in contrast to the
input layer is not sparse:

ai =
JX

j=1

!ijbj .

Here, J denotes the number of nodes in the last hidden layer,
!ij are the weights between the last hidden layer and the output
layer, and i = 1, . . . , V , where V is the vocabulary size.

To reduce the computational effort, in [17] (following an
idea from [18]), it was proposed to split the words into a set of
disjoint word classes. Then the probability p(wm|wm�1

1) can
be factorized as follows:

p(wm|wm�1
1) = p

�
wm|c(wm), wm�1

1

�
p
�
c(wm)|wm�1

1

�

• Vanilla RNN-LMs
unlikely to show full
potential of recurrent
models due to
issues like vanishing
gradients

• LSTM-LMs: Similar
to RNN-LMs except
use LSTM units in
the 2nd hidden
(recurrent) layer

Image from: Sundermeyer et al., “LSTM NNs for Language Modeling”, IS 10

Comparing RNN-LMs with LSTM-LMs

 120

 130

 140

 150

 160

 50 100 150 200 250 300 350

PP
L

Hidden layer size

(a) Hidden layer sizes (one hidden layers)

Sigmoid
LSTM

 120

 130

 140

 150

 160

 50 100 150 200 250 300 350

PP
L

Hidden layer size

(b) Hidden layer sizes (two hidden layers)

Linear + LSTM
Sigmoid + LSTM

 120

 130

 140

 150

 160

 1 2 4 8 16 32 64

PP
L

Number of Sentences

(c) Sequence length

Sigmoid + LSTM
LSTM

Linear + LSTM

 120

 130

 140

 150

 160

 0 200 400 600 800 1000
 10

 12

 14

 16

 18

 20

 22

PP
L

Sp
ee

d
up

 fa
ct

or

Number of clusters

(d) Number of clusters vs. speed up

Speed up factor
PPL

Figure 3: Experimental results on the Treebank corpus; for (c) and (d), 200 nodes were used for the hidden layers.

Experiments suggest that the performance of standard re-
current neural network architectures can be improved by about
8 % relative in terms of perplexity. Finally, comparatively large
improvements were obtained when interpolating an LSTM LM
with a huge Kneser-Ney smoothed backing-off model on top of
a state-of-the-art French recognition system.

For future work, it seems interesting to analyze the differ-
ences between standard and LSTM networks and the impact on
the recognition quality of a speech recognizer.

6. Acknowledgment
This work was partly realized as part of the Quaero programme,
funded by OSEO, French State agency for innovation.

7. References
[1] Kneser, R., and Ney, H., “Improved Backing-Off For M-Gram

Language Modeling”, Proc. of ICASSP 1995, pp. 181–184
[2] Bengio, Y., Ducharme, R., “A neural probabilistic language

model”, Proc. of Advances in Neural Information Processing Sys-
tems (2001), vol. 13., pp. 932–938.

[3] Schwenk, H., “Continuous space language models”, Computer
Speech and Language 21 (2007), pp. 492–518

[5] Oparin, I., Sundermeyer, M., Ney, H., Gauvain, J.-L., “Perfor-
mance Analysis of Neural Networks in Combination with n-Gram
Language Models”, Proc. of ICASSP 2012, accepted for publica-
tion

[6] Mikolov, T., Karafiát, M., Burget, L., Černoczký, J. H., and Khu-
danpur, S., “Recurrent neural network based language model”
Proc. of Interspeech 2010, pp. 1045–1048

[7] Elman, J., “Finding Structure in Time”, Cognitive Science 14
(1990), pp. 179–211

[8] Rumelhart, D. E., Hinton, G. E., Williams, R. J., “Learning rep-
resentations by back-propagating errors”, Nature 323 (1986), pp.
533–536

[9] Bengio, Y., Simard, P., Frasconi, P., “Learning long-term depen-
dencies with gradient descent is difficult” IEEE Transactions on
Neural Networks 5 (1994), pp. 157–166

[10] Martens, J., Sutskever, I., “Learning Recurrent Neural Networks
with Hessian-Free Optimization”, Proc. of the 28th Int. Conf. on
Machine Learning 2011

[11] Hochreiter, S., Schmidhuber, J., “Long Short-Term Memory”,
Neural Computation 9 (8), 1997, pp. 1735–1780

[12] Gers, F. A., “Learning to Forget: Continual Prediction with
LSTM”, Proc. of the 9th Int. Conf. on Artificial Neural Networks,
1999, pp. 850–855

[13] Gers, F. A., Schraudolph, N. N., Schmidhuber, J., “Learning Pre-
cise Timing with LSTM Recurrent Networks”, Journal of Ma-
chine Learning Research 3, 2002, pp. 115–143

[14] Graves, A., Schmidhuber, J., “Framewise Phoneme Classification
with Bidirectional LSTM and Other Neural Network Architec-
tures”, Neural Networks, Vol. 18, Issue 5–6, 2005, pp. 602–610

[15] Bishop, C., “Neural Networks for Pattern Recognition”, Claren-
don Press, Oxford, 1995

[16] Le, H. S., Allauzen, A., Wisniewski, G., Yvon, F., “Training con-
tinuous space language models: some practical issues”, Proc. of
the 2010 Conf. on Emp. Methods in NLP, pp. 778–788

[17] Morin, F., Bengio, Y., “Hierarchical Probabilistic Neural Network
Language Model”, Proc. of the 10th Int. Workshop on Artificial
Intelligence and Statistics

[18] Goodman, J., “Classes for fast maximum entropy training”, Proc.
of the ICASSP, 2001

[19] Mikolov, T., Kombrink, S., Burget, L., Černocký, J., Khudanpur,
S., “Extensions of Recurrent Neural Network Language Model”,
Proc. of the ICASSP 2011, pp. 5528–5531

[20] Mikolov, T., Kombrink, S., Deoras, A., Burget, L., Černocký,
J., “RNNLM – Recurrent Neural Network Language Modeling
Toolkit”, Proc. of the 2011 ASRU Workshop, pp. 196–201

Image from: Sundermeyer et al., “LSTM NNs for Language Modeling”, 10

Character-based RNN-LMs

Image from: http://karpathy.github.io/2015/05/21/rnn-effectiveness/  
Good tutorial available at https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/02-intermediate/language_model/main.py#L30-L50

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/02-intermediate/language_model/main.py#L30-L50

Generate text using a trained  
character-based LSTM-LM

VIOLA:
Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars
To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;
When I was heaven of presence and our fleets,
We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there
My power to give thee but so much as hell:
Some service in the noble bondman here,
Would show him to her wine.

Image from: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Generate text using an LM
trained on Obama speeches

Source:https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

Good morning. One of the borders will be able to continue to be here today. We
have to say that the partnership was a partnership with the American people and
the street continually progress that is a process and distant lasting peace and
support that they were supporting the work of concern in the world. They were in
the streets and communities that could have to provide steps to the people of the
United States and Afghanistan. In the streets — the final decade of the country
that will include the people of the United States of America. Now, humanitarian
crisis has already rightly achieved the first American future in the same financial
crisis that they can find reason to invest in the world.  
 
Thank you very much. God bless you. God bless you. Thank you.

NN trained on Trump’s speeches (now defunct)

Source:https://twitter.com/deepdrumpf?lang=en

Common RNNLM training tricks
• SGD fares very well on this task (compared to other optimizers like

Adagrad, Adam, etc.).

• Use dropout regularization

• Truncated BPTT

• Use mini batches to aggregate gradients during training

• In batched RNNLMs, process multiple sentences at the same time

• Handle variable length sequences using padding and masking

• To be judicious about padding, sort the sentences in the corpus by length
before creating batches

Spotlight:
Regularizing and Optimizing LSTM Language

Models (Merity et al. 2018)
• No special model, just better regularisation + optimization

• Dropout on recurrent connections and embeddings

• SGD w/ averaging triggered when model is close to
convergence

• Weight tying between embedding and softmax layers

• Reduced embedding sizes

• https://github.com/salesforce/awd-lstm-lm

https://github.com/salesforce/awd-lstm-lm

Spotlight:
On the State of the art of Evaluation 

in Neural Language Models (Melis et al., 2018)

Image from:https://arxiv.org/pdf/1707.05589.pdf

Under review as a conference paper at ICLR 2018

Figure 2: Average per-word negative log-likelihoods of hyperparameter combinations in the neighbourhood of
the best solution for a 4-layer LSTM with 24M weights on the Penn Treebank dataset.

the input gate as in Eq. 3.

ct = ft � ct�1 + it � jt (1)
ct = ft � ct�1 + (1� ft)� jt (2)
ct = ft � ct�1 +min(1� ft, it)� jt (3)

Where the equations are based on the formulation of Sak et al. (2014). All LSTM models in this pa-
per use the third variant, except those titled “Untied gates” and “Tied gates” in Table 4 corresponding
to Eq. 1 and 2, respectively.

The results show that LSTMs are insensitive to these changes and the results vary only slightly even
though more hidden units are allocated to the tied version to fill its parameter budget. Finally, the
numbers suggest that deep LSTMs benefit from bounded cell states.

8 CONCLUSION

During the transitional period when deep neural language models began to supplant their shallower
predecessors, effect sizes tended to be large, and robust conclusions about the value of the mod-
elling innovations could be made, even in the presence of poorly controlled “hyperparameter noise.”
However, now that the neural revolution is in full swing, researchers must often compare competing
deep architectures. In this regime, effect sizes tend to be much smaller, and more methodological
care is required to produce reliable results. Furthermore, with so much work carried out in parallel
by a growing research community, the costs of faulty conclusions are increased.

Although we can draw attention to this problem, this paper does not offer a practical methodologi-
cal solution beyond establishing reliable baselines that can be the benchmarks for subsequent work.
Still, we demonstrate how, with a huge amount of computation, noise levels of various origins can be
carefully estimated and models meaningfully compared. This apparent tradeoff between the amount
of computation and the reliability of results seems to lie at the heart of the matter. Solutions to the
methodological challenges must therefore make model evaluation cheaper by, for instance, reducing
the number of hyperparameters and the sensitivity of models to them, employing better hyperpa-
rameter optimisation strategies, or by defining “leagues” with predefined computational budgets for
a single model representing different points on the tradeoff curve.

REFERENCES

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale recurrent neural net-
works. CoRR, abs/1609.01704, 2016. URL http://arxiv.org/abs/1609.01704.

Jasmine Collins, Jascha Sohl-Dickstein, and David Sussillo. Capacity and trainability in recurrent
neural networks. arXiv preprint arXiv:1611.09913, 2016.

8

