
Instructor: Preethi Jyothi

Acoustic Feature Analysis  
for ASR

Lecture 13

CS 753

Speech Signal Analysis

Generate
discrete
samples

“A frame”

• Need to focus on short segments of speech (speech
frames) that more or less correspond to a subphone and
are stationary

• Each speech frame is typically 20-50 ms long
• Use overlapping frames with frame shift of around 10 ms

Frame-wise processing

frame  
shift

(10 ms)
frame size

(25 ms)

Speech Signal Analysis

Generate
discrete
samples

“A frame”

• Need to focus on short segments of speech (speech
frames) that more or less correspond to a phoneme and are
stationary

• Each speech frame is typically 20-50 ms long
• Use overlapping frames with frame shift of around 10 ms
• Generate acoustic features corresponding to each speech

frame

Acoustic feature extraction for ASR

Desirable feature characteristics:
• Capture essential information about underlying phones

• Compress information into compact form

• Factor out information that’s not relevant to recognition e.g.
speaker-specific information such as vocal-tract length,
channel characteristics, etc.

• Would be desirable to find features that can be well-modelled
by known distributions (Gaussian models, for example)

• Feature widely used in ASR: Mel-frequency Cepstral
Coefficients (MFCCs)

MFCC Extraction

Pre-emphasis

Windowing

DFT

Mel  
Filterbank

iDFT

log

energy

Derivatives

yt(j) (
yt(j), et
�yt(j),�et
�2yt(j),�2et

)

Sampled speech signal x(j)

Pre-emphasis
• Pre-emphasis increases the amount of energy in the high

frequencies compared with lower frequencies
• Why? Because of spectral tilt

• In voiced speech, signal has more energy at low frequencies
• Attributed to the glottal source

• Boosting high frequency energy improves phone detection
accuracy

Image credit: Jurafsky & Martin, Figure 9.9

MFCC Extraction

Pre-emphasis

Windowing

DFT

Mel  
Filterbank

iDFT

log

energy

Time  
derivatives

yt(j) (
yt(j), et
�yt(j),�et
�2yt(j),�2et

)

Sampled speech signal x(j)

Windowing

• Speech signal is modelled as a sequence of frames
(assumption: stationary across each frame)

• Windowing: multiply the value of the signal at time n, s[n] by
the value of the window at time n, w[n]: y[n] = w[n]s[n]

w[n] =

(
1 0  n  L� 1

0 otherwise
Rectangular:

Hamming: w[n] =

(
0.54� 0.46cos 2⇡nL 0  n  L� 1

0 otherwise

Windowing: Illustration

Rectangular window Hamming window

MFCC Extraction

Pre-emphasis

Windowing

DFT

Mel  
Filterbank

iDFT

log

energy

Time  
derivatives

yt(j) (
yt(j), et
�yt(j),�et
�2yt(j),�2et

)

Sampled speech signal x(j)

Discrete Fourier Transform (DFT)
Extract spectral information from the windowed signal:  
Compute the DFT of the sampled signal

X[k] =
N�1X

n=0

x[n]e�j 2⇡
N kn

Image credit: Jurafsky & Martin, Figure 9.12

Input: windowed signal x[1],…,x[n]
Output: complex number X[k] giving magnitude/phase for the kth frequency component

MFCC Extraction

Pre-emphasis

Windowing

DFT

Mel  
Filterbank

iDFT

log

energy

Time  
derivatives

yt(j) (
yt(j), et
�yt(j),�et
�2yt(j),�2et

)

Sampled speech signal x(j)

Mel Filter Bank

• DFT gives energy at each frequency band

• However, human hearing is not sensitive at all frequencies:
less sensitive at higher frequencies

• Warp the DFT output to the mel scale: mel is a unit of pitch
such that sounds which are perceptually equidistant in pitch
are separated by the same number of mels

Mels vs Hertz

Mel filterbank
• Mel frequency can be computed from the raw frequency f as:

• 10 filters spaced linearly below 1kHz and remaining filters
spread logarithmically above 1kHz

mel(f) = 1127ln(1 +
f

700
)

DR
AF
T

Section 9.3. Feature Extraction: MFCC vectors 17

1 ...Mel Spectrum

4000
0

1

Am
pl

itu
de

Frequency (Hz)
0 1000 2000 3000 4000

Figure 9.13 The Mel filter bank, after Davis and Mermelstein (1980). Each triangular
filter collects energy from a given frequency range. Filters are spaced linearly below 1000
Hz, and logarithmically above 1000 Hz.

cepstrum has a number of useful processing advantages and also significantly improves
phone recognition performance.

One way to think about the cepstrum is as a useful way of separating the source
and filter. Recall from Sec. ?? that the speech waveform is created when a glottal
source waveform of a particular fundamental frequency is passed through the vocal
tract, which because of its shape has a particular filtering characteristic. But many
characteristics of the glottal source (its fundamental frequency, the details of the glottal
pulse, etc) are not important for distinguishing different phones. Instead, the most
useful information for phone detection is the filter, i.e. the exact position of the vocal
tract. If we knew the shape of the vocal tract, we would know which phone was being
produced. This suggests that useful features for phone detection would find a way to
deconvolve (separate) the source and filter and show us only the vocal tract filter. It
turns out that the cepstrum is one way to do this.

(a) (b) (c)

Figure 9.14 PLACEHOLDER FIGURE. The magnitude spectrum (a), the log magnitude spectrum (b), and
the cepstrum (c). From Taylor (2008). The two spectra have a smoothed spectral enveloped laid on top of them to
help visualize the spectrum.

For simplicity, let’s ignore the pre-emphasis and mel-warping that are part of the
definition of MFCCs, and look just at the basic definition of the cepstrum. The cep-
strum can be thought of as the spectrum of the log of the spectrum. This may sound
confusing. But let’s begin with the easy part: the log of the spectrum. That is, the cep-
strum begins with a standard magnitude spectrum, such as the one for a vowel shown

Image credit: Jurafsky & Martin, Figure 9.13

Mel filterbank inspired by speech perceptionSpeech Perception — Physiology

■ sound comes in ear, converted into vibrations in fluid in cochlea

■ in fluid is basilar membrane, with ⇠30,000 little hairs
● hairs sensitive to different frequencies (band-pass filters)

ELEN E6884: Speech Recognition
53

Mel filterbank
• Mel frequency can be computed from the raw frequency f

as:

• 10 filters spaced linearly below 1kHz and remaining filters
spread logarithmically above 1kHz

mel(f) = 1127ln(1 +
f

700
)

DR
AF
T

Section 9.3. Feature Extraction: MFCC vectors 17

1 ...Mel Spectrum

4000
0

1

Am
pl

itu
de

Frequency (Hz)
0 1000 2000 3000 4000

Figure 9.13 The Mel filter bank, after Davis and Mermelstein (1980). Each triangular
filter collects energy from a given frequency range. Filters are spaced linearly below 1000
Hz, and logarithmically above 1000 Hz.

cepstrum has a number of useful processing advantages and also significantly improves
phone recognition performance.

One way to think about the cepstrum is as a useful way of separating the source
and filter. Recall from Sec. ?? that the speech waveform is created when a glottal
source waveform of a particular fundamental frequency is passed through the vocal
tract, which because of its shape has a particular filtering characteristic. But many
characteristics of the glottal source (its fundamental frequency, the details of the glottal
pulse, etc) are not important for distinguishing different phones. Instead, the most
useful information for phone detection is the filter, i.e. the exact position of the vocal
tract. If we knew the shape of the vocal tract, we would know which phone was being
produced. This suggests that useful features for phone detection would find a way to
deconvolve (separate) the source and filter and show us only the vocal tract filter. It
turns out that the cepstrum is one way to do this.

(a) (b) (c)

Figure 9.14 PLACEHOLDER FIGURE. The magnitude spectrum (a), the log magnitude spectrum (b), and
the cepstrum (c). From Taylor (2008). The two spectra have a smoothed spectral enveloped laid on top of them to
help visualize the spectrum.

For simplicity, let’s ignore the pre-emphasis and mel-warping that are part of the
definition of MFCCs, and look just at the basic definition of the cepstrum. The cep-
strum can be thought of as the spectrum of the log of the spectrum. This may sound
confusing. But let’s begin with the easy part: the log of the spectrum. That is, the cep-
strum begins with a standard magnitude spectrum, such as the one for a vowel shown

• Take log of each mel spectrum value 1) human sensitivity to signal  
energy is logarithmic 2) log makes features robust to input variations

Image credit: Jurafsky & Martin, Figure 9.13

MFCC Extraction

Pre-emphasis

Windowing

DFT

Mel  
Filterbank

iDFT

log

energy

Time  
derivatives

yt(j) (
yt(j), et
�yt(j),�et
�2yt(j),�2et

)

Sampled speech signal x(j)

Cepstrum: Inverse DFT

• Recall speech signals are created when a glottal source of
a particular fundamental frequency passes through the
vocal tract

• Most useful information for phone detection is the vocal
tract filter (and not the glottal source)

• How do we deconvolve the source and filter to retrieve
information about the vocal tract filter? Cepstrum

Cepstrum

• Cepstrum: spectrum of the log of the spectrum

magnitude spectrum log magnitude spectrum

cepstrum

Image credit: Jurafsky & Martin, Figure 9.14

Cepstrum
• For MFCC extraction, we use the first 12 cepstral values

• Variance of the different cepstral coefficients tend to be
uncorrelated

• Useful property when modelling using GMMs in the
acoustic model — diagonal covariance matrices will
suffice

• Cepstrum is formally defined as the inverse DFT of the log
magnitude of the DFT of a signal

c[n] =
N�1X

n=0

log

 �����

N�1X

n=0

x[n]e�j 2⇡
N kn

�����

!
ej

2⇡
N kn

MFCC Extraction

Pre-emphasis

Windowing

DFT

Mel  
Filterbank

DCT

log

energy

Time  
derivatives

yt(j) (
yt(j), et
�yt(j),�et
�2yt(j),�2et

)

Sampled speech signal x(j)

Deltas and double-deltas

• From the cepstrum, use 12 cepstral coefficients for each frame

• 13th feature represents energy from the frame — computed
as sum of the power of the samples in the frame

• Also add features related to change in cepstral features over
time to capture speech dynamics:

 � (if � is feature vector at time t)

• Typical value for � is 1 or 2.

• Add 13 delta features (�) and 13 double-delta features (�)

Δxt = xt+τ − xt−τ xt

τ

Δxt Δ2xt

Recap: MFCCs

• Motivated by human speech perception and speech production

• For each speech frame

‣ Compute frequency spectrum and apply Mel binning

‣ Compute cepstrum using inverse DFT on the log of the mel-
warped spectrum

‣ 39-dimensional MFCC feature vector: First 12 cepstral
coefficients + energy + 13 delta + 13 double-delta
coefficients

Other features
• Perceptual Linear Prediction (PLP) features

• Mel filter-bank features (used with DNNs)

• Neural network-based “bottleneck features” (covered in lecture 8)

• Train deep NN using conventional acoustic features

• Introduce a narrow hidden layer (e.g. 40 hidden units) referred
to as the bottleneck layer, forcing the neural network to encode
relevant information in this layer

• Use hidden unit activations in the bottleneck layer as features

Features used for speaker recognition

• E.g. from a recent speaker identification (VoxCeleb) task.

• Input features, F: Spectrograms generated in a sliding window
fashion using a Hamming window of width 25ms and step 10ms

• F used as input to a CNN architecture

• Mean and variance normalisation performed on every
frequency bin of the spectrum (crucial for performance!)

Nagrani et al.,“VoxCeleb: a large-scale speaker identification dataset”, Interspeech 2017

all filter weights are frozen except for the modified last layer
and the Siamese network trained with contrastive loss. Choos-
ing good pairs for training is very important in metric learning.
We randomly select half of the negative examples, and the other
half using Hard Negative Mining, where we only sample from
the hardest 10% of all negatives.

6. Experiments

This section describes the experimental setup for both speaker
identification and verification, and compares the performance
of our devised CNN baseline to a number of traditional state of
the art methods on VoxCeleb.

6.1. Experimental setup

Speaker identification. For identification, the training and the
testing are performed on the same POIs. From each POI, we
reserve the speech segments from one video for test. The test
video contains at least 5 non-overlapping segments of speech.
For identification, we report top-1 and top-5 accuracies. The
statistics are given in Table 5.
Speaker verification. For verification, all POIs whose name
starts with an ‘E’ are reserved for testing, since this gives a good
balance of male and female speakers. These POIs are not used
for training the network, and are only used at test time. The
statistics are given in Table 6.

Two key performance metrics are used to evaluate system
performance for the verification task. The metrics are similar
to those used by existing datasets and challenges, such as NIST
SRE12 [29] and SITW [5]. The primary metric is based on the
cost function Cdet

Cdet = Cmiss⇥Pmiss⇥Ptar+Cfa⇥Pfa⇥ (1�Ptar) (1)

where we assume a prior target probability Ptar of 0.01 and
equal weights of 1.0 between misses Cmiss and false alarms
Cfa. The primary metric, Cmin

det , is the minimum value of Cdet

for the range of thresholds. The alternative performance mea-
sure used here is the Equal Error Rate (EER) which is the rate
at which both acceptance and rejection errors are equal. This
measure is commonly used for identity verification systems.

Set # POIs # Vid. / POI # Utterances
Dev 1,251 17.0 145,265
Test 1,251 1.0 8,251
Total 1,251 1.0 153,516

Table 5: Development and test set statistics for identification.

Set # POIs # Vid. / POI # Utterances
Dev 1,211 18.0 148,642
Test 40 17.4 4,874
Total 1,251 18.0 153,516

Table 6: Development and test set statistics for verification.

6.2. Baselines

GMM-UBM. The GMM-UBM system uses MFCCs of dimen-
sion 13 as input. Cepstral mean and variance normalisation
(CMVN) is applied on the features. Using the conventional
GMM-UBM framework, a single speaker-independent univer-
sal background model (UBM) of 1024 mixture components is
trained for 10 iterations from the training data.

I-vectors/PLDA. Gender independent i-vector extractors [10]
are trained on the VoxCeleb dataset to produce 400-
dimensional i-vectors. Probabilistic LDA (PLDA) [41] is then
used to reduce the dimension of the i-vectors to 200.
Inference. For identification, a one-vs-rest binary SVM clas-
sifier is trained for each speaker m (m 2 1...K). All feature
inputs to the SVM are L2 normalised and a held out validation
set is used to determine the C parameter (determines trade off
between maximising the margin and penalising training errors).
Classification during test time is done by choosing the speaker
corresponding to the highest SVM score. The PLDA scoring
function [41] is used for verification.

6.3. Results

Results are given in Tables 7 and 8. For both speaker recogni-
tion tasks, the CNN provides superior performance to the tradi-
tional state-of-the-art baselines.

For identification we achieve an 80.5% top-1 classification
accuracy over 1,251 different classes, almost 20% higher than
traditional state of the art baselines. The CNN architecture uses
the average pooling layer for variable length test data. We also
compare to two variants: ‘CNN-fc-3s’, this architecture has a
fully connected fc6 layer, and divides the test data into 3s seg-
ments and averages the scores. As is evident there is a con-
siderable drop in performance compared to the average pooling
original – partly due to the increased number of parameters that
must be learnt; ‘CNN-fc-3s no var. norm.’, this is the CNN-fc-3s
architecture without the variance normalization pre-processing
of the input (the input is still mean normalized). The differ-
ence in performance between the two shows the importance of
variance normalization for this data.

For verification, the margin over the baselines is narrower,
but still a significant improvement, with the embedding being
the crucial step.

Accuracy Top-1 (%) Top-5 (%)
I-vectors + SVM 49.0 56.6
I-vectors + PLDA + SVM 60.8 75.6
CNN-fc-3s no var. norm. 63.5 80.3
CNN-fc-3s 72.4 87.4
CNN 80.5 92.1

Table 7: Results for identification on VoxCeleb (higher is bet-
ter). The different CNN architectures are described in Section 5.

Metrics Cmin
det EER (%)

GMM-UBM 0.80 15.0
I-vectors + PLDA 0.73 8.8
CNN-1024D 0.75 10.2
CNN + Embedding 0.71 7.8

Table 8: Results for verification on VoxCeleb (lower is bet-
ter).

7. Conclusions

We provide a fully automated and scalable pipeline for audio
data collection and use it to create a large-scale speaker
identification dataset called VoxCeleb, with 1,251 speakers
and over 100,000 utterances. In order to establish benchmark
performance, we develop a novel CNN architecture with the
ability to deal with variable length audio inputs, which out-
performs traditional state-of-the-art methods for both speaker
identification and verification on this dataset.

About pronunciations

• There exist a number of different alphabets to transcribe
phonetic sounds

• E.g. ARPAbet (used in CMUdict)

• International Phonetic Alphabet (IPA) for all languages

Pronunciation Dictionary/Lexicon

• Pronunciation model/dictionary/lexicon: Lists one or more
pronunciations for a word

• Typically derived from language experts: Sequence of
phones written down for each word

• Dictionary construction involves:

1. Selecting what words to include in the dictionary

2. Pronunciation of each word (also, check for multiple
pronunciations)

Graphemes vs. Phonemes

• Instead of a pronunciation dictionary, one could represent a
pronunciation as a sequence of graphemes (or letters). That is,
model at the grapheme level.

• Useful technique for low-resourced/under-resourced languages

• Main advantages:

1. Avoid the need for phone-based pronunciations

2. Avoid the need for a phone alphabet

3. Works pretty well for languages with a systematic relationship
between graphemes (letters) and phonemes (sounds)

Grapheme-based ASR

Image from: Gales et al., Unicode-based graphemic systems for limited resource languages, ICASSP 15

Language System Script Graphemes†

Kurmanji Kurdish Alphabet Latin 62
Tok Pisin Alphabet Latin 52
Cebuano Alphabet Latin 53
Kazakh Alphabet Cyrillic/Latin 126
Telugu Abugida Telugu 60
Lithuanian Alphabet Latin 62
Levantine Arabic Abjad Arabic 36

Table 2: Attributes of Babel Option Period 2 Languages. † the num-
ber of graphemes in the FLP, excluding apostrophe.

Table 2 shows some of the attributes of the seven languages
investigated. Three different writing schemes were evaluated: Al-
phabet, Abugida, and Abjad. Four forms of writing script were ex-
amined: Latin, Cyrillic, Arabic and Telugu. Additionally the table
gives the number of “raw” graphemes, with no mappings, that are
observed in the FLP training transcriptions, or the complete Levan-
tine Arabic training transcriptions.

Language Grapheme Mapping #
Pack — cap scr atr sgn Phn
FLP 126 67 62 54 52 59
LLP 117 66 61 53 51 59

VLLP 95 59 54 46 44 59
ALP 81 55 51 43 42 59

Table 3: Number of unique tokens in Kazakh (302) (incrementally)
removing: cap capitalisation; scr writing script; attr attributes;
sgn signs

It is interesting to see how the number of graphemes varies with
the form of grapheme mapping used, and the size of the data (or
LP). Table 3 shows the statistics for Kazakh, which has the greatest
number of observed graphemes as both Cyrillic and Latin script are
used. The first point to note is that going from the FLP to the ALP,
45 graphemes are not observed in the ALP compared to the FLP.

As the forms of mapping are increased: removing capitalisation;
writing script; remaining grapheme attributes; and sign information,
the number of graphemes decreases. However comparing the FLP
and ALP, there are still 10 graphemes not seen in the ALP. If the
language model is only based on the acoustic data transcriptions
this is not an issue. However if additional language model training
data is available, then acoustic models are required for these unseen
graphemes. In contrast all the phones are observed in all LPs. Note
for all the phonetic systems, diphthongs are mapped to their individ-
ual constituents.

4. EXPERIMENTAL RESULTS

This section contrasts the performance of the proposed unicode-
based graphemic systems with phonetic systems, and also an expert
derived Levantine Arabic graphemic system. The performance us-
ing limited resources on CTS data is poor compared to using larger
amounts of resources, or simpler tasks.

4.1. Acoustic and Language Models

The acoustic and language models built on the six Babel languages
were built in a Babel BaseLR configuration [14]. Thus no additional
information from other languages, or LPs, was used in building the

systems. HTK [15] was used for training and test, with MLPs trained
using QuickNet [16]. All acoustic models were constructed from a
flat-start based on PLP-features, including HLDA and MPE training.
The decision trees used to construct the context-dependent models
were based on state-specific roots. This enables unseen phones and
graphemes to be synthesised and recognised, even if they do not oc-
cur in the acoustic model training data [17]. Additionally it allows
rarely seen phones and graphemes to be handled without always
backing off to monophone models. These baseline acoustic mod-
els were then extended to Tandem-SAT systems. Here Bottle-Neck
(BN) features were derived using DNNs with PLP plus pitch and
probability of voicing (PoV) obtained using the Kaldi toolkit [18] 4.
Context-dependent targets were used. These 26-dimensional BN
features were added to the HLDA projected PLP features and pitch
features to yield a 71-dimensional feature vector. The baseline mod-
els for the Levantine Arabic system were identical to the Babel sys-
tems. However the Tandem-SAT system did not include any pitch or
PoV features, so the final feature-vector size was 65.

For all systems only the manual transcriptions for the audio
training data were used for training the language models. To give
an idea of the available data for Kazakh the number of words are:
FLP 290.9K; LLP 71.2K; VLLP 25.5K; and ALP 8.8K. Trigram
language models were built for all languages. For all experiments
in this section, manual segmentation of the test data was used. This
allows the impact of the quantity of data and lexicon to be assessed
without having to consider changes in the segmentation.

4.2. Full Language Pack Systems

Language ID System WER (%)
Vit CN CNC

Kurmanji 205 Phonetic 67.6 65.8 64.1Kurdish Graphemic 67.0 65.3

Tok Pisin 207 Phonetic 41.8 40.6 39.4Graphemic 42.1 41.1

Cebuano 301 Phonetic 55.5 54.0 52.6Graphemic 55.5 54.2

Kazakh 302 Phonetic 54.9 53.5 51.5Graphemic 54.0 52.7

Telugu 303 Phonetic 70.6 69.1 67.5Graphemic 70.9 69.5

Lithuanian 304 Phonetic 51.5 50.2 48.3Graphemic 50.9 49.5

Table 4: Babel FLP Tandem-SAT Performance: Vit Viterbi decod-
ing, CN confusion network (CN) decoding, CNC CN-combination.

To give an idea of relative performance when all available data
is used, FLP graphemic and phonetic systems were built for all six
Babel languages. The results for these are shown in Table 4. For
all languages the graphemic and phonetic systems yield compara-
ble performance. It is clear that some languages, such as Kurmanji
Kurdish and Telugu are harder to recognise, with Tok Pisin (a Cre-
ole language) being the easiest. As expected combining the phonetic
and graphemic systems together yields consistent performance gains
of 1.2% to 1.6% absolute over the best individual systems.

4Though performance gains were obtained using FBANK features over
PLP, these gains disappeared when pitch features were added in initial exper-
iments.

5188

Grapheme to phoneme (G2P) conversion

• Produce a pronunciation (phoneme sequence) given a
written word (grapheme sequence)

• Learn G2P mappings from a pronunciation dictionary

• Useful for:

• ASR systems in languages with no pre-built lexicons

• Speech synthesis systems

• Deriving pronunciations for out-of-vocabulary (OOV) words

G2P Conversion

• One popular paradigm: Joint sequence models [BN12]

• Grapheme and phoneme sequences are first aligned
using EM-based algorithm

• Results in a sequence of graphones (joint G-P tokens)

• Ngram models trained on these graphone sequences

• WFST-based implementation of such a joint graphone
model [Phonetisaurus]

[BN12]:Bisani & Ney , “Joint sequence models for grapheme-to-phoneme conversion”,Specom 2012
[Phonetisaurus] J. Novak, Phonetisaurus Toolkit

