
Instructor: Preethi Jyothi

End-to-end Neural Architectures
For ASR

Lecture 14

CS 753

Neural network-based ASR components

• Significant improvements in ASR performance by using
neural models for both acoustic models and language
models within the ASR pipeline

• However, there are limitations to using neural networks for a
single component within such a complex pipeline

Motivation for end-to-end ASR systems

• Limitations:

• Objective function optimized in neural networks very different
from final evaluation metric (i.e. word transcription accuracy)

• Additionally, frame-level training targets derived from HMM-
based alignments

• Pronunciation dictionaries are used to map from words to
phonemes; expensive resource to create

• Can we build a single RNN architecture that represents the
entire ASR pipeline?

Network Architecture

Towards End-to-End Speech Recognition with Recurrent Neural Networks

Figure 1. Long Short-term Memory Cell.

Figure 2. Bidirectional Recurrent Neural Network.

do this by processing the data in both directions with two
separate hidden layers, which are then fed forwards to the
same output layer. As illustrated in Fig. 2, a BRNN com-
putes the forward hidden sequence

�!
h , the backward hid-

den sequence
 �
h and the output sequence y by iterating the

backward layer from t = T to 1, the forward layer from
t = 1 to T and then updating the output layer:

�!
h t = H

⇣
W

x
�!
h
xt +W�!

h
�!
h

�!
h t�1 + b�!

h

⌘
(8)

 �
h t = H

⇣
W

x
 �
h
xt +W �

h
 �
h

 �
h t+1 + b �

h

⌘
(9)

yt = W�!
h y

�!
h t +W �

h y

 �
h t + bo (10)

Combing BRNNs with LSTM gives bidirectional
LSTM (Graves & Schmidhuber, 2005), which can
access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up
progressively higher level representations of acoustic data.
Deep RNNs can be created by stacking multiple RNN hid-
den layers on top of each other, with the output sequence of
one layer forming the input sequence for the next, as shown
in Fig. 3. Assuming the same hidden layer function is used

Figure 3. Deep Recurrent Neural Network.

for all N layers in the stack, the hidden vector sequences
hn are iteratively computed from n = 1 to N and t = 1 to
T :

hn
t = H

�
Whn�1hnhn�1

t +Whnhnhn
t�1 + bnh

�
(11)

where h0 = x. The network outputs yt are

yt = WhNyh
N
t + bo (12)

Deep bidirectional RNNs can be implemented by replacing
each hidden sequence hn with the forward and backward
sequences

�!
h n and

 �
h n, and ensuring that every hidden

layer receives input from both the forward and backward
layers at the level below. If LSTM is used for the hidden
layers the complete architecture is referred to as deep bidi-
rectional LSTM (Graves et al., 2013).

3. Connectionist Temporal Classification

Neural networks (whether feedforward or recurrent) are
typically trained as frame-level classifiers in speech recog-
nition. This requires a separate training target for ev-
ery frame, which in turn requires the alignment between
the audio and transcription sequences to be determined by
the HMM. However the alignment is only reliable once
the classifier is trained, leading to a circular dependency
between segmentation and recognition (known as Sayre’s
paradox in the closely-related field of handwriting recog-
nition). Furthermore, the alignments are irrelevant to most
speech recognition tasks, where only the word-level tran-
scriptions matter. Connectionist Temporal Classification
(CTC) (Graves, 2012, Chapter 7) is an objective function
that allows an RNN to be trained for sequence transcrip-
tion tasks without requiring any prior alignment between
the input and target sequences.

Image from: Graves & Jaitley, Towards End-to-End Speech Recognition with Recurrent Neural Networks, ICML 14

Towards End-to-End Speech Recognition with Recurrent Neural Networks

Figure 1. Long Short-term Memory Cell.

Figure 2. Bidirectional Recurrent Neural Network.

do this by processing the data in both directions with two
separate hidden layers, which are then fed forwards to the
same output layer. As illustrated in Fig. 2, a BRNN com-
putes the forward hidden sequence

�!
h , the backward hid-

den sequence
 �
h and the output sequence y by iterating the

backward layer from t = T to 1, the forward layer from
t = 1 to T and then updating the output layer:

�!
h t = H

⇣
W

x
�!
h
xt +W�!

h
�!
h

�!
h t�1 + b�!

h

⌘
(8)

 �
h t = H

⇣
W

x
 �
h
xt +W �

h
 �
h

 �
h t+1 + b �

h

⌘
(9)

yt = W�!
h y

�!
h t +W �

h y

 �
h t + bo (10)

Combing BRNNs with LSTM gives bidirectional
LSTM (Graves & Schmidhuber, 2005), which can
access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up
progressively higher level representations of acoustic data.
Deep RNNs can be created by stacking multiple RNN hid-
den layers on top of each other, with the output sequence of
one layer forming the input sequence for the next, as shown
in Fig. 3. Assuming the same hidden layer function is used

Figure 3. Deep Recurrent Neural Network.

for all N layers in the stack, the hidden vector sequences
hn are iteratively computed from n = 1 to N and t = 1 to
T :

hn
t = H

�
Whn�1hnhn�1

t +Whnhnhn
t�1 + bnh

�
(11)

where h0 = x. The network outputs yt are

yt = WhNyh
N
t + bo (12)

Deep bidirectional RNNs can be implemented by replacing
each hidden sequence hn with the forward and backward
sequences

�!
h n and

 �
h n, and ensuring that every hidden

layer receives input from both the forward and backward
layers at the level below. If LSTM is used for the hidden
layers the complete architecture is referred to as deep bidi-
rectional LSTM (Graves et al., 2013).

3. Connectionist Temporal Classification

Neural networks (whether feedforward or recurrent) are
typically trained as frame-level classifiers in speech recog-
nition. This requires a separate training target for ev-
ery frame, which in turn requires the alignment between
the audio and transcription sequences to be determined by
the HMM. However the alignment is only reliable once
the classifier is trained, leading to a circular dependency
between segmentation and recognition (known as Sayre’s
paradox in the closely-related field of handwriting recog-
nition). Furthermore, the alignments are irrelevant to most
speech recognition tasks, where only the word-level tran-
scriptions matter. Connectionist Temporal Classification
(CTC) (Graves, 2012, Chapter 7) is an objective function
that allows an RNN to be trained for sequence transcrip-
tion tasks without requiring any prior alignment between
the input and target sequences.

• Input: Acoustic feature vectors. Output: Characters

• Long Short-Term Memory (LSTM) units (with in-built memory cells) are
used to implement (in eqns above)

• Deep bidirectional LSTMs: Stack multiple bidirectional LSTM layers

H

Connectionist Temporal Classification (CTC)

• RNNs in ASR, if trained at the frame-level, will typically require
alignments between the acoustics and the word sequence during
training telling you which label (e.g. phone or character) should
be output at each timestep

• A new loss function, Connectionist Temporal Classification (CTC)
tries to get around this!

• This is an objective function that allows RNN training without an
explicit alignment step: CTC considers all possible alignments

CTC: Prerequisites

• Augment the output vocabulary with an additional “blank” (_) label

• For a given label sequence, there can be multiple alignments: (x,
y, z) could correspond to (x, _, y, _, _, z) or (_, x, x, _, y, z)

• Define a 2-step operator B that reduces a label sequence by:  
first, removing repeating labels and second, removing blanks.
B(“x, _, y, _, _, z”) = B(“_, x, x, _, y, z”) = “x, y, z”

llle o

olllehh

lleh o

o

ll oϵ

ϵϵ

ϵ
ϵ ϵ
ϵ ϵ

ϵ

e

l

l

le

o

o

o

lleh

h

h

e

ϵ

l

o

h

e

ϵ

l

o

h

e

ϵ

l

o

h

e

ϵ

l

o

h

e

ϵ

l

o

h

e

ϵ

l

o

h

e

ϵ

l

o

h

e

ϵ

l

o

h

e

ϵ

l

o

h

e

ϵ

l

o

CTC Pipeline

Image from: https://distill.pub/2017/ctc/

CTC Objective Function
• CTC objective function is the probability of an output label

sequence � given an utterance �

• Here, we sum over all possible alignments for � , enumerated
by �

• CTC assumes that � can be computed as

• i.e. CTC assumes that outputs at each time-step are
conditionally independent given the input

• Efficient dynamic programming algorithm to compute this
loss function and its gradients [GJ14]

y x

y
B−1(y)

Pr(a |x)
TY

t=1

Pr(at|x)

CTC(x, y) = Pr(y|x) =
X

a2B�1(y)

Pr(a|x)

[GJ14] Towards End-to-End Speech Recognition with Recurrent Neural Networks, ICML 14

Illustration: Dynamic Programming Algorithm

x1 x2 x3 x4 x5 x6

ϵ

ϵ

ϵ

a

b

Image from: https://distill.pub/2017/ctc/

Decoding

• Pick the single most probable output at every time step

• Use a beam search algorithm to integrate a dictionary and a
language model

• Beam search will be covered in more detail next week

argmax
y

Pr(y|x) ⇡ B(argmax
a

Pr(a|x))

Experimental Results
Towards End-to-End Speech Recognition with Recurrent Neural Networks

Table 1. Wall Street Journal Results. All scores are word er-
ror rate/character error rate (where known) on the evaluation set.
‘LM’ is the Language model used for decoding. ‘14 Hr’ and ‘81
Hr’ refer to the amount of data used for training.

SYSTEM LM 14 HR 81 HR

RNN-CTC NONE 74.2/30.9 30.1/9.2
RNN-CTC DICTIONARY 69.2/30.0 24.0/8.0
RNN-CTC MONOGRAM 25.8 15.8
RNN-CTC BIGRAM 15.5 10.4
RNN-CTC TRIGRAM 13.5 8.7
RNN-WER NONE 74.5/31.3 27.3/8.4
RNN-WER DICTIONARY 69.7/31.0 21.9/7.3
RNN-WER MONOGRAM 26.0 15.2
RNN-WER BIGRAM 15.3 9.8
RNN-WER TRIGRAM 13.5 8.2
BASELINE NONE — —
BASELINE DICTIONARY 56.1 51.1
BASELINE MONOGRAM 23.4 19.9
BASELINE BIGRAM 11.6 9.4
BASELINE TRIGRAM 9.4 7.8
COMBINATION TRIGRAM — 6.7

the language model to rerank the N-best lists and the WER
of the best resulting transcripts was recorded. The best re-
sults were obtained with an RNN score weight of 7.7 and a
language model weight of 16.

For the 81 hour training set, the oracle error rates for the
monogram, bigram and trigram candidates were 8.9%, 2%
and 1.4% resepectively, while the anti-oracle (rank 300) er-
ror rates varied from 45.5% for monograms and 33% for
trigrams. Using larger N-best lists (up to N=1000) did not
yield significant performance improvements, from which
we concluded that the list was large enough to approximate
the true decoding performance of the RNN.

An additional experiment was performed to measure the ef-
fect of combining the RNN and DNN. The candidate scores
for ‘RNN-WER’ trained on the 81 hour set were blended
with the DNN acoustic model scores and used to rerank
the candidates. Best results were obtained with a language
model weight of 11, an RNN score weight of 1 and a DNN
weight of 1.

The results in Table 1 demonstrate that on the full training
set the character level RNN outperforms the baseline model
when no language model is present. The RNN retrained to
minimise word error rate (labelled ‘RNN-WER’ to distin-
guish it from the original ‘RNN-CTC’ network) performed
particularly well in this regime. This is likely due to two
factors: firstly the RNN is able to learn a more powerful
acoustic model, as it has access to more acoustic context;
and secondly it is able to learn an implicit language model
from the training transcriptions. However the baseline sys-
tem overtook the RNN as the LM was strengthened: in this
case the RNN’s implicit LM may work against it by inter-

fering with the explicit model. Nonetheless the difference
was small, considering that so much more prior informa-
tion (audio pre-processing, pronunciation dictionary, state-
tying, forced alignment) was encoded into the baseline sys-
tem. Unsurprisingly, the gap between ‘RNN-CTC’ and
‘RNN-WER’ also shrank as the LM became more domi-
nant.

The baseline system improved only incrementally from the
14 hour to the 81 hour training set, while the RNN error
rate dropped dramatically. A possible explanation is that 14
hours of transcribed speech is insufficient for the RNN to
learn how to ‘spell’ enough of the words it needs for accu-
rate transcription—whereas it is enough to learn to identify
phonemes.

The combined model performed considerably better than
either the RNN or the baseline individually. The improve-
ment of more than 1% absolute over the baseline is consid-
erably larger than the slight gains usually seen with model
averaging; this is presumably due to the greater difference
between the systems.

7. Discussion

To provide character-level transcriptions, the network must
not only learn how to recognise speech sounds, but how to
transform them into letters. In other words it must learn
how to spell. This is challenging, especially in an ortho-
graphically irregular language like English. The following
examples from the evaluation set, decoded with no dictio-
nary or language model, give some insight into how the
network operates:

target: TO ILLUSTRATE THE POINT A PROMINENT MIDDLE EAST ANALYST

IN WASHINGTON RECOUNTS A CALL FROM ONE CAMPAIGN

output: TWO ALSTRAIT THE POINT A PROMINENT MIDILLE EAST ANA-

LYST IM WASHINGTON RECOUNCACALL FROM ONE CAMPAIGN

target: T. W. A. ALSO PLANS TO HANG ITS BOUTIQUE SHINGLE IN AIR-

PORTS AT LAMBERT SAINT

output: T. W. A. ALSO PLANS TOHING ITS BOOTIK SINGLE IN AIRPORTS AT

LAMBERT SAINT

target: ALL THE EQUITY RAISING IN MILAN GAVE THAT STOCK MARKET

INDIGESTION LAST YEAR

output: ALL THE EQUITY RAISING IN MULONG GAVE THAT STACRK MAR-

KET IN TO JUSTIAN LAST YEAR

target: THERE’S UNREST BUT WE’RE NOT GOING TO LOSE THEM TO

DUKAKIS

output: THERE’S UNREST BUT WERE NOT GOING TO LOSE THEM TO

DEKAKIS

Like all speech recognition systems, the netwok makes
phonetic mistakes, such as ‘shingle’ instead of ‘single’, and
sometimes confuses homophones like ‘two’ and ‘to’. The

Table from: Graves & Jaitley, Towards End-to-End Speech Recognition with Recurrent Neural Networks, ICML 14

Towards End-to-End Speech Recognition with Recurrent Neural Networks

Table 1. Wall Street Journal Results. All scores are word er-
ror rate/character error rate (where known) on the evaluation set.
‘LM’ is the Language model used for decoding. ‘14 Hr’ and ‘81
Hr’ refer to the amount of data used for training.

SYSTEM LM 14 HR 81 HR

RNN-CTC NONE 74.2/30.9 30.1/9.2
RNN-CTC DICTIONARY 69.2/30.0 24.0/8.0
RNN-CTC MONOGRAM 25.8 15.8
RNN-CTC BIGRAM 15.5 10.4
RNN-CTC TRIGRAM 13.5 8.7
RNN-WER NONE 74.5/31.3 27.3/8.4
RNN-WER DICTIONARY 69.7/31.0 21.9/7.3
RNN-WER MONOGRAM 26.0 15.2
RNN-WER BIGRAM 15.3 9.8
RNN-WER TRIGRAM 13.5 8.2
BASELINE NONE — —
BASELINE DICTIONARY 56.1 51.1
BASELINE MONOGRAM 23.4 19.9
BASELINE BIGRAM 11.6 9.4
BASELINE TRIGRAM 9.4 7.8
COMBINATION TRIGRAM — 6.7

the language model to rerank the N-best lists and the WER
of the best resulting transcripts was recorded. The best re-
sults were obtained with an RNN score weight of 7.7 and a
language model weight of 16.

For the 81 hour training set, the oracle error rates for the
monogram, bigram and trigram candidates were 8.9%, 2%
and 1.4% resepectively, while the anti-oracle (rank 300) er-
ror rates varied from 45.5% for monograms and 33% for
trigrams. Using larger N-best lists (up to N=1000) did not
yield significant performance improvements, from which
we concluded that the list was large enough to approximate
the true decoding performance of the RNN.

An additional experiment was performed to measure the ef-
fect of combining the RNN and DNN. The candidate scores
for ‘RNN-WER’ trained on the 81 hour set were blended
with the DNN acoustic model scores and used to rerank
the candidates. Best results were obtained with a language
model weight of 11, an RNN score weight of 1 and a DNN
weight of 1.

The results in Table 1 demonstrate that on the full training
set the character level RNN outperforms the baseline model
when no language model is present. The RNN retrained to
minimise word error rate (labelled ‘RNN-WER’ to distin-
guish it from the original ‘RNN-CTC’ network) performed
particularly well in this regime. This is likely due to two
factors: firstly the RNN is able to learn a more powerful
acoustic model, as it has access to more acoustic context;
and secondly it is able to learn an implicit language model
from the training transcriptions. However the baseline sys-
tem overtook the RNN as the LM was strengthened: in this
case the RNN’s implicit LM may work against it by inter-

fering with the explicit model. Nonetheless the difference
was small, considering that so much more prior informa-
tion (audio pre-processing, pronunciation dictionary, state-
tying, forced alignment) was encoded into the baseline sys-
tem. Unsurprisingly, the gap between ‘RNN-CTC’ and
‘RNN-WER’ also shrank as the LM became more domi-
nant.

The baseline system improved only incrementally from the
14 hour to the 81 hour training set, while the RNN error
rate dropped dramatically. A possible explanation is that 14
hours of transcribed speech is insufficient for the RNN to
learn how to ‘spell’ enough of the words it needs for accu-
rate transcription—whereas it is enough to learn to identify
phonemes.

The combined model performed considerably better than
either the RNN or the baseline individually. The improve-
ment of more than 1% absolute over the baseline is consid-
erably larger than the slight gains usually seen with model
averaging; this is presumably due to the greater difference
between the systems.

7. Discussion

To provide character-level transcriptions, the network must
not only learn how to recognise speech sounds, but how to
transform them into letters. In other words it must learn
how to spell. This is challenging, especially in an ortho-
graphically irregular language like English. The following
examples from the evaluation set, decoded with no dictio-
nary or language model, give some insight into how the
network operates:

target: TO ILLUSTRATE THE POINT A PROMINENT MIDDLE EAST ANALYST

IN WASHINGTON RECOUNTS A CALL FROM ONE CAMPAIGN

output: TWO ALSTRAIT THE POINT A PROMINENT MIDILLE EAST ANA-

LYST IM WASHINGTON RECOUNCACALL FROM ONE CAMPAIGN

target: T. W. A. ALSO PLANS TO HANG ITS BOUTIQUE SHINGLE IN AIR-

PORTS AT LAMBERT SAINT

output: T. W. A. ALSO PLANS TOHING ITS BOOTIK SINGLE IN AIRPORTS AT

LAMBERT SAINT

target: ALL THE EQUITY RAISING IN MILAN GAVE THAT STOCK MARKET

INDIGESTION LAST YEAR

output: ALL THE EQUITY RAISING IN MULONG GAVE THAT STACRK MAR-

KET IN TO JUSTIAN LAST YEAR

target: THERE’S UNREST BUT WE’RE NOT GOING TO LOSE THEM TO

DUKAKIS

output: THERE’S UNREST BUT WERE NOT GOING TO LOSE THEM TO

DEKAKIS

Like all speech recognition systems, the netwok makes
phonetic mistakes, such as ‘shingle’ instead of ‘single’, and
sometimes confuses homophones like ‘two’ and ‘to’. The

Sample char-level transcripts

Towards End-to-End Speech Recognition with Recurrent Neural Networks

Table 1. Wall Street Journal Results. All scores are word er-
ror rate/character error rate (where known) on the evaluation set.
‘LM’ is the Language model used for decoding. ‘14 Hr’ and ‘81
Hr’ refer to the amount of data used for training.

SYSTEM LM 14 HR 81 HR

RNN-CTC NONE 74.2/30.9 30.1/9.2
RNN-CTC DICTIONARY 69.2/30.0 24.0/8.0
RNN-CTC MONOGRAM 25.8 15.8
RNN-CTC BIGRAM 15.5 10.4
RNN-CTC TRIGRAM 13.5 8.7
RNN-WER NONE 74.5/31.3 27.3/8.4
RNN-WER DICTIONARY 69.7/31.0 21.9/7.3
RNN-WER MONOGRAM 26.0 15.2
RNN-WER BIGRAM 15.3 9.8
RNN-WER TRIGRAM 13.5 8.2
BASELINE NONE — —
BASELINE DICTIONARY 56.1 51.1
BASELINE MONOGRAM 23.4 19.9
BASELINE BIGRAM 11.6 9.4
BASELINE TRIGRAM 9.4 7.8
COMBINATION TRIGRAM — 6.7

the language model to rerank the N-best lists and the WER
of the best resulting transcripts was recorded. The best re-
sults were obtained with an RNN score weight of 7.7 and a
language model weight of 16.

For the 81 hour training set, the oracle error rates for the
monogram, bigram and trigram candidates were 8.9%, 2%
and 1.4% resepectively, while the anti-oracle (rank 300) er-
ror rates varied from 45.5% for monograms and 33% for
trigrams. Using larger N-best lists (up to N=1000) did not
yield significant performance improvements, from which
we concluded that the list was large enough to approximate
the true decoding performance of the RNN.

An additional experiment was performed to measure the ef-
fect of combining the RNN and DNN. The candidate scores
for ‘RNN-WER’ trained on the 81 hour set were blended
with the DNN acoustic model scores and used to rerank
the candidates. Best results were obtained with a language
model weight of 11, an RNN score weight of 1 and a DNN
weight of 1.

The results in Table 1 demonstrate that on the full training
set the character level RNN outperforms the baseline model
when no language model is present. The RNN retrained to
minimise word error rate (labelled ‘RNN-WER’ to distin-
guish it from the original ‘RNN-CTC’ network) performed
particularly well in this regime. This is likely due to two
factors: firstly the RNN is able to learn a more powerful
acoustic model, as it has access to more acoustic context;
and secondly it is able to learn an implicit language model
from the training transcriptions. However the baseline sys-
tem overtook the RNN as the LM was strengthened: in this
case the RNN’s implicit LM may work against it by inter-

fering with the explicit model. Nonetheless the difference
was small, considering that so much more prior informa-
tion (audio pre-processing, pronunciation dictionary, state-
tying, forced alignment) was encoded into the baseline sys-
tem. Unsurprisingly, the gap between ‘RNN-CTC’ and
‘RNN-WER’ also shrank as the LM became more domi-
nant.

The baseline system improved only incrementally from the
14 hour to the 81 hour training set, while the RNN error
rate dropped dramatically. A possible explanation is that 14
hours of transcribed speech is insufficient for the RNN to
learn how to ‘spell’ enough of the words it needs for accu-
rate transcription—whereas it is enough to learn to identify
phonemes.

The combined model performed considerably better than
either the RNN or the baseline individually. The improve-
ment of more than 1% absolute over the baseline is consid-
erably larger than the slight gains usually seen with model
averaging; this is presumably due to the greater difference
between the systems.

7. Discussion

To provide character-level transcriptions, the network must
not only learn how to recognise speech sounds, but how to
transform them into letters. In other words it must learn
how to spell. This is challenging, especially in an ortho-
graphically irregular language like English. The following
examples from the evaluation set, decoded with no dictio-
nary or language model, give some insight into how the
network operates:

target: TO ILLUSTRATE THE POINT A PROMINENT MIDDLE EAST ANALYST

IN WASHINGTON RECOUNTS A CALL FROM ONE CAMPAIGN

output: TWO ALSTRAIT THE POINT A PROMINENT MIDILLE EAST ANA-

LYST IM WASHINGTON RECOUNCACALL FROM ONE CAMPAIGN

target: T. W. A. ALSO PLANS TO HANG ITS BOUTIQUE SHINGLE IN AIR-

PORTS AT LAMBERT SAINT

output: T. W. A. ALSO PLANS TOHING ITS BOOTIK SINGLE IN AIRPORTS AT

LAMBERT SAINT

target: ALL THE EQUITY RAISING IN MILAN GAVE THAT STOCK MARKET

INDIGESTION LAST YEAR

output: ALL THE EQUITY RAISING IN MULONG GAVE THAT STACRK MAR-

KET IN TO JUSTIAN LAST YEAR

target: THERE’S UNREST BUT WE’RE NOT GOING TO LOSE THEM TO

DUKAKIS

output: THERE’S UNREST BUT WERE NOT GOING TO LOSE THEM TO

DEKAKIS

Like all speech recognition systems, the netwok makes
phonetic mistakes, such as ‘shingle’ instead of ‘single’, and
sometimes confuses homophones like ‘two’ and ‘to’. The

Towards End-to-End Speech Recognition with Recurrent Neural Networks

0

1

p
ro
b
a
b
ili
ty

H I S F R I E_ N D ' S _

outputs

waveform

errors

Figure 4. Network outputs. The figure shows the frame-level character probabilities emitted by the CTC layer (different colour for
each character, dotted grey line for ‘blanks’), along with the corresponding training errors, while processing an utterance. The target
transcription was ‘HIS FRIENDS ’, where the underscores are end-of-word markers. The network was trained with WER loss, which
tends to give very sharp output decisions, and hence sparse error signals (if an output probability is 1, nothing else can be sampled, so
the gradient is 0 even if the output is wrong). In this case the only gradient comes from the extraneous apostrophe before the ‘S’. Note
that the characters in common sequences such as ‘IS’, ‘RI’ and ‘END’ are emitted very close together, suggesting that the network learns
them as single sounds.

latter problem may be harder than usual to fix with a lan-
guage model, as words that are close in sound can be quite
distant in spelling. Unlike phonetic systems, the network
also makes lexical errors—e.g. ‘bootik’ for ‘boutique’—
and errors that combine the two, such as ‘alstrait’ for ‘il-
lustrate’.

It is able to correctly transcribe fairly complex words such
as ‘campaign’, ‘analyst’ and ‘equity’ that appear frequently
in financial texts (possibly learning them as special cases),
but struggles with both the sound and spelling of unfamil-
iar words, especially proper names such as ‘Milan’ and
‘Dukakis’. This suggests that out-of-vocabulary words
may still be a problem for character-level recognition, even
in the absence of a dictionary. However, the fact that the
network can spell at all shows that it is able to infer sig-
nificant linguistic information from the training transcripts,
paving the way for a truly end-to-end speech recognition
system.

8. Conclusion

This paper has demonstrated that character-level speech
transcription can be performed by a recurrent neural net-
work with minimal preprocessing and no explicit phonetic
representation. We have also introduced a novel objective
function that allows the network to be directly optimised
for word error rate, and shown how to integrate the net-
work outputs with a language model during decoding. Fi-
nally, by combining the new model with a baseline, we
have achieved state-of-the-art accuracy on the Wall Street
Journal corpus for speaker independent recognition.

In the future, it would be interesting to apply the system to
datasets where the language model plays a lesser role, such
as spontaneous speech, or where the training set is suffi-
ciently large that the network can learn a language model
from the transcripts alone. Another promising direction
would be to integrate the language model into the CTC or
expected transcription loss objective functions during train-
ing.

Acknowledgements

The authors wish to thank Daniel Povey for his assistance
with Kaldi. This work was partially supported by the Cana-
dian Institute for Advanced Research.

Network Outputs

Image from: Graves & Jaitley, Towards End-to-End Speech Recognition with Recurrent Neural Networks, ICML 14

Another end-to-end system

• Decoding is still at the word level. Out-of-vocabulary (OOV)
words cannot be handled.

• Build a system that is trained and decoded entirely at the
character-level [M et al.].

• This would enable the transcription of OOV words,
disfluencies, etc.

• Shows results on the Switchboard task. Matches a GMM-
HMM baseline system but underperforms compared to an
HMM-DNN baseline.

[M et al.]:Maas et al., “Lexicon Free Conversational Speech Recognition with Neural Networks”, NAACL 15

Model Specifics

character probabilities. The CTC collapsing func-

tion achieves this by introducing a special blank

symbol, which we denote using “ ”, and collapsing
any repeating characters in the original length T out-
put. This output symbol contains the notion of junk

or other so as to not produce a character in the fi-
nal output hypothesis. Our transcripts W come from
some set of symbols ⇣

0 but we reason over ⇣ = ⇣
0[.

We denote the collapsing function by (·) which
takes an input string and produces the unique col-
lapsed version of that string. As an example, here
are the set of strings Z of length T = 3 such that
(z) = hi, 8z 2 Z:

Z = {hhi,hii, hi,h i,hi }.

There are a large number of possible length T

sequences corresponding to a final length ⌧ tran-
script hypothesis. The CTC objective function
LCTC(X,W) is a likelihood of the correct final tran-
script W which requires integrating over the prob-
abilities of all length T character sequences CW =
{C : (C) = W} consistent with W after applying
the collapsing function,

LCTC(X, W) =
X

CW

p(C|X)

=
X

CW

TY

t=1

p(ct|X).

(2)

Using a dynamic programming approach we can ex-
actly compute this loss function efficiently as well as
its gradient with respect to our probabilities p(ct|X).

2.2 Deep Bi-Directional Recurrent Neural
Networks

Our loss function requires at each time t a probabil-
ity distribution p(c|xt) over characters c given in-
put features xt. We model this distribution using
a DBRNN because it provides an expressive model
which explicitly accounts for the sequential relation-
ships that should exist in our task. Moreover, the
DBRNN is a relatively straightforward neural net-
work architecture to specify, and allows us to learn
parameters from data rather than more explicitly
specifying how to convert audio features into char-
acters. Figure 1 shows a DBRNN with two hidden
layers.

W (1) W (1) W (1)

W (2) W (2) W (2)

W (f) W (f)

W (b) W (b)
W (s) W (s) W (s)

+ + +

x

h(1)

h(f)

h(b)

p(c|x)

t� 1 t t+ 1

Figure 1: Deep bi-directional recurrent neural net-
work to map input audio features X to a distribu-
tion p(c|xt) over output characters at each timestep
t. The network contains two hidden layers with the
second layer having bi-directional temporal recur-
rence.

A DBRNN computes the distribution p(c|xt) us-
ing a series of hidden layers followed by an output
layer. Given an input vector xt the first hidden layer
activations are a vector computed as,

h
(1) = �(W (1)T

xt + b
(1)), (3)

where the matrix W
(1) and vector b

(1) are the
weight matrix and bias vector. The function �(·)
is a point-wise nonlinearity. We use �(z) =
min(max(z, 0), µ). This is a rectified linear acti-
vation function clipped to a maximum possible ac-
tivation of µ to prevent overflow. Rectified linear
hidden units have been show to work well in gen-
eral for deep neural networks, as well as for acoustic
modeling of speech data (Glorot et al., 2011; Zeiler
et al., 2013; Dahl et al., 2013; Maas et al., 2013)

We select a single hidden layer j of the network
to have temporal connections. Our temporal hidden
layer representation h

(j) is the sum of two partial
hidden layer representations,

h
(j)
t = h

(f)
t + h

(b)
t . (4)

The representation h
(f) uses a weight matrix W

(f)

to propagate information forwards in time. Sim-
ilarly, the representation h

(b) propagates informa-
tion backwards in time using a weight matrix W

(b).
These partial hidden representations both take input
from the previous hidden layer h

(j�1) using a weight

• Approach consists of two neural models:

• A deep bidirectional RNN (DBRNN) mapping acoustic features
to character sequences (Trained using CTC.)

• A neural network character language model

Image from Maas et al., “Lexicon Free Conversational Speech Recognition with Neural Networks”, NAACL 15

Decoding
• Simplest form: Decode without any language model

• Beam Search decoding:

• Combine DBRNN outputs with a char-level language model

• Char-level language model applied at every time step (unlike
word models)

• Circumvents the issue of handling OOV words during
decoding

• More about beam search in the coming week.

Experimental Results

Method CER EV CH SWBD

HMM-GMM 23.0 29.0 36.1 21.7
HMM-DNN 17.6 21.2 27.1 15.1
HMM-SHF NR NR NR 12.4

CTC no LM 27.7 47.1 56.1 38.0
CTC+5-gram 25.7 39.0 47.0 30.8
CTC+7-gram 24.7 35.9 43.8 27.8
CTC+NN-1 24.5 32.3 41.1 23.4
CTC+NN-3 24.0 30.9 39.9 21.8
CTC+RNN 24.9 33.0 41.7 24.2
CTC+RNN-3 24.7 30.8 40.2 21.4

Table 1: Character error rate (CER) and word er-
ror rate results on the Eval2000 test set. We re-
port word error rates on the full test set (EV) which
consists of the Switchboard (SWBD) and CallHome
(CH) subsets. As baseline systems we use an HMM-
GMM system and HMM-DNN system. We evaluate
our DBRNN trained using CTC by decoding with
several character-level language models: 5-gram, 7-
gram, densely connected neural networks with 1 and
3 hidden layers (NN-1, and NN-3), as well as recur-
rent neural networks s with 1 and 3 hidden layers.
We additionally include results from a state-of-the-
art HMM-based system (HMM-DNN-SHF) which
does not report performance on all metrics we eval-
uate (NR).

First, we build an HMM-GMM system using the
Kaldi open-source toolkit2 (Povey et al., 2011). The
baseline recognizer has 8,986 sub-phone states and
200K Gaussians trained using maximum likelihood.
Input features are speaker-adapted MFCCs. Overall,
the baseline GMM system setup largely follows the
existing s5b Kaldi recipe, and we defer to previous
work for details (Vesely et al., 2013).

We additionally built an HMM-DNN system
by training a DNN acoustic model using maxi-
mum likelihood on the alignments produced by our
HMM-GMM system. The DNN consists of five hid-
den layers, each with 2,048 hidden units, for a total
of approximately 36 million (M) free parameters in
the acoustic model.

Both baseline systems use a bigram language

2http://kaldi.sf.net

model built from the 3M words in the Switch-
board transcripts interpolated with a second bi-
gram language model built from 11M words on the
Fisher English Part 1 transcripts (LDC2004T19).
Both LMs are trained using interpolated Kneser-
Ney smoothing. For context we also include WER
results from a state-of-the-art HMM-DNN system
built with quinphone phonetic context and Hessian-
free sequence-discriminative training (Sainath et al.,
2014).

4.2 DBRNN Training
We train a DBRNN using the CTC loss function on
the entire 300hr training corpus. The input features
to the DBRNN at each timestep are MFCCs with
context window of ±10 frames. The DBRNN has
5 hidden layers with the third containing recurrent
connections. All layers have 1824 hidden units, giv-
ing about 20M trainable parameters. In preliminary
experiments we found that choosing the middle hid-
den layer to have recurrent connections led to the
best results.

The output symbol set ⇣ consists of 33 characters
including the special blank character. Note that be-
cause speech recognition transcriptions do not con-
tain proper casing or punctuation, we exclude capi-
tal letters and punctuation marks with the exception
of “-”, which denotes a partial word fragment, and
“’”, as used in contractions such as “can’t.”

We train the DBRNN from random initial pa-
rameters using the gradient-based Nesterov’s accel-
erated gradient (NAG) algorithm as this technique
is sometimes beneficial as compared with standard
stochastic gradient descent for deep recurrent neural
network training (Sutskever et al., 2013). The NAG
algorithm uses a step size of 10�5 and a momentum
of 0.95. After each epoch we divide the learning rate
by 1.3. Training for 10 epochs on a single GTX 570
GPU takes approximately one week.

4.3 Character Language Model Training
The Switchboard corpus transcripts alone are too
small to build CLMs which accurately model gen-
eral orthography in English. To learn how to spell
words more generally we train our CLMs using a
corpus of 31 billion words gathered from the web
(Heafield et al., 2013). Our language models use
sentence start and end tokens, <s> and </s>, as

Method CER EV CH SWBD

HMM-GMM 23.0 29.0 36.1 21.7
HMM-DNN 17.6 21.2 27.1 15.1
HMM-SHF NR NR NR 12.4

CTC no LM 27.7 47.1 56.1 38.0
CTC+5-gram 25.7 39.0 47.0 30.8
CTC+7-gram 24.7 35.9 43.8 27.8
CTC+NN-1 24.5 32.3 41.1 23.4
CTC+NN-3 24.0 30.9 39.9 21.8
CTC+RNN 24.9 33.0 41.7 24.2
CTC+RNN-3 24.7 30.8 40.2 21.4

Table 1: Character error rate (CER) and word er-
ror rate results on the Eval2000 test set. We re-
port word error rates on the full test set (EV) which
consists of the Switchboard (SWBD) and CallHome
(CH) subsets. As baseline systems we use an HMM-
GMM system and HMM-DNN system. We evaluate
our DBRNN trained using CTC by decoding with
several character-level language models: 5-gram, 7-
gram, densely connected neural networks with 1 and
3 hidden layers (NN-1, and NN-3), as well as recur-
rent neural networks s with 1 and 3 hidden layers.
We additionally include results from a state-of-the-
art HMM-based system (HMM-DNN-SHF) which
does not report performance on all metrics we eval-
uate (NR).

First, we build an HMM-GMM system using the
Kaldi open-source toolkit2 (Povey et al., 2011). The
baseline recognizer has 8,986 sub-phone states and
200K Gaussians trained using maximum likelihood.
Input features are speaker-adapted MFCCs. Overall,
the baseline GMM system setup largely follows the
existing s5b Kaldi recipe, and we defer to previous
work for details (Vesely et al., 2013).

We additionally built an HMM-DNN system
by training a DNN acoustic model using maxi-
mum likelihood on the alignments produced by our
HMM-GMM system. The DNN consists of five hid-
den layers, each with 2,048 hidden units, for a total
of approximately 36 million (M) free parameters in
the acoustic model.

Both baseline systems use a bigram language

2http://kaldi.sf.net

model built from the 3M words in the Switch-
board transcripts interpolated with a second bi-
gram language model built from 11M words on the
Fisher English Part 1 transcripts (LDC2004T19).
Both LMs are trained using interpolated Kneser-
Ney smoothing. For context we also include WER
results from a state-of-the-art HMM-DNN system
built with quinphone phonetic context and Hessian-
free sequence-discriminative training (Sainath et al.,
2014).

4.2 DBRNN Training
We train a DBRNN using the CTC loss function on
the entire 300hr training corpus. The input features
to the DBRNN at each timestep are MFCCs with
context window of ±10 frames. The DBRNN has
5 hidden layers with the third containing recurrent
connections. All layers have 1824 hidden units, giv-
ing about 20M trainable parameters. In preliminary
experiments we found that choosing the middle hid-
den layer to have recurrent connections led to the
best results.

The output symbol set ⇣ consists of 33 characters
including the special blank character. Note that be-
cause speech recognition transcriptions do not con-
tain proper casing or punctuation, we exclude capi-
tal letters and punctuation marks with the exception
of “-”, which denotes a partial word fragment, and
“’”, as used in contractions such as “can’t.”

We train the DBRNN from random initial pa-
rameters using the gradient-based Nesterov’s accel-
erated gradient (NAG) algorithm as this technique
is sometimes beneficial as compared with standard
stochastic gradient descent for deep recurrent neural
network training (Sutskever et al., 2013). The NAG
algorithm uses a step size of 10�5 and a momentum
of 0.95. After each epoch we divide the learning rate
by 1.3. Training for 10 epochs on a single GTX 570
GPU takes approximately one week.

4.3 Character Language Model Training
The Switchboard corpus transcripts alone are too
small to build CLMs which accurately model gen-
eral orthography in English. To learn how to spell
words more generally we train our CLMs using a
corpus of 31 billion words gathered from the web
(Heafield et al., 2013). Our language models use
sentence start and end tokens, <s> and </s>, as

Image from Maas et al., “Lexicon Free Conversational Speech Recognition with Neural Networks”, NAACL 15

Sample Test Utterances

Method Transcription

(1)
Truth yeah i went into the i do not know what you think of fidelity but
HMM-GMM yeah when the i don’t know what you think of fidel it even them
CTC+CLM yeah i went to i don’t know what you think of fidelity but um

(2)

Truth no no speaking of weather do you carry a altimeter slash barometer

HMM-GMM no i’m not all being the weather do you uh carry a uh helped emitters last
brahms her

CTC+CLM no no beating of whether do you uh carry a uh a time or less barometer

(3)
Truth i would ima- well yeah it is i know you are able to stay home with them
HMM-GMM i would amount well yeah it is i know um you’re able to stay home with them
CTC+CLM i would ima- well yeah it is i know uh you’re able to stay home with them

Table 2: Example test set utterances with a ground truth transcription and hypotheses from our method
(CTC+CLM) and a baseline HMM-GMM system of comparable overall WER. The words fidelity and
barometer are not in the lexicon of the HMM-GMM system.

Figure 2: DBRNN character probabilities over time
for a single utterance along with the per-frame most
likely character string s and the collapsed output
(s). Due to space constraints we only show a dis-
tinction in line type between the blank symbol and
non-blank symbols.

GMM and DBRNN+NN-3 systems.
The DBRNN sometimes correctly transcribes

OOV words with respect to our audio training cor-
pus. We find that OOVs tend to trigger clusters of
errors in the HMM-GMM system, an observation
that has been systematically explored in previous
work (Goldwater et al., 2010). As shown in ex-
ample utterance (3), HMM-GMM errors can intro-
duce word substitution errors which may alter mean-
ing whereas the DBRNN system outputs word frag-
ments or non-words which are phonetically similar
and may be useful input features for SLU systems.
Unfortunately the Eval2000 test set does not offer a

rich set of utterances containing OOVs or fragments
to perform a deeper analysis. The HMM-GMM and
best DBRNN system achieve identical WERs on the
subset of test utterances containing OOVs and the
subset of test utterances containing fragments.

Finally, we quantitatively compare how character
probabilities from the DBRNN align with phonetic
segments from the HMM-GMM system. We gener-
ate HMM-GMM forced alignments on a large sam-
ple of the training set, and separate utterances into
monophone segments. For each monophone, we
compute the average character probabilities from the
DBRNN by aligning the beginning of each mono-
phone segment, treating it as time 0. We measure
time using feature frames rather than seconds. Fig-
ure 3 shows character probabilities over time for the
phones k, sh, w, and uw.

Although the CTC model does not explicitly com-
pute a forced alignment as part of training, we
see significant rises in character probabilities corre-
sponding to particular phones during HMM-GMM-
aligned monophone segments. This indicates that
the CTC model automatically learns a reasonable
alignment of characters to the audio. Generally, the
CTC model tends to produce character spikes to-
wards the beginning of monophone segments. This
is especially evident in plosive consonants such as
k and t. For liquids and glides (r, l, w, y), the CTC
model does not produce characters until later in the
monophone segment. For vowels the CTC character

Image from Maas et al., “Lexicon Free Conversational Speech Recognition with Neural Networks”, NAACL 15

Analysing character probabilities

Method Transcription

(1)
Truth yeah i went into the i do not know what you think of fidelity but
HMM-GMM yeah when the i don’t know what you think of fidel it even them
CTC+CLM yeah i went to i don’t know what you think of fidelity but um

(2)

Truth no no speaking of weather do you carry a altimeter slash barometer

HMM-GMM no i’m not all being the weather do you uh carry a uh helped emitters last
brahms her

CTC+CLM no no beating of whether do you uh carry a uh a time or less barometer

(3)
Truth i would ima- well yeah it is i know you are able to stay home with them
HMM-GMM i would amount well yeah it is i know um you’re able to stay home with them
CTC+CLM i would ima- well yeah it is i know uh you’re able to stay home with them

Table 2: Example test set utterances with a ground truth transcription and hypotheses from our method
(CTC+CLM) and a baseline HMM-GMM system of comparable overall WER. The words fidelity and
barometer are not in the lexicon of the HMM-GMM system.

0 10 20 30
time (t)

0.5

1.0
p(

c|
x

t)

s:

(s):

_____o__hh__________ ____y_eahh___

oh yeah

p(|xt)

p(¬ |xt)

Figure 2: DBRNN character probabilities over time
for a single utterance along with the per-frame most
likely character string s and the collapsed output
(s). Due to space constraints we only show a dis-
tinction in line type between the blank symbol and
non-blank symbols.

GMM and DBRNN+NN-3 systems.
The DBRNN sometimes correctly transcribes

OOV words with respect to our audio training cor-
pus. We find that OOVs tend to trigger clusters of
errors in the HMM-GMM system, an observation
that has been systematically explored in previous
work (Goldwater et al., 2010). As shown in ex-
ample utterance (3), HMM-GMM errors can intro-
duce word substitution errors which may alter mean-
ing whereas the DBRNN system outputs word frag-
ments or non-words which are phonetically similar
and may be useful input features for SLU systems.
Unfortunately the Eval2000 test set does not offer a

rich set of utterances containing OOVs or fragments
to perform a deeper analysis. The HMM-GMM and
best DBRNN system achieve identical WERs on the
subset of test utterances containing OOVs and the
subset of test utterances containing fragments.

Finally, we quantitatively compare how character
probabilities from the DBRNN align with phonetic
segments from the HMM-GMM system. We gener-
ate HMM-GMM forced alignments on a large sam-
ple of the training set, and separate utterances into
monophone segments. For each monophone, we
compute the average character probabilities from the
DBRNN by aligning the beginning of each mono-
phone segment, treating it as time 0. We measure
time using feature frames rather than seconds. Fig-
ure 3 shows character probabilities over time for the
phones k, sh, w, and uw.

Although the CTC model does not explicitly com-
pute a forced alignment as part of training, we
see significant rises in character probabilities corre-
sponding to particular phones during HMM-GMM-
aligned monophone segments. This indicates that
the CTC model automatically learns a reasonable
alignment of characters to the audio. Generally, the
CTC model tends to produce character spikes to-
wards the beginning of monophone segments. This
is especially evident in plosive consonants such as
k and t. For liquids and glides (r, l, w, y), the CTC
model does not produce characters until later in the
monophone segment. For vowels the CTC character

Image from Maas et al., “Lexicon Free Conversational Speech Recognition with Neural Networks”, NAACL 15

