End-to-end Neural Architectures For ASR

Instructor: Preethi Jyothi

Lecture 14

Neural network-based ASR components

- models within the ASR pipeline
- single component within such a complex pipeline

 Significant improvements in ASR performance by using neural models for both acoustic models and language

However, there are limitations to using neural networks for a

Motivation for end-to-end ASR systems

- Limitations:
 - Objective function optimized in neural networks very different from final evaluation metric (i.e. word transcription accuracy)
 - Additionally, frame-level training targets derived from HMMbased alignments
 - Pronunciation dictionaries are used to map from words to phonemes; expensive resource to create
- Can we build a single RNN architecture that represents the entire ASR pipeline?

Network Architecture

- Input: Acoustic feature vectors. Output: Characters •
- \bullet used to implement \mathcal{H} (in eqns above)

Image from: Graves & Jaitley, Towards End-to-End Speech Recognition with Recurrent Neural Networks, ICML 14

$$\overrightarrow{h}_{t} = \mathcal{H}\left(W_{x\overrightarrow{h}}x_{t} + W_{\overrightarrow{h}}\overrightarrow{h}\overrightarrow{h}_{t-1} + b_{\overrightarrow{h}}\right)$$

$$\overleftarrow{h}_{t} = \mathcal{H}\left(W_{x\overleftarrow{h}}x_{t} + W_{\overleftarrow{h}}\overleftarrow{h}\overrightarrow{h}_{t+1} + b_{\overleftarrow{h}}\right)$$

$$y_{t} = W_{\overrightarrow{h}y}\overrightarrow{h}_{t} + W_{\overleftarrow{h}y}\overleftarrow{h}_{t} + b_{o}$$

Long Short-Term Memory (LSTM) units (with in-built memory cells) are

Deep bidirectional LSTMs: Stack multiple bidirectional LSTM layers

Connectionist Temporal Classification (CTC)

- be output at each timestep
- tries to get around this!

• RNNs in ASR, if trained at the frame-level, will typically require alignments between the acoustics and the word sequence during training telling you which label (e.g. phone or character) should

A new loss function, Connectionist Temporal Classification (CTC)

 This is an objective function that allows RNN training without an explicit alignment step: CTC considers all possible alignments

CTC: Prerequisites

- B(x, v, v, z) = B(x, x, x, v, z) = x, y, z'' = x, y, z''

Augment the output vocabulary with an additional "blank" (_) label

• For a given label sequence, there can be multiple alignments: $(x, y) = x^2 + \frac{1}{2} + \frac{1}{$ y, z) could correspond to (x, _, y, _, _, z) or (_, x, x, _, y, z)

Define a 2-step operator B that reduces a label sequence by: first, removing repeating labels and second, removing blanks.

CTC Pipeline

Image from: https://distill.pub/2017/ctc/

CTC Objective Function

sequence y given an utterance x

$$\operatorname{CTC}(x, y) = \Pr(y|x) = \sum_{a \in B^{-1}(y)} \Pr(a|x)$$

- by $B^{-1}(v)$
- CTC assumes that Pr(a | x)
 - conditionally independent given the input
- loss function and its gradients [GJ14]

CTC objective function is the probability of an output label

• Here, we sum over all possible alignments for y, enumerated

x) can be computed as
$$\prod_{t=1}^{T} \Pr(a_t | x)$$

• i.e. CTC assumes that outputs at each time-step are

Efficient dynamic programming algorithm to compute this

[GJ14] Towards End-to-End Speech Recognition with Recurrent Neural Networks, ICML 14

Illustration: Dynamic Programming Algorithm

Image from: https://distill.pub/2017/ctc/

Decoding

- Pick the single most probable output at every time step $\operatorname*{arg\,max}_{y} \Pr(y|x) \approx B(\operatorname*{arg\,max}_{a} \Pr(a|x))$
- Use a beam search algorithm to integrate a dictionary and a language model
- Beam search will be covered in more detail next week

Experimental Results

Table 1. Wall Street Journal Results. All scores are word error rate/character error rate (where known) on the evaluation set. 'LM' is the Language model used for decoding. '14 Hr' and '81 Hr' refer to the amount of data used for training.

System	LM	14 HR	81 HR
RNN-CTC	None	74.2/30.9	30.1/9.2
RNN-CTC	DICTIONARY	69.2/30.0	24.0/8.0
RNN-CTC	Monogram	25.8	15.8
RNN-CTC	BIGRAM	15.5	10.4
RNN-CTC	TRIGRAM	13.5	8.7
BASELINE	None		
BASELINE	DICTIONARY	56.1	51.1
BASELINE	Monogram	23.4	19.9
BASELINE	BIGRAM	11.6	9.4
BASELINE	TRIGRAM	9.4	7.8
COMBINATION	TRIGRAM		6.7

Sample char-level transcripts

target: TO ILLUSTRATE THE POINT A PROMINENT MIDDLE EAST ANALYSTIN WASHINGTON RECOUNTS A CALL FROM ONE CAMPAIGNoutput: Two ALSTRAIT THE POINT A PROMINENT MIDILLE EAST ANA-LYST IM WASHINGTON RECOUNCACALL FROM ONE CAMPAIGN

target: T. W. A. ALSO PLANS TO HANG ITS BOUTIQUE SHINGLE IN AIR-PORTS AT LAMBERT SAINT Output: T. W. A. ALSO PLANS TOHING ITS BOOTIK SINGLE IN AIRPORTS AT LAMBERT SAINT

target: ALL THE EQUITY RAISING IN MILAN GAVE THAT STOCK MARKET INDIGESTION LAST YEAR output: ALL THE EQUITY RAISING IN MULONG GAVE THAT STACRK MAR-KET IN TO JUSTIAN LAST YEAR

target:THERE'S UNREST BUT WE'RE NOT GOING TO LOSE THEM TODUKAKISoutput:THERE'S UNREST BUT WERE NOT GOING TO LOSE THEM TODEKAKIS

Network Outputs

Image from: Graves & Jaitley, Towards End-to-End Speech Recognition with Recurrent Neural Networks, ICML 14

Another end-to-end system

- words cannot be handled.
- character-level [M et al.].
 - This would enable the transcription of OOV words, disfluencies, etc.
- HMM-DNN baseline.

Decoding is still at the word level. Out-of-vocabulary (OOV)

Build a system that is trained and decoded entirely at the

 Shows results on the Switchboard task. Matches a GMM-HMM baseline system but underperforms compared to an

[M et al.]: Maas et al., "Lexicon Free Conversational Speech Recognition with Neural Networks", NAACL 15

Model Specifics

- Approach consists of two neural models: \bullet
 - A deep bidirectional RNN (DBRNN) mapping acoustic features • to character sequences (Trained using CTC.)
 - A neural network character language model •

Decoding

- Simplest form: Decode without any language model
- Beam Search decoding:
 - Combine DBRNN outputs with a char-level language model
 - Char-level language model applied at every time step (unlike word models)
 - Circumvents the issue of handling OOV words during decoding
 - More about beam search in the coming week.

Experimental Results

Method	CER	EV	СН	SWBD
HMM-GMM	23.0	29.0	36.1	21.7
HMM-DNN	17.6	21.2	27.1	15.1
HMM-SHF	NR	NR	NR	12.4
CTC no LM	27.7	47.1	56.1	38.0
CTC+5-gram	25.7	39.0	47.0	30.8
CTC+7-gram	24.7	35.9	43.8	27.8
CTC+NN-1	24.5	32.3	41.1	23.4
CTC+NN-3	24.0	30.9	39.9	21.8
CTC+RNN	24.9	33.0	41.7	24.2
CTC+RNN-3	24.7	30.8	40.2	21.4

Sample Test Utterances

#	Method	Transcription
(1)	Truth HMM-GMM CTC+CLM	yeah i went into the i do yeah when the i don't ki yeah i went to i don't kr
(2)	Truth HMM-GMM	no no speaking of weath no i'm not all being th brahms her
(3)	CTC+CLM Truth HMM-GMM CTC+CLM	no no beating of whether i would ima- well yeah i would amount well yea i would ima- well yeah

not know what you think of *fidelity* but now what you think of fidel it even them now what you think of fidelity but um

her do you carry a altimeter slash *barometer* ne weather do you uh carry a uh helped emitters last

er do you uh carry a uh a time or less barometer

it is i know you are able to stay home with them ah it is i know um you're able to stay home with them it is i know uh you're able to stay home with them

Analysing character probabilities

