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Connectionist Temporal Classification (CTC): Recap
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Image from: https://distill.pub/2017/ctc/

• CTC objective function is the probability of an 
output label sequence �  given an utterance �  
(by summing over all possible alignments for �  
provided by � ):       
 

�

• Efficient forward+backward algorithm to 
compute this loss function and its gradients

y x
y

B−1(y)

CTC(x, y) = Pr(y |x) = ∑
a∈B−1(y)

Pr(a |x)

= ∑
a∈B−1(y)

T

∏
t=1

Pr(at |x)



Illustration: Forward Algorithm to compute !αt( j)
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aij =
1 if i = j or i = j − 1
1 if i = j − 2 and y′�j ≠ y′�j−2

0 otherwise

αt( j) =
j

∑
i=j−2

αt−1(i)aijbt(y′�j)

where

bt(y′�j) is the probability given by NN to the symbol

�  for � , �y′ �j t = 1…T  when  |x | = T

y′�j = {yj/2 if j is even
ϵ otherwise 

( j = 1…2l + 1 when  |y | = l)

CTC(x, y) = ∑
a∈B−1(y)

Pr(a |x) = αT(2l) + αT(2l + 1)



CTC vs. LAS

• Works well for end-to-end ASR systems

• CTC makes an assumption that the network outputs at different 
time steps are conditionally independent given the inputs 

• The Listen, Attend and Spell [LAS] network makes no 
independence assumptions about the probability distribution of 
the output sequences given the input

• Based on the sequence-to-sequence with attention framework

[LAS]: Chan et al., Listen, Attend and Spell: A NN for LVCSR, ICASSP 2016

LISTEN, ATTEND AND SPELL: A NEURAL NETWORK FOR
LARGE VOCABULARY CONVERSATIONAL SPEECH RECOGNITION
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ABSTRACT

We present Listen, Attend and Spell (LAS), a neural speech recog-
nizer that transcribes speech utterances directly to characters with-
out pronunciation models, HMMs or other components of traditional
speech recognizers. In LAS, the neural network architecture sub-
sumes the acoustic, pronunciation and language models making it
not only an end-to-end trained system but an end-to-end model. In
contrast to DNN-HMM, CTC and most other models, LAS makes no
independence assumptions about the probability distribution of the
output character sequences given the acoustic sequence. Our system
has two components: a listener and a speller. The listener is a pyra-
midal recurrent network encoder that accepts filter bank spectra as
inputs. The speller is an attention-based recurrent network decoder
that emits each character conditioned on all previous characters, and
the entire acoustic sequence. On a Google voice search task, LAS
achieves a WER of 14.1% without a dictionary or an external lan-
guage model and 10.3% with language model rescoring over the top
32 beams. In comparison, the state-of-the-art CLDNN-HMM model
achieves a WER of 8.0% on the same set.

Index Terms— Recurrent neural network, neural attention, end-
to-end speech recognition

1. INTRODUCTION

State-of-the-art speech recognizers of today are complicated systems
comprising of various components - acoustic models, language mod-
els, pronunciation models and text normalization. Each of these
components make assumptions about the underlying probability dis-
tributions they model. For example n-gram language models and
Hidden Markov Models (HMMs) make strong Markovian indepen-
dence assumptions between words/symbols in a sequence. Connec-
tionist Temporal Classification (CTC) and DNN-HMM systems as-
sume that neural networks make independent predictions at different
times and use HMMs or language models (which make their own in-
dependence assumptions) to introduce dependencies between these
predictions over time [1, 2, 3]. End-to-end training of such mod-
els attempts to mitigate these problems by training the components
jointly [4, 5, 6]. In these models, acoustic models are updated based
on a WER proxy, while the pronunciation and language models are
rarely updated [7], if at all.

In this paper we introduce Listen, Attend and Spell (LAS), a
neural network that learns to transcribe an audio sequence signal to
a word sequence, one character at a time, without using explicit lan-
guage models, pronunciation models, HMMs, etc. LAS does not
make any independence assumptions about the nature of the prob-
ability distribution of the output character sequence, given the in-
put acoustic sequence. This method is based on the sequence-to-
sequence learning framework with attention [8, 9, 10, 11, 12, 13]. It
consists of an encoder Recurrent Neural Network (RNN), which is

named the listener, and a decoder RNN, which is named the speller.
The listener is a pyramidal RNN that converts speech signals into
high level features. The speller is an RNN that transduces these
higher level features into output utterances by specifying a proba-
bility distribution over the next character, given all of the acoustics
and the previous characters. At each step the RNN uses its inter-
nal state to guide an attention mechanism [10, 11, 12] to compute a
“context” vector from the high level features of the listener. It uses
this context vector, and its internal state to both update its internal
state and to predict the next character in the sequence. The entire
model is trained jointly, from scratch, by optimizing the probability
of the output sequence using a chain rule decomposition. We call
this an end-to-end model because all the components of a traditional
speech recognizer are integrated into its parameters, and optimized
together during training, unlike end-to-end training of conventional
models that attempt to adjust acoustic models to work well with the
other fixed components of a speech recognizer.

Our model was inspired by [11, 12] that showed how end-to-
end recognition could be performed on the TIMIT phone recognition
task. We note a recent paper from the same group that describes
an application of these ideas to WSJ [14]. Our paper independently
explores the challenges associated with the application of these ideas
to large scale conversational speech recognition on a Google voice
search task. We defer a discussion of the relationship between these
and other methods to section 5.

2. MODEL

In this section, we formally describe LAS. Let x = (x1, . . . , xT )
be the input sequence of filter bank spectra features and y =
(hsosi, y1, . . . , yS , heosi), yi 2 {a, · · · , z, 0, · · · , 9, hspacei,
hcommai, hperiodi, hapostrophei, hunki} be the output sequence
of characters. Here hsosi and heosi are the special start-of-sentence
token, and end-of-sentence tokens, respectively, and hunki are
unknown tokens such as accented characters.

LAS models each character output yi as a conditional distribu-
tion over the previous characters y<i and the input signal x using the
chain rule for probabilities:

P (y|x) =
Y

i

P (yi|x, y<i) (1)

This objective makes the model a discriminative, end-to-end
model, because it directly predicts the conditional probability of
character sequences, given the acoustic signal.

LAS consists of two sub-modules: the listener and the speller.
The listener is an acoustic model encoder that performs an operation
called Listen. The Listen operation transforms the original signal x
into a high level representation h = (h1, . . . , hU ) with U  T . The
speller is an attention-based character decoder that performs an op-
eration we call AttendAndSpell. The AttendAndSpell operation
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Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use
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Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use
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Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping
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Fig. 1: Listen, Attend and Spell (LAS) model: the listener is a pyra-
midal BLSTM encoding our input sequence x into high level fea-
tures h, the speller is an attention-based decoder generating the y
characters from h.

consumes h and produces a probability distribution over character
sequences:

h = Listen(x) (2)
P (yi|x, y<i) = AttendAndSpell(y<i,h) (3)

Figure 1 depicts these two components. We provide more details of
these components in the following sections.

2.1. Listen

The Listen operation uses a Bidirectional Long Short Term Memory
RNN (BLSTM) [15, 16, 2] with a pyramidal structure. This modi-
fication is required to reduce the length U of h, from T , the length
of the input x, because the input speech signals can be hundreds to
thousands of frames long. A direct application of BLSTM for the
operation Listen converged slowly and produced results inferior to
those reported here, even after a month of training time. This is
presumably because the operation AttendAndSpell has a hard time
extracting the relevant information from a large number of input time
steps.

We circumvent this problem by using a pyramidal BLSTM
(pBLSTM). In each successive stacked pBLSTM layer, we reduce
the time resolution by a factor of 2. In a typical deep BLSTM
architecture, the output at the i-th time step, from the j-th layer is
computed as follows:

h
j
i = BLSTM(hj

i�1, h
j�1
i ) (4)

In the pBLSTM model, we concatenate the outputs at consecutive
steps of each layer before feeding it to the next layer, i.e.:

h
j
i = pBLSTM(hj

i�1,

h
h
j�1
2i , h

j�1
2i+1

i
) (5)

In our model, we stack 3 pBLSTMs on top of the bottom
BLSTM layer to reduce the time resolution 23 = 8 times. This
allows the attention model (described in the next section) to extract
the relevant information from a smaller number of times steps. In
addition to reducing the resolution, the deep architecture allows the
model to learn nonlinear feature representations of the data. See
Figure 1 for a visualization of the pBLSTM.

The pyramidal structure also reduces the computational com-
plexity. The attention mechanism in the speller U has a computa-
tional complexity of O(US). Thus, reducing U speeds up learning
and inference significantly. Other neural network architectures have
been described in literature with similar motivations, including the
hierarchical RNN [17], clockwork RNN [18] and CNN [19].

2.2. Attend and Spell

The AttendAndSpell function is computed using an attention-
based LSTM transducer [10, 12]. At every output step, the trans-
ducer produces a probability distribution over the next character
conditioned on all the characters seen previously. The distribution
for yi is a function of the decoder state si and context ci. The de-
coder state si is a function of the previous state si�1, the previously
emitted character yi�1 and context ci�1. The context vector ci is
produced by an attention mechanism. Specifically,

ci = AttentionContext(si,h) (6)
si = RNN(si�1, yi�1, ci�1) (7)

P (yi|x, y<i) = CharacterDistribution(si, ci) (8)

where CharacterDistribution is an MLP with softmax outputs
over characters, and where RNN is a 2 layer LSTM.

At each time step, i, the attention mechanism, AttentionContext
generates a context vector, ci encapsulating the information in the
acoustic signal needed to generate the next character. The attention
model is content based - the contents of the decoder state si are
matched to the contents of hu representing time step u of h, to
generate an attention vector ↵i. The vectors hu are linearly blended
using ↵i to create ci.

Specifically, at each decoder timestep i, the AttentionContext
function computes the scalar energy ei,u for each time step u, using
vector hu 2 h and si. The scalar energy ei,u is converted into
a probability distribution over times steps (or attention) ↵i using
a softmax function. The softmax probabilities are used as mixing
weights for blending the listener features hu to the context vector ci
for output time step i:

ei,u = h�(si), (hu)i (9)

↵i,u =
exp(ei,u)P
u0 exp(ei,u0)

(10)

ci =
X

u

↵i,uhu (11)
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• The Listen, Attend & Spell (LAS) architecture is 
a sequence-to-sequence model consisting of

• a Listener (� ): An acoustic model 
encoder. Deep BLSTMs with a pyramidal 
structure: reduces the time resolution by a 
factor of 2 in each layer.

• a Speller (� ): An attention-
based decoder. Consumes �  and produces a 
probability distribution over characters.
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consumes h and produces a probability distribution over character
sequences:

h = Listen(x) (2)
P (yi|x, y<i) = AttendAndSpell(y<i,h) (3)

Figure 1 depicts these two components. We provide more details of
these components in the following sections.

2.1. Listen

The Listen operation uses a Bidirectional Long Short Term Memory
RNN (BLSTM) [15, 16, 2] with a pyramidal structure. This modi-
fication is required to reduce the length U of h, from T , the length
of the input x, because the input speech signals can be hundreds to
thousands of frames long. A direct application of BLSTM for the
operation Listen converged slowly and produced results inferior to
those reported here, even after a month of training time. This is
presumably because the operation AttendAndSpell has a hard time
extracting the relevant information from a large number of input time
steps.

We circumvent this problem by using a pyramidal BLSTM
(pBLSTM). In each successive stacked pBLSTM layer, we reduce
the time resolution by a factor of 2. In a typical deep BLSTM
architecture, the output at the i-th time step, from the j-th layer is
computed as follows:
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In our model, we stack 3 pBLSTMs on top of the bottom
BLSTM layer to reduce the time resolution 23 = 8 times. This
allows the attention model (described in the next section) to extract
the relevant information from a smaller number of times steps. In
addition to reducing the resolution, the deep architecture allows the
model to learn nonlinear feature representations of the data. See
Figure 1 for a visualization of the pBLSTM.

The pyramidal structure also reduces the computational com-
plexity. The attention mechanism in the speller U has a computa-
tional complexity of O(US). Thus, reducing U speeds up learning
and inference significantly. Other neural network architectures have
been described in literature with similar motivations, including the
hierarchical RNN [17], clockwork RNN [18] and CNN [19].

2.2. Attend and Spell

The AttendAndSpell function is computed using an attention-
based LSTM transducer [10, 12]. At every output step, the trans-
ducer produces a probability distribution over the next character
conditioned on all the characters seen previously. The distribution
for yi is a function of the decoder state si and context ci. The de-
coder state si is a function of the previous state si�1, the previously
emitted character yi�1 and context ci�1. The context vector ci is
produced by an attention mechanism. Specifically,

ci = AttentionContext(si,h) (6)
si = RNN(si�1, yi�1, ci�1) (7)

P (yi|x, y<i) = CharacterDistribution(si, ci) (8)

where CharacterDistribution is an MLP with softmax outputs
over characters, and where RNN is a 2 layer LSTM.

At each time step, i, the attention mechanism, AttentionContext
generates a context vector, ci encapsulating the information in the
acoustic signal needed to generate the next character. The attention
model is content based - the contents of the decoder state si are
matched to the contents of hu representing time step u of h, to
generate an attention vector ↵i. The vectors hu are linearly blended
using ↵i to create ci.

Specifically, at each decoder timestep i, the AttentionContext
function computes the scalar energy ei,u for each time step u, using
vector hu 2 h and si. The scalar energy ei,u is converted into
a probability distribution over times steps (or attention) ↵i using
a softmax function. The softmax probabilities are used as mixing
weights for blending the listener features hu to the context vector ci
for output time step i:
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consumes h and produces a probability distribution over character
sequences:

h = Listen(x) (2)
P (yi|x, y<i) = AttendAndSpell(y<i,h) (3)

Figure 1 depicts these two components. We provide more details of
these components in the following sections.
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The Listen operation uses a Bidirectional Long Short Term Memory
RNN (BLSTM) [15, 16, 2] with a pyramidal structure. This modi-
fication is required to reduce the length U of h, from T , the length
of the input x, because the input speech signals can be hundreds to
thousands of frames long. A direct application of BLSTM for the
operation Listen converged slowly and produced results inferior to
those reported here, even after a month of training time. This is
presumably because the operation AttendAndSpell has a hard time
extracting the relevant information from a large number of input time
steps.

We circumvent this problem by using a pyramidal BLSTM
(pBLSTM). In each successive stacked pBLSTM layer, we reduce
the time resolution by a factor of 2. In a typical deep BLSTM
architecture, the output at the i-th time step, from the j-th layer is
computed as follows:
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In our model, we stack 3 pBLSTMs on top of the bottom
BLSTM layer to reduce the time resolution 23 = 8 times. This
allows the attention model (described in the next section) to extract
the relevant information from a smaller number of times steps. In
addition to reducing the resolution, the deep architecture allows the
model to learn nonlinear feature representations of the data. See
Figure 1 for a visualization of the pBLSTM.

The pyramidal structure also reduces the computational com-
plexity. The attention mechanism in the speller U has a computa-
tional complexity of O(US). Thus, reducing U speeds up learning
and inference significantly. Other neural network architectures have
been described in literature with similar motivations, including the
hierarchical RNN [17], clockwork RNN [18] and CNN [19].

2.2. Attend and Spell

The AttendAndSpell function is computed using an attention-
based LSTM transducer [10, 12]. At every output step, the trans-
ducer produces a probability distribution over the next character
conditioned on all the characters seen previously. The distribution
for yi is a function of the decoder state si and context ci. The de-
coder state si is a function of the previous state si�1, the previously
emitted character yi�1 and context ci�1. The context vector ci is
produced by an attention mechanism. Specifically,

ci = AttentionContext(si,h) (6)
si = RNN(si�1, yi�1, ci�1) (7)

P (yi|x, y<i) = CharacterDistribution(si, ci) (8)

where CharacterDistribution is an MLP with softmax outputs
over characters, and where RNN is a 2 layer LSTM.

At each time step, i, the attention mechanism, AttentionContext
generates a context vector, ci encapsulating the information in the
acoustic signal needed to generate the next character. The attention
model is content based - the contents of the decoder state si are
matched to the contents of hu representing time step u of h, to
generate an attention vector ↵i. The vectors hu are linearly blended
using ↵i to create ci.

Specifically, at each decoder timestep i, the AttentionContext
function computes the scalar energy ei,u for each time step u, using
vector hu 2 h and si. The scalar energy ei,u is converted into
a probability distribution over times steps (or attention) ↵i using
a softmax function. The softmax probabilities are used as mixing
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sequences:

h = Listen(x) (2)
P (yi|x, y<i) = AttendAndSpell(y<i,h) (3)

Figure 1 depicts these two components. We provide more details of
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fication is required to reduce the length U of h, from T , the length
of the input x, because the input speech signals can be hundreds to
thousands of frames long. A direct application of BLSTM for the
operation Listen converged slowly and produced results inferior to
those reported here, even after a month of training time. This is
presumably because the operation AttendAndSpell has a hard time
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architecture, the output at the i-th time step, from the j-th layer is
computed as follows:

h
j
i = BLSTM(hj

i�1, h
j�1
i ) (4)

In the pBLSTM model, we concatenate the outputs at consecutive
steps of each layer before feeding it to the next layer, i.e.:

h
j
i = pBLSTM(hj

i�1,

h
h
j�1
2i , h

j�1
2i+1

i
) (5)
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BLSTM layer to reduce the time resolution 23 = 8 times. This
allows the attention model (described in the next section) to extract
the relevant information from a smaller number of times steps. In
addition to reducing the resolution, the deep architecture allows the
model to learn nonlinear feature representations of the data. See
Figure 1 for a visualization of the pBLSTM.
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tional complexity of O(US). Thus, reducing U speeds up learning
and inference significantly. Other neural network architectures have
been described in literature with similar motivations, including the
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conditioned on all the characters seen previously. The distribution
for yi is a function of the decoder state si and context ci. The de-
coder state si is a function of the previous state si�1, the previously
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ci = AttentionContext(si,h) (6)
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over characters, and where RNN is a 2 layer LSTM.
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generates a context vector, ci encapsulating the information in the
acoustic signal needed to generate the next character. The attention
model is content based - the contents of the decoder state si are
matched to the contents of hu representing time step u of h, to
generate an attention vector ↵i. The vectors hu are linearly blended
using ↵i to create ci.

Specifically, at each decoder timestep i, the AttentionContext
function computes the scalar energy ei,u for each time step u, using
vector hu 2 h and si. The scalar energy ei,u is converted into
a probability distribution over times steps (or attention) ↵i using
a softmax function. The softmax probabilities are used as mixing
weights for blending the listener features hu to the context vector ci
for output time step i:

ei,u = h�(si), (hu)i (9)

↵i,u =
exp(ei,u)P
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Fig. 1: Listen, Attend and Spell (LAS) model: the listener is a pyra-
midal BLSTM encoding our input sequence x into high level fea-
tures h, the speller is an attention-based decoder generating the y
characters from h.

consumes h and produces a probability distribution over character
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P (yi|x, y<i) = AttendAndSpell(y<i,h) (3)
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si = RNN(si�1, yi�1, ci�1) (7)

P (yi|x, y<i) = CharacterDistribution(si, ci) (8)

where CharacterDistribution is an MLP with softmax outputs
over characters, and where RNN is a 2 layer LSTM.

At each time step, i, the attention mechanism, AttentionContext
generates a context vector, ci encapsulating the information in the
acoustic signal needed to generate the next character. The attention
model is content based - the contents of the decoder state si are
matched to the contents of hu representing time step u of h, to
generate an attention vector ↵i. The vectors hu are linearly blended
using ↵i to create ci.

Specifically, at each decoder timestep i, the AttentionContext
function computes the scalar energy ei,u for each time step u, using
vector hu 2 h and si. The scalar energy ei,u is converted into
a probability distribution over times steps (or attention) ↵i using
a softmax function. The softmax probabilities are used as mixing
weights for blending the listener features hu to the context vector ci
for output time step i:

ei,u = h�(si), (hu)i (9)
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Training and Decoding

• Training

• Train the parameters of the model to maximize the log 
probability of the training instances

• Decoding

• Simple left-to-right beam search

• Beams can be rescored with a language model

where � and  are MLP networks. After training, the ↵i distribution
is typically very sharp and focuses on only a few frames of h; ci can
be seen as a continuous bag of weighted features of h. Figure 1
shows the LAS architecture.

2.3. Learning

We train the parameters of our model to maximize the log probability
of the correct sequences. Specifically,

✓̃ = max
✓

X

i

logP (yi|x, ỹ<i; ✓) (12)

where ỹi�1 is the ground truth previous character or a charac-
ter randomly sampled (with 10% probability) from the model, i.e.
CharacterDistribution(si�1, ci�1) using the procedure from [20].

2.4. Decoding and Rescoring

During inference we want to find the most likely character sequence
given the input acoustics:

ŷ = argmax
y

logP (y|x) (13)

We use a simple left-to-right beam search similar to [8]. We can also
apply language models trained on large external text corpora alone,
similar to conventional speech systems [21]. We simply rescore our
beams with the language model. We find that our model has a small
bias for shorter utterances so we normalize our probabilities by the
number of characters |y|c in the hypothesis and combine it with a
language model probability PLM(y):

s(y|x) = logP (y|x)
|y|c

+ � logPLM(y) (14)

where � is our language model weight and can be determined by a
held-out validation set.

3. EXPERIMENTS

We used a dataset with three million Google Voice Search utterances
(representing 2000 hours of data) for our experiments. Approxi-
mately 10 hours of utterances were randomly selected as a held-out
validation set. Data augmentation was performed using a room sim-
ulator, adding different types of noise and reverberations; the noise
sources were obtained from YouTube and environmental recordings
of daily events [22]. This increased the amount of audio data by
20 times with a SNR between 5dB and 30dB [22]. We used 40-
dimensional log-mel filter bank features computed every 10ms as the
acoustic inputs to the listener. A separate set of 22K utterances repre-
senting approximately 16 hours of data were used as the test data. A
noisy test set was also created using the same corruption strategy that
was applied to the training data. All training sets are anonymized and
hand-transcribed, and are representative of Google’s speech traffic.

The text was normalized by converting all characters to lower
case English alphanumerics (including digits). The punctuations:
space, comma, period and apostrophe were kept, while all other to-
kens were converted to the unknown hunki token. As mentioned
earlier, all utterances were padded with the start-of-sentence hsosi
and the end-of-sentence heosi tokens.

The state-of-the-art model on this dataset is a CLDNN-HMM
system that was described in [22]. The CLDNN system achieves
a WER of 8.0% on the clean test set and 8.9% on the noisy test

Table 1: WER comparison on the clean and noisy Google voice
search task. The CLDNN-HMM system is the state-of-the-art, the
Listen, Attend and Spell (LAS) models are decoded with a beam
size of 32. Language Model (LM) rescoring can be beneficial.

Model Clean WER Noisy WER
CLDNN-HMM [22] 8.0 8.9
LAS 14.1 16.5
LAS + LM Rescoring 10.3 12.0

set. However, we note that the CLDNN uses unidirectional LSTMs
and would certainly benefit from the use of a BLSTM architecture.
Additionally, the LAS model does not use convolutional filters which
have been reported to yield 5-7% WER relative improvement [22].

For the Listen function we used 3 layers of 512 pBLSTM nodes
(i.e., 256 nodes per direction) on top of a BLSTM that operates on
the input. This reduced the time resolution by 8 = 23 times. The
Spell function used a two layer LSTM with 512 nodes each. The
weights were initialized with a uniform distribution U(�0.1, 0.1).
Asynchronous Stochastic Gradient Descent (ASGD) was used for
training our model [23]. A learning rate of 0.2 was used with a ge-
ometric decay of 0.98 per 3M utterances (i.e., 1/20-th of an epoch).
We used the DistBelief framework [23] with 32 replicas, each with
a minibatch of 32 utterances. In order to further speed up train-
ing, the sequences were grouped into buckets based on their frame
length [8]. The model was trained until the results on the validation
set stopped improving, taking approximately two weeks. The model
was decoded using N-best list decoding with beam size of N = 32.

4. RESULTS AND DISCUSSION

We achieved 14.1% WER on the clean test set and 16.5% WER on
the noisy test set without any dictionary or language model. We
found that constraining the beam search with a dictionary had no
impact on the WER. Rescoring the top 32 beams with the same n-
gram language model that was used by the CLDNN system using
a language model weight of � = 0.008 improved the results for
the clean and noisy test sets to 10.3% and 12.0% respectively. Note
that for convenience, we did not decode with a language model, but
rather only rescored the top 32 beams. It is possible that further
gains could have been achieved by using the language model during
decoding. Table 1 summarizes the WER results.

The content-based attention mechanism creates an explicit
alignment between the characters and audio signal. We can visual-
ize the attention mechanism by recording the attention distribution
on the acoustic sequence at every character output timestep. Fig-
ure 2 visualizes the attention alignment between the characters and
the filterbanks for the utterance “how much would a woodchuck
chuck”. For this particular utterance, the model learnt a monotonic
distribution without any location priors. The words “woodchuck”
and “chuck” have acoustic similarities, the attention mechanism was
slightly confused when emitting “woodchuck” with a dilution in the
distribution. The attention model was also able to identify the start
and end of the utterance properly.

We observed that LAS can learn multiple spelling variants given
the same acoustics. Table 2 shows top beams for the utterance that
includes “triple a”. As can be seen, the model produces both “triple
a” and “aaa” within the top four beams. The decoder is able to gener-
ate such varied parses, because the next step prediction model makes
no assumptions on the probability distribution by using the chain rule
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where � and  are MLP networks. After training, the ↵i distribution
is typically very sharp and focuses on only a few frames of h; ci can
be seen as a continuous bag of weighted features of h. Figure 1
shows the LAS architecture.
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We train the parameters of our model to maximize the log probability
of the correct sequences. Specifically,

✓̃ = max
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logP (yi|x, ỹ<i; ✓) (12)

where ỹi�1 is the ground truth previous character or a charac-
ter randomly sampled (with 10% probability) from the model, i.e.
CharacterDistribution(si�1, ci�1) using the procedure from [20].

2.4. Decoding and Rescoring

During inference we want to find the most likely character sequence
given the input acoustics:

ŷ = argmax
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logP (y|x) (13)

We use a simple left-to-right beam search similar to [8]. We can also
apply language models trained on large external text corpora alone,
similar to conventional speech systems [21]. We simply rescore our
beams with the language model. We find that our model has a small
bias for shorter utterances so we normalize our probabilities by the
number of characters |y|c in the hypothesis and combine it with a
language model probability PLM(y):

s(y|x) = logP (y|x)
|y|c

+ � logPLM(y) (14)

where � is our language model weight and can be determined by a
held-out validation set.

3. EXPERIMENTS

We used a dataset with three million Google Voice Search utterances
(representing 2000 hours of data) for our experiments. Approxi-
mately 10 hours of utterances were randomly selected as a held-out
validation set. Data augmentation was performed using a room sim-
ulator, adding different types of noise and reverberations; the noise
sources were obtained from YouTube and environmental recordings
of daily events [22]. This increased the amount of audio data by
20 times with a SNR between 5dB and 30dB [22]. We used 40-
dimensional log-mel filter bank features computed every 10ms as the
acoustic inputs to the listener. A separate set of 22K utterances repre-
senting approximately 16 hours of data were used as the test data. A
noisy test set was also created using the same corruption strategy that
was applied to the training data. All training sets are anonymized and
hand-transcribed, and are representative of Google’s speech traffic.

The text was normalized by converting all characters to lower
case English alphanumerics (including digits). The punctuations:
space, comma, period and apostrophe were kept, while all other to-
kens were converted to the unknown hunki token. As mentioned
earlier, all utterances were padded with the start-of-sentence hsosi
and the end-of-sentence heosi tokens.

The state-of-the-art model on this dataset is a CLDNN-HMM
system that was described in [22]. The CLDNN system achieves
a WER of 8.0% on the clean test set and 8.9% on the noisy test

Table 1: WER comparison on the clean and noisy Google voice
search task. The CLDNN-HMM system is the state-of-the-art, the
Listen, Attend and Spell (LAS) models are decoded with a beam
size of 32. Language Model (LM) rescoring can be beneficial.

Model Clean WER Noisy WER
CLDNN-HMM [22] 8.0 8.9
LAS 14.1 16.5
LAS + LM Rescoring 10.3 12.0

set. However, we note that the CLDNN uses unidirectional LSTMs
and would certainly benefit from the use of a BLSTM architecture.
Additionally, the LAS model does not use convolutional filters which
have been reported to yield 5-7% WER relative improvement [22].

For the Listen function we used 3 layers of 512 pBLSTM nodes
(i.e., 256 nodes per direction) on top of a BLSTM that operates on
the input. This reduced the time resolution by 8 = 23 times. The
Spell function used a two layer LSTM with 512 nodes each. The
weights were initialized with a uniform distribution U(�0.1, 0.1).
Asynchronous Stochastic Gradient Descent (ASGD) was used for
training our model [23]. A learning rate of 0.2 was used with a ge-
ometric decay of 0.98 per 3M utterances (i.e., 1/20-th of an epoch).
We used the DistBelief framework [23] with 32 replicas, each with
a minibatch of 32 utterances. In order to further speed up train-
ing, the sequences were grouped into buckets based on their frame
length [8]. The model was trained until the results on the validation
set stopped improving, taking approximately two weeks. The model
was decoded using N-best list decoding with beam size of N = 32.

4. RESULTS AND DISCUSSION

We achieved 14.1% WER on the clean test set and 16.5% WER on
the noisy test set without any dictionary or language model. We
found that constraining the beam search with a dictionary had no
impact on the WER. Rescoring the top 32 beams with the same n-
gram language model that was used by the CLDNN system using
a language model weight of � = 0.008 improved the results for
the clean and noisy test sets to 10.3% and 12.0% respectively. Note
that for convenience, we did not decode with a language model, but
rather only rescored the top 32 beams. It is possible that further
gains could have been achieved by using the language model during
decoding. Table 1 summarizes the WER results.

The content-based attention mechanism creates an explicit
alignment between the characters and audio signal. We can visual-
ize the attention mechanism by recording the attention distribution
on the acoustic sequence at every character output timestep. Fig-
ure 2 visualizes the attention alignment between the characters and
the filterbanks for the utterance “how much would a woodchuck
chuck”. For this particular utterance, the model learnt a monotonic
distribution without any location priors. The words “woodchuck”
and “chuck” have acoustic similarities, the attention mechanism was
slightly confused when emitting “woodchuck” with a dilution in the
distribution. The attention model was also able to identify the start
and end of the utterance properly.

We observed that LAS can learn multiple spelling variants given
the same acoustics. Table 2 shows top beams for the utterance that
includes “triple a”. As can be seen, the model produces both “triple
a” and “aaa” within the top four beams. The decoder is able to gener-
ate such varied parses, because the next step prediction model makes
no assumptions on the probability distribution by using the chain rule
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• Listen function used 3 layers of BLSTM (512 nodes); AttendAndSpell 
used a 2-layer LSTM (256 nodes)

• Constraining the beam search with a dictionary had no impact on WER



Analysis

Fig. 2: Alignments between character outputs and audio signal pro-
duced by the Listen, Attend and Spell (LAS) model for the utterance
“how much would a woodchuck chuck”. The content based atten-
tion mechanism was able to identify the start position in the audio
sequence for the first character correctly. The alignment produced is
generally monotonic without a need for any location based priors.

Table 2: Example 1: “triple a” vs. “aaa” spelling variants.

Beam Text logP WER
Truth call aaa roadside assistance - -
1 call aaa roadside assistance -0.57 0.00
2 call triple a roadside assistance -1.54 50.00
3 call trip way roadside assistance -3.50 50.00
4 call xxx roadside assistance -4.44 25.00

decomposition. It would be difficult to produce such differing tran-
scripts using CTC due to the conditional independence assumptions,
where the distribution of the output yi at time i is conditionally inde-
pendent of distribution yi+1 at time i+1. Conventional DNN-HMM
systems would require both spellings to be in the pronunciation dic-
tionary to generate both transcriptions.

5. RELATED WORK

There has recently been an explosion in methods for end-to-end
trained speech models because of their inherent simplicity compared
to current speech recognition systems [2, 24, 6, 25, 14]. However
these methods have inherent shortcomings that our model attempts
to address. Here we describe in more detail the relationship between
our work and prior approaches.

Initially, [2] showed that CTC could perform end-to-end speech
recognition on WSJ, going straight from audio to character se-
quences. [24, 25] subsequently showed strong results with CTC
on larger datasets and Switchboard. However it was noted in [24,
2] that good accuracy could only be achieved through the use of a
strong language model during beam search decoding; the language
models use are themselves fixed and trained independently of the
CTC objective.

CTC has also been applied to end-to-end training with phoneme
targets and n-gram language models using FSTs in [26, 27, 6]. How-
ever, unlike the methods above, these methods use pronunciation
dictionaries and language models within FSTs. End-to-end training
here implies training of the acoustic models with fixed dictionaries
and language models, instead of training models that recognize char-
acter sequences directly. In this respect these models are end-to-end
trained systems, rather than end-to-end models.

While CTC has shown tremendous promise in end-to-end
speech recognition, it is limited by the assumptions of indepen-
dence between frames - the output at one frame has no influence
at the outputs at the other frames - much like the unary potential
of Conditional Random Fields. The only way to ameliorate this
problem is through the use of a strong language model [2].

The model proposed here is based on the sequence-to-sequence
architecture [8, 10] and does not suffer from the above shortcoming.
LAS models the output sequence given the input sequence using the
chain rule decomposition, starting at the first character. As such this
model makes no assumptions about the probability distribution and
is only limited by the capacity of the recurrent neural network in
modeling such a complicated distribution. Further, this single model
encompasses all aspects of a speech recognition system - the acous-
tic, pronunciation and language models are all encoded within its pa-
rameters. We argue that this makes it not only an end-to-end trained
system, but an end-to-end model. This makes it a very powerful
model for end-to-end speech recognition. Future work is likely to
explore how to use increasingly more complicated models for im-
proved performance over what was achieved in this paper. Further,
these models are likely to benefit from even larger datasets since the
decoder is able to overfit the small number of transcripts1.

The model described in [14] is the closest to our model, with
some slight differences. We use a pyramidal encoder while they use
an encoder in which the higher layers subsample the hidden states of
the layers below. In addition they use an FST to incorporate a lan-
guage model, while we use language model rescoring and a length-
dependent language model blending (see section 2.4). We note that
these two works were performed concurrently and independently.

6. CONCLUSIONS

We have presented Listen, Attend and Spell (LAS), a neural speech
recognizer that can transcribe acoustic signals to characters directly
without using any of the traditional components of a speech recogni-
tion system, such as HMMs, language models and pronunciation dic-
tionaries. We submit that it is not only an end-to-end trained system,
but an end-to-end model. LAS accomplishes this goal by making no
conditional independence assumptions about the output sequence us-
ing the sequence-to-sequence framework. This distinguishes it from
models like CTC, DNN-HMM and other models that can be trained
end-to-end but make various conditional independence assumptions
to accomplish this. We showed how this model learns an implicit
language model that can generate multiple spelling variants given the
same acoustics. We also showed how an external language model,
trained on additional text, can be used to re-rank the top hypotheses.
We demonstrated that such an end-to-end model can be trained and
be competitive with state-of-the-art CLDNN-HMM systems. We are
optimistic that this approach will pave the way to new neural speech
recognizers that are simpler to train and achieve even better accura-
cies than the best current speech recognition systems.

1We note that we used three million utterances for training but that is a
very small corpus for an RNN language model
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Image from: https://arxiv.org/pdf/1508.01211.pdf

Fig. 2: Alignments between character outputs and audio signal pro-
duced by the Listen, Attend and Spell (LAS) model for the utterance
“how much would a woodchuck chuck”. The content based atten-
tion mechanism was able to identify the start position in the audio
sequence for the first character correctly. The alignment produced is
generally monotonic without a need for any location based priors.

Table 2: Example 1: “triple a” vs. “aaa” spelling variants.

Beam Text logP WER
Truth call aaa roadside assistance - -
1 call aaa roadside assistance -0.57 0.00
2 call triple a roadside assistance -1.54 50.00
3 call trip way roadside assistance -3.50 50.00
4 call xxx roadside assistance -4.44 25.00

decomposition. It would be difficult to produce such differing tran-
scripts using CTC due to the conditional independence assumptions,
where the distribution of the output yi at time i is conditionally inde-
pendent of distribution yi+1 at time i+1. Conventional DNN-HMM
systems would require both spellings to be in the pronunciation dic-
tionary to generate both transcriptions.
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There has recently been an explosion in methods for end-to-end
trained speech models because of their inherent simplicity compared
to current speech recognition systems [2, 24, 6, 25, 14]. However
these methods have inherent shortcomings that our model attempts
to address. Here we describe in more detail the relationship between
our work and prior approaches.

Initially, [2] showed that CTC could perform end-to-end speech
recognition on WSJ, going straight from audio to character se-
quences. [24, 25] subsequently showed strong results with CTC
on larger datasets and Switchboard. However it was noted in [24,
2] that good accuracy could only be achieved through the use of a
strong language model during beam search decoding; the language
models use are themselves fixed and trained independently of the
CTC objective.

CTC has also been applied to end-to-end training with phoneme
targets and n-gram language models using FSTs in [26, 27, 6]. How-
ever, unlike the methods above, these methods use pronunciation
dictionaries and language models within FSTs. End-to-end training
here implies training of the acoustic models with fixed dictionaries
and language models, instead of training models that recognize char-
acter sequences directly. In this respect these models are end-to-end
trained systems, rather than end-to-end models.

While CTC has shown tremendous promise in end-to-end
speech recognition, it is limited by the assumptions of indepen-
dence between frames - the output at one frame has no influence
at the outputs at the other frames - much like the unary potential
of Conditional Random Fields. The only way to ameliorate this
problem is through the use of a strong language model [2].

The model proposed here is based on the sequence-to-sequence
architecture [8, 10] and does not suffer from the above shortcoming.
LAS models the output sequence given the input sequence using the
chain rule decomposition, starting at the first character. As such this
model makes no assumptions about the probability distribution and
is only limited by the capacity of the recurrent neural network in
modeling such a complicated distribution. Further, this single model
encompasses all aspects of a speech recognition system - the acous-
tic, pronunciation and language models are all encoded within its pa-
rameters. We argue that this makes it not only an end-to-end trained
system, but an end-to-end model. This makes it a very powerful
model for end-to-end speech recognition. Future work is likely to
explore how to use increasingly more complicated models for im-
proved performance over what was achieved in this paper. Further,
these models are likely to benefit from even larger datasets since the
decoder is able to overfit the small number of transcripts1.

The model described in [14] is the closest to our model, with
some slight differences. We use a pyramidal encoder while they use
an encoder in which the higher layers subsample the hidden states of
the layers below. In addition they use an FST to incorporate a lan-
guage model, while we use language model rescoring and a length-
dependent language model blending (see section 2.4). We note that
these two works were performed concurrently and independently.

6. CONCLUSIONS

We have presented Listen, Attend and Spell (LAS), a neural speech
recognizer that can transcribe acoustic signals to characters directly
without using any of the traditional components of a speech recogni-
tion system, such as HMMs, language models and pronunciation dic-
tionaries. We submit that it is not only an end-to-end trained system,
but an end-to-end model. LAS accomplishes this goal by making no
conditional independence assumptions about the output sequence us-
ing the sequence-to-sequence framework. This distinguishes it from
models like CTC, DNN-HMM and other models that can be trained
end-to-end but make various conditional independence assumptions
to accomplish this. We showed how this model learns an implicit
language model that can generate multiple spelling variants given the
same acoustics. We also showed how an external language model,
trained on additional text, can be used to re-rank the top hypotheses.
We demonstrated that such an end-to-end model can be trained and
be competitive with state-of-the-art CLDNN-HMM systems. We are
optimistic that this approach will pave the way to new neural speech
recognizers that are simpler to train and achieve even better accura-
cies than the best current speech recognition systems.
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very small corpus for an RNN language model
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Image from: https://arxiv.org/pdf/1508.01211.pdf
Figure 7: The spelling variants of “st” vs “saint” produces different attention distributions, both spelling
variants appear in our top beams. The ground truth is: “st mary’s animal clinic”.
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