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Recall Viterbi search

• Viterbi search finds the most probable path through a trellis of time on 
the X-axis and states on the Y-axis

• Viterbi algorithm: Only needs to maintain information about the most 
probable path at each state

9.5 • HMM TRAINING: THE FORWARD-BACKWARD ALGORITHM 13

start

H

C

H

C

H

C

end

P(C|sta
rt) 

* P
(3|C)

.2 * .
1

P(H|H) * P(1|H)
.6 * .2

P(C|C) * P(1|C)
.5 * .5

P(C|H) * P(1|C)
.3 * .5

P(H|C) * P
(1|H)

.4 * .2

P(
H|

sta
rt)

*P
(3

|H
)

.8 
* .

4

v1(2)=.32

v1(1) = .02

v2(2)= max(.32*.12, .02*.08) = .038

v2(1) = max(.32*.15, .02*.25) = .048

start start start

t

C

H

end end endqF

q2

q1

q0

o1 o2 o3

3 1 3

Figure 9.12 The Viterbi backtrace. As we extend each path to a new state account for the next observation,
we keep a backpointer (shown with broken lines) to the best path that led us to this state.

Finally, we can give a formal definition of the Viterbi recursion as follows:

1. Initialization:

v1( j) = a0 jb j(o1) 1  j  N (9.20)

bt1( j) = 0 (9.21)

2. Recursion (recall that states 0 and qF are non-emitting):

vt( j) =
N

max
i=1

vt�1(i)ai j b j(ot); 1  j  N,1 < t  T (9.22)

btt( j) =
N

argmax
i=1

vt�1(i)ai j b j(ot); 1  j  N,1 < t  T (9.23)

3. Termination:

The best score: P⇤= vT (qF) =
N

max
i=1

vT (i)⇤aiF (9.24)

The start of backtrace: qT⇤= btT (qF) =
N

argmax
i=1

vT (i)⇤aiF (9.25)

9.5 HMM Training: The Forward-Backward Algorithm

We turn to the third problem for HMMs: learning the parameters of an HMM, that
is, the A and B matrices. Formally,

Image from [JM]: Jurafsky & Martin, 3rd edition, Chapter 9
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Viterbi search over the large trellis

• Exact search is infeasible for large vocabulary tasks

• Unknown word boundaries

• Ngram language models greatly increase the search space

• Solutions

• Compactly represent the search space using WFST-based 
optimisations

• Beam search: Prune away parts of the search space that 
aren’t promising
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Two main WFST Optimizations

Recall not all weighted transducers are determinizable 

To ensure determinizability of L ○ G, introduce disambiguation  
symbols in L to deal with homophones in the lexicon

read  :  r  eh d  #1  
red    :  r  eh d  #2

• Use determinization to reduce/eliminate redundancy

Propagate the disambiguation symbols as self-loops back to  
C and H.  Resulting machines are H̃, C̃, L ̃



• Use determinization to reduce/eliminate redundancy

• Use minimization to reduce space requirements

Two main WFST Optimizations

Minimization ensures that the final composed machine  
has minimum number of states

Final optimization cascade:

N = πε(min(det(H̃ ○ det(C̃ ○ det(L ̃○ G)))))

Replaces disambiguation symbols 
in input alphabet of H̃ with ε



Example G

0 1

bob:bob
bond:bond
rob:rob

2

slept:slept
read:read
ate:ate



Example L̃ :Lexicon with disambig symbols

0

1b:bob

5b:bond

9r:rob

12
s:slept

17

r:read

20

ey:ate

2aa:-

6aa:-

10aa:-

13l:-

18eh:-

21

t:-

3b:-

4

#0:-

-:-

7n:-

8

d:-

-:-

11

b:-

-:-

14
eh:-

15

p:-

16

t:-

-:-

19
d:-

-:-

-:-



L̃ ○ G
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1st-Pass Recognition Networks 
40K NAB Eval '95

23

transducer x real-time
C ◦ L ◦ G 12.5
C ◦ det(L ◦ G) 1.2
det(H ◦ C ◦ L ◦ G) 1.0
push(min(F )) 0.7

Recognition speed of the first-pass networks in the NAB 
40,000-word vocabulary task at 83% word accuracy.

1st pass recognition networks (40K vocab)

Recognition speeds for systems with an accuracy of 83%



Static and dynamic networks

• What we’ve seen so far: Static decoding graph 

• H ○ C ○ L ○ G

• Determinize/minimize to make this graph more compact

• Another approach: Dynamic graph expansion

• Dynamically build the graph with active states on the fly

• Do on-the-fly composition with the language model G

• (H ○ C ○ L) ○ G



Viterbi search over the large trellis

• Exact search is infeasible for large vocabulary tasks

• Unknown word boundaries

• Ngram language models greatly increase the search space

• Solutions

• Compactly represent the search space using WFST-based 
optimisations

• Beam search: Prune away parts of the search space that 
aren’t promising



Beam pruning
• At each time-step t, only retain those nodes in the time-

state trellis that are within a fixed threshold δ (beam width) 
of the best path

• Given active nodes from the last time-step:

• Examine nodes in the current time-step … 

• … that are reachable from active nodes in the previous 
time-step

• Get active nodes for the current time-step by only 
retaining nodes with hypotheses that score close to the 
score of the best hypothesis



Viterbi beam search decoder

• Time-synchronous search algorithm:

• For time t, each state is updated by the best score from all 
states in time t-1

• Beam search prunes unpromising states at every time step. 

• At each time-step t, only retain those nodes in the time-
state trellis that are within a fixed threshold δ (beam width) 
of the score of the best hypothesis.



Beam search algorithm

Initialization: current states := initial state

while (current states do not contain the goal state) do:

successor states := NEXT(current states)  
             where NEXT is next state function

score the successor states

set current states to a pruned set of successor states using 
beam width δ 
              only retain those successor states that are within  
              δ times the best path weight 



Beam search over the decoding graph

⋯⋯

x1:the

x2:a

x200:the

Say δ = 2

O1 O2 O3 OT⋯⋯

Score of arc: 
-log P(O1|x1)
+ graph cost
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Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use
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Lattices

• “Lattices” are useful when more than one hypothesis is 
desired from a recognition pass

• A lattice is a weighted, directed acyclic graph which 
encodes a large number of ASR hypotheses weighted by 
acoustic model +language model scores specific to a given 
utterance



Lattice Generation

• Say we want to decode an utterance, U, of T frames.

• Construct a sausage acceptor for this utterance, X, with T+1 
states and arcs for each context-dependent HMM state at 
each time-step

• Search the following composed machine for the best word 
sequence corresponding to U: 
                             
                                   D = X ○ HCLG



Lattice Generation

• For all practical applications, we have to use beam pruning over D 
such that only a subset of states/arcs in D are visited. Call this 
resulting pruned machine, B.

• Word lattice, say L, is a further pruned version of B defined by a 
lattice beam, β. L satisfies the following requirements: 

• L should have a path for every word sequence within β of the best-
scoring path in B

• All scores and alignments in L correspond to actual paths through 
B

• L does not contain duplicate paths with the same word sequence


