Search and Decoding

Lecture 16

Recall Viterbi search

Viterbi search finds the most probable path through a trellis of time on
the X-axis and states on the Y-axis

- - PN
// \ // \\ // \\
\
of= 1 end , 1 end 1 end
\ / \ / \ /
AN 7 AN 7 AN 7 \
- - - = - - ‘ \
\

P(HIH) *
A2 6*.2
R o7 :
3 (7/0) P :
3 = /
& . PA v,(1) = max(.32*.15; 0225) = .048 |
i) v Vl(l) = 02 \\?\\e\\ A* (L e S . I//
q \ P(CIC)*P(1IC) f ~\-~ it
1 N 5*.5
O) N - -
(b\ S . e —-—
R,
S /
. /
/ =
do // /\ start | /\ start) /\ start
7 ’ ! /
3 1 3
0, 0, 04

Viterbi algorithm: Only needs to maintain information about the most
probable path at each state

Image from [JM]: Jurafsky & Martin, 3rd edition, Chapter 9

ASR Search Network

- . Ug%@@@i >
9&%@;@&@@&& Network of

HMM states

m@&&gg\ - -
&&So—
d \ b
QW>QWQWO 1 ' Network of

> ° gC\)\\ ~ phones
oy @—

Q walking
are ——
the ~ birds _— ~f

A
i

@)

Network of
words

Time-state trellis

Time, t —

Viterbi search over the large trellis

Exact search is infeasible for large vocabulary tasks
Unknown word boundaries
Ngram language models greatly increase the search space
Solutions

Compactly represent the search space using WFST-based
optimisations

Beam search: Prune away parts of the search space that
aren’t promising

Viterbi search over the large trellis

Exact search is infeasible for large vocabulary tasks
Unknown word boundaries
Ngram language models greatly increase the search space
Solutions

Compactly represent the search space using WFST-based
optimisations

Two main WFST Optimizations

| -+ Use determinization to reduce/eliminate redundancy

—

Recall not all weighted transducers are determinizable

To ensure determinizability of L o G, introduce disambiguation
symbols in L to deal with homophones in the lexicon

read : r ehd #1
red :r ehd #2

Propagate the disambiguation symbols as self-loops back to
C and H. Resulting machines are H, C, L

Two main WFST Optimizations

| -+ Use determinization to reduce/eliminate redundancy

Use minimization to reduce space requirements

-+
Minimization ensures that the final composed machine
has minimum number of states

Final optimization cascade:

N =/r[8(min(det(I:I o det(C o det(L o G)))))

/

Replaces disambiguation symbols
in input alphabet of H with €

Example G

bob:bob slept:slept

bond:bond 1 read:read @
rob:rob ate:ate

Example L :Lexicon with disambig symbols

aa:- 2L b:-
b:bob #0:-

(16)

det(L o G)

1st pass recognition networks (40K vocab)

transducer X real-time
ColLoG 12.5
C' o det(L o G) 1.2
det(H o C o L o G) 1.0

Recognition speeds for systems with an accuracy of 83%

Static and dynamic networks

- What we’ve seen so far: Static decoding graph

HoCoLoG

Determinize/minimize to make this graph more compact

+Another approach: Dynamic graph expansion

Dynamically build the graph with active states on the fly

Do on-the-fly composition with the language model G

(HoCol)oG

Viterbi search over the large trellis

Exact search is infeasible for large vocabulary tasks
Unknown word boundaries
Ngram language models greatly increase the search space

Solutions

Beam search: Prune away parts of the search space that
aren’t promising

Beam pruning

At each time-step t, only retain those nodes Iin the time-

state trellis that are within a fixed threshold & (beam width)
of the best path

Given active nodes from the last time-step:
Examine nodes in the current time-step ...

... that are reachable from active nodes in the previous
time-step

Get active nodes for the current time-step by only

retaining nodes with hypotheses that score close to the
score of the best hypothesis

Viterbi beam search decoder

- Time-synchronous search algorithm:

For time t, each state is updated by the best score from all
states in time t-1

Beam search prunes unpromising states at every time step.

- At each time-step t, only retain those nodes in the time-

state trellis that are within a fixed threshold & (beam width)
of the score of the best hypothesis.

Beam search algorithm

Initialization: current states := initial state
while (current states do not contain the goal state) do:

successor states := NEXT(current states)
where NEXT Is next state function

score the successor states

set current states to a pruned set of successor states using
beam width &
only retain those successor states that are within
O times the best path weight

Score of arc:
-log P(O1lx4) :
+ graph cost

Beam search over the decoding graph

Say o =2

Beam search in a seg2seq model

P(j\/z X, g
Say5-3 /3 ¢ rEIen
1IN, y y 2 P(37|x,"u")

DECODER

Q\Q\?

ENCODER

Lattices

“Lattices” are useful when more than one hypothesis is
desired from a recognition pass

- Alattice is a weighted, directed acyclic graph which

encodes a large number of ASR hypotheses weighted by

acoustic model +language model scores specific to a given
utterance

Lattice Generation

Say we want to decode an utterance, U, of T frames.

Construct a sausage acceptor for this utterance, X, with T+1
states and arcs for each context-dependent HMM state at
each time-step

Search the following composed machine for the best word
sequence corresponding to U:

D=XoHCLG

Lattice Generation

For all practical applications, we have to use beam pruning over D
such that only a subset of states/arcs in D are visited. Call this

resulting pruned machine, B.

- Word lattice, say L, is a further pruned version of B defined by a
lattice beam, [3. L satisfies the following requirements:

L should have a path for every word sequence within 3 of the best-
scoring path in B

- All scores and alignments in L correspond to actual paths through
B

L does not contain duplicate paths with the same word sequence

