Search and Decoding (Part Il)

Lecture 17

Recap: Viterbi beam search decoder

- Time-synchronous search algorithm:

For time t, each state is updated by the best score from all
states in time t-1

Beam search prunes unpromising states at every time step.

- At each time-step t, only retain those nodes in the time-

state trellis that are within a fixed threshold & (beam width)
of the score of the best hypothesis.

Recap: What are lattices?

“Lattices” are useful when more than one hypothesis is
desired from a recognition pass

- Alattice is a weighted, directed acyclic graph which

encodes a large number of ASR hypotheses weighted by

acoustic model +language model scores specific to a given
utterance

Lattice construction using lattice-beam

Produce a state-level lattice, prune it using “lattice-beam” width
(s.t. only arcs or states on paths that are within cutoff cost =
best_path_cost + lattice-beam will be retained) and then
determinize s.t. there’s a single path for every word sequence

Naive algorithm

Maintain a list of active tokens and links during decoding

Turn this structure into an FST, L.

When we reach the end of the utterance, prune L using
lattice-beam.

A* stack decoder

So far, we considered a time-synchronous search algorithm
that moves through the observation sequence step-by-step

A* stack decoding is a time-asynchronous algorithm that
proceeds by extending one or more hypotheses word by word
(i.e. no constraint on hypotheses ending at the same time)

Running hypotheses are handled using a priority queue sorted
on scores. Two problems to be addressed:

1. Which hypotheses should be extended? (Use A*)

2. How to choose the next word used in the extensions?
(fast-match)

Recall A* algorithm

To find the best path from a node to a goal node within a
weighted graph,

A* maintains a tree of paths until one of them terminates in a
goal node

A* expands a path that minimises £(n) = g(n) + h(n)
where n is the final node on the path, g(n) is the cost from
the start node to n and h(n) is a heuristic determining the
cost from n to the goal node

h (n)must be admissible i.e. it shouldn’t overestimate the
true cost to the nearest goal node

Nice animations: http://www.redblobgames.com/pathfinding/a-star/introduction.html

A* stack decoder

So far, we considered a time-synchronous search algorithm
that moves through the observation sequence step-by-step

A* stack decoding is a time-asynchronous algorithm that
proceeds by extending one or more hypotheses word by word
(i.e. no constraint on hypotheses ending at the same time)

Running hypotheses are handled using a priority queue sorted
on scores. Two problems to be addressed:

1. Which hypotheses should be extended? (Use A*)

2. How to choose the next word used in the extensions?
(fast-match)

Which hypotheses should be extended?

- A* maintains a priority queue of partial paths and chooses the one with the

highest score to be extended

Score should be related to probability: For a word sequence W given an
acoustic sequence O, score « Pr(OIW)Pr(W)

But not exactly this score because this will be biased towards shorter paths

- A* evaluation function based on f(p) = g(p) + h(p) for a partial path p where

g(p) = score from the beginning of the utterance to the end of p
h(p) = estimate of best scoring extension from p to end of the
utterance

-+ An example of h(p): Compute some average probability prob per frame

(over a training corpus). Then h(p) = prob x (T-t) where t is the end time of
the hypothesis and T is the length of the utterance

A* stack decoder

So far, we considered a time-synchronous search algorithm that
moves through the observation sequence step-by-step

+ A* stack decoding Is a time-asynchronous algorithm that

proceeds by extending one or more hypotheses word by word
(i.e. no constraint on hypotheses ending at the same time)

Running hypotheses are handled using a stack which is a
priority queue sorted on scores. Two problems to be addressed:

1. Which hypotheses should be extended? (Use A¥)

2. How to choose the next word used in the extensions? (fast-
match)

Fast-match

Fast-match: Algorithm to quickly find words in the lexicon that
are a good match to a portion of the acoustic input

Acoustics are split into a front part, A, (accounted by the word
string so far, W) and the remaining part A’. Fast-match is to find
a small subset of words that best match the beginning of A'.

Many techniques exist: 1) Rapidly find Pr(A’lw) for all w in the
vocabulary and choose words that exceed a threshold

2) Vocabulary is pre-clustered into subsets of acoustically
similar words. Each cluster is associated with a centroid.
Match A’ against the centroids and choose subsets having
centroids whose match exceeds a threshold

[B et al.]: Bahl et al., Fast match for continuous speech recognition using allophonic models, 1992

A* stack decoder

function STACK-DECODING() returns min-distance

Initialize the priority queue with a null sentence.

Pop the best (highest score) sentence s oft the queue.

It (s 1s marked end-of-sentence (EOS)) output s and terminate.

Get list of candidate next words by doing fast matches.

For each candidate next word w:
Create a new candidate sentence s+ w.
Use forward algorithm to compute acoustic likelihood L of s +w
Compute language model probability P of extended sentence s+ w
Compute *“score” tor s+ w (a function of L, P, and ?7?)
if (end-of-sentence) set EOS flag for s +w.
Insert s + w 1nto the queue together with 1ts score and EOS flag

Image from [JM]: Jurafsky & Martin, SLP 2nd edition, Chapter 10

Example (1)

P(acoustic | "if") =

forward probability
If
P("if" | START) 30
Alice
4(
(none) Every
1 25
P(inISTART)
In
4

Image from [JM]: Jurafsky & Martin, SLP 2nd edition, Chapter 10

Example (2)

P(acousticsl "1f") =

forward probability o—— oot prcbability
. 32
if P(music | if
: was
P(nlfn |START) 30 muscle
29 P(acoustic | whether) 31
/ forward probability
. . | 3 y messy
wants
P 41\ —) J P("if" | START) ‘b Q -
mice | was
(none) Every walls Pt =
1 25| 7 wants
(none) ' Every 24
1 25
walls
In —)
4 4

Image from [JM]: Jurafsky & Martin, SLP 2nd edition, Chapter 10

Moving on to multi-pass decoding

-+ We learned about two algorithms (beam search & A*) with

the help of which one can search through the decoding
graph in a first-pass decoding

However, some models are too expensive to implement in
first-pass decoding (e.g. RNN-based LMs)

Multi-pass decoding:

First, use simpler model (e.g. Ngram LMs) to find most
probable word sequences and represent as a word lattice
or N-best list

Rescore first-pass hypotheses using complex model to
find the best word sequence

Multi-pass decoding with N-best lists

-+ Simple algorithm: Modify the Viterbi algorithm to return the N-
best word sequences for a given speech input

AM LM
Rank Path logprob logprob
1. 1t’s an area that’s naturally sort of mysterious -7193.53 -20.25
2. that’s an area that’s naturally sort of mysterious -7192.28 -21.11
3. it’s an area that’s not really sort of mysterious -7221.68 -18.91
4. that scenario that’s naturally sort of mysterious -7189.19 -22.08
S. there’s an area that’s naturally sort of mysterious -7198.35 -21.34
6. that’s an area that’s not really sort of mysterious -7220.44 -19.77
7. the scenario that’s naturally sort of mysterious -7205.42 -21.50
3. so 1t’s an area that’s naturally sort of mysterious -7195.92 -21.71
9. that scenario that’s not really sort of mysterious -721°7.34 -20.70
10. there’s an area that’s not really sort of mysterious -7226.51 -20.01

- Problem: N-best lists aren’t as diverse as we’d like. And, not
enough information in N-best lists to effectively use other
knowledge sources

Image from [JM]: Jurafsky & Martin, SLP 2nd edition, Chapter 10

Multi-pass decoding with N-best lists

Simple algorithm: Modify the Viterbi algorithm to return the N-
best word sequences for a given speech input

Simple Smarter
Knowledge Knowledge
Source Source
N-Best List *::5 ézzr
N — — ——— I\ 1-Best Utterance
Speec . ? \I/C? was eglnmn:ng O gel.. :
input -, N-Best e ol ihe grgﬁﬁd... eenei ™, If music be the

food of love... ?1f music be the foot of dove...

If music be the ‘ Decoder | ?'f music be the food of :V RESCOI'lng ‘ food of love...

Image from [JM]: Jurafsky & Martin, SLP 2nd edition, Chapter 10

Multi-pass decoding with lattices

ASR lattice: Weighted automata/directed graph representing alternate ASR hypotheses

1ts/5.23
It’g 5

there’s/4.22
@\ an area that’snaturally sort of mysterious

¢
not /really
that/1.56 the scenario ,j

Multi-pass decoding with lattices

SO IT'S

=,
TS
= &‘.

THERE S

NATURALLY
AREA . e——=at,

THATS ——9% i i
—_— T NOT,, ~ SORT _

AN | * f L —

= THATS BEALLY OF

:
* ° o
® —2

SCENARIO MYSTERIOUS

® o
[= e %, & LA

. -0

Image from [JM]: Jurafsky & Martin, SLP 2nd edition, Chapter 10

Multi-pass decoding with confusion networks

Confusion networks/sausages: Lattices that show competing/
confusable words and can be used to compute posterior
probabilities at the word level

an area that’s paiyranyi0.15 Sort of mysterious
R

that scenario not/0.52

Word Gonfusion Networks

Word confusion networks are normalised word lattices that provide
alignments for a fraction of word sequences in the word lattice

(a) Word Lattice

OFTEN
DN
HAVE —@— é 4, >
RN L D,

Vg
Yo & 2

4 < R A\E
MO &
Ny
HAVE —@—r Time
>
(b) Confusion Network
<1 XHAVE XIT XVEAL FINE
. MOVE : VERY%FTEN?

FAST

Image from [GY08]: Gales & Young, Application of HMMs in speech recognition, NOW book, 2008

Word posterior probabilities in the word
confusion network

Each arc in the confusion network is marked with the
posterior probability of the corresponding word w

First, find the link probabillity of w from the word Ilattice:

- Joint probability of a path a (corr. to word sequence w)
and acoustic observations O: Pr(a,O) = Pram(O|a)Priy(w)

For each link |, the joint probabilities of all paths through |
are summed to find the link probability:

PI‘(”O) _ Zaeglr}()é(;% O)

< XHAVE X XVEAL FINE
VERYX)FTENg

FAST

Constructing word confusion network

Second step in estimating word posteriors is the clustering
of links that correspond to the same word/confusion set

This clustering is done in two stages:

1. Links that correspond to the same word and overlap in
time are combined

2. Links corresponding to different words are clustered
into confusion sets. Clustering algorithm is based on
phonetic similarity, time overlap and word posteriors.
More details in [LBSOO]

<1 XHAVE XIT X\/EAL FINE
- MOVE : VERYX)FTEN?

FAST

Image from [LBSO0O0]: L. Mangu et al., “Finding consensus in speech recognition”, Computer Speech & Lang, 2000

System Combination

Combining recognition outputs from multiple systems to produce
a hypothesis that is more accurate than any of the original
systems

Most widely used technique: ROVER [ROVER].

1-best word sequences from each system are aligned using a
greedy dynamic programming algorithm

Voting-based decision made for words aligned together

Can we do better than just looking at 1-best sequences?

lbbnl.ctm fthere’s fa ot Jof @ [ike [societies @ j@ - :
lerm-isI1.ctm jthere’s iithe [labs i@ (@ [like [societies |@ ifor jwomen lengineers i |think :
lcu-htk2.ctm jthere’s the Jlast |@ @ [tke |societies |@ jtrue :
idragonl.ctm jwas §@ ;;Jalive§@§§thc§legal 1society ggis ifor jwomen jengineers iand ilike |
sril.etm there’s fa flot jof (@ [ike society’s @ @ ithrough {engineers §@ like |

...

.............
..

............................

Image from [ROVERY]: Fiscus, Post-processing method to yield reduced word error rates, 1997

System Combination

Combining recognition outputs from multiple systems to produce
a hypothesis that is more accurate than any of the original
systems

Most widely used technique: ROVER [ROVER].

1-best word sequences from each system are aligned using
a greedy dynamic programming algorithm

Voting-based decision made for words aligned together

Could align confusion networks instead of 1-best sequences

SRS A i i AT A A S R R R R s L L T I

jbbnl.ctm fthere’s fa flot [of (@ [ike Isocieties (@ |@ :
jem-isll.etm ithere’s ithe ijlabs i@ (@ like societies i@ iifor [women jengineers i th.mk
@5 : S 1, 3

lcu-htk2.ctm there’s [the [last @@ (ke Isocieties {@ jtrue |of lengineers fand like |
idragonl.ctm jwas §@ gggaliveg@ggthc;legal {society ggis ifor ‘jwomen jlengineers iand jlike
jsriletm ithere’s ja llot lof @ [ike isociety’s @ |@ ithrough [engineers |@ [lke

Image from [ROVERY]: Fiscus, Post-processing method to yield reduced word error rates, 1997

C:3282.7

Do

Say we generate a lattice for an utterance as shown in the figure above.

Tick the correct answers for how the graph will change if this lattice is
pruned with different values of beam size, B.

1.

O O T QO

)
)
)
)

oo N

O O

)
)

)
)

B=2

Graph will stay the same

States 4 and 5 and arcs labeled with D and E will be pruned
States 6 and 7 and arcs labeled with F and G will be pruned
State 8 and the arc labeled with H will be pruned

B=04

Graph will stay the same

States 4 and 5 and arcs labeled with D and E will be pruned
States 6 and 7 and arcs labeled with F and G will be pruned
State 8 and the arc labeled with H will be pruned

E:2792.4

G:838.16

