Search and Decoding (Part II)

Lecture 17

Instructor: Preethi Jyothi
Recap: Viterbi beam search decoder

- Time-synchronous search algorithm:
 - For time t, each state is updated by the best score from all states in time $t-1$.
 - Beam search prunes unpromising states at every time step.
 - At each time-step t, only retain those nodes in the time-state trellis that are within a fixed threshold δ (beam width) of the score of the best hypothesis.
Recap: What are lattices?

• “Lattices” are useful when more than one hypothesis is desired from a recognition pass

• A lattice is a weighted, directed acyclic graph which encodes a large number of ASR hypotheses weighted by acoustic model + language model scores specific to a given utterance
Lattice construction using lattice-beam

- Produce a state-level lattice, prune it using “lattice-beam” width (s.t. only arcs or states on paths that are within cutoff cost = best_path_cost + lattice-beam will be retained) and then determinize s.t. there’s a single path for every word sequence

- Naive algorithm
 - Maintain a list of active tokens and links during decoding
 - Turn this structure into an FST, L.
 - When we reach the end of the utterance, prune L using lattice-beam.
A* stack decoder

• So far, we considered a time-synchronous search algorithm that moves through the observation sequence step-by-step

• A* stack decoding is a time-asynchronous algorithm that proceeds by extending one or more hypotheses word by word (i.e. no constraint on hypotheses ending at the same time)

• Running hypotheses are handled using a priority queue sorted on scores. Two problems to be addressed:

 1. Which hypotheses should be extended? (Use A*)

 2. How to choose the next word used in the extensions? (fast-match)
Recall A* algorithm

- To find the best path from a node to a goal node within a weighted graph,

- A* maintains a tree of paths until one of them terminates in a goal node

- A* expands a path that minimises $f(n) = g(n) + h(n)$ where n is the final node on the path, $g(n)$ is the cost from the start node to n and $h(n)$ is a heuristic determining the cost from n to the goal node

- $h(n)$ must be admissible i.e. it shouldn’t overestimate the true cost to the nearest goal node

Nice animations: http://www.redblobgames.com/pathfinding/a-star/introduction.html
A* stack decoder

• So far, we considered a time-synchronous search algorithm that moves through the observation sequence step-by-step

• A* stack decoding is a time-asynchronous algorithm that proceeds by extending one or more hypotheses word by word (i.e. no constraint on hypotheses ending at the same time)

• Running hypotheses are handled using a priority queue sorted on scores. Two problems to be addressed:

 1. Which hypotheses should be extended? (Use A*)

 2. How to choose the next word used in the extensions? (fast-match)
Which hypotheses should be extended?

- A* maintains a priority queue of partial paths and chooses the one with the highest score to be extended.

- Score should be related to probability: For a word sequence W given an acoustic sequence O, score $\propto \Pr(O|W)\Pr(W)$

- But not exactly this score because this will be biased towards shorter paths.

- A* evaluation function based on $f(p) = g(p) + h(p)$ for a partial path p where $g(p) =$ score from the beginning of the utterance to the end of p and $h(p) =$ estimate of best scoring extension from p to end of the utterance.

- An example of $h(p)$: Compute some average probability prob per frame (over a training corpus). Then $h(p) = \text{prob} \times (T-t)$ where t is the end time of the hypothesis and T is the length of the utterance.
A* stack decoder

- So far, we considered a time-synchronous search algorithm that moves through the observation sequence step-by-step

- A* stack decoding is a time-asynchronous algorithm that proceeds by extending one or more hypotheses word by word (i.e. no constraint on hypotheses ending at the same time)

- Running hypotheses are handled using a stack which is a priority queue sorted on scores. Two problems to be addressed:

 1. Which hypotheses should be extended? (Use A*)

 2. How to choose the next word used in the extensions? (fast-match)
Fast-match

- Fast-match: Algorithm to quickly find words in the lexicon that are a good match to a portion of the acoustic input

- Acoustics are split into a front part, A, (accounted by the word string so far, W) and the remaining part A’. Fast-match is to find a small subset of words that best match the beginning of A’.

- Many techniques exist: 1) Rapidly find Pr(A’lw) for all w in the vocabulary and choose words that exceed a threshold 2) Vocabulary is pre-clustered into subsets of acoustically similar words. Each cluster is associated with a centroid. Match A’ against the centroids and choose subsets having centroids whose match exceeds a threshold

[B et al.]: Bahl et al., Fast match for continuous speech recognition using allophonic models, 1992
A* stack decoder

function `STACK-DECODING()` **returns** `min-distance`

Initialize the priority queue with a null sentence.
Pop the best (highest score) sentence `s` off the queue.
If (`s` is marked end-of-sentence (EOS)) output `s` and terminate.
Get list of candidate next words by doing fast matches.
For each candidate next word `w`:
 - Create a new candidate sentence `s + w`.
 - Use forward algorithm to compute acoustic likelihood `L` of `s + w`.
 - Compute language model probability `P` of extended sentence `s + w`.
 - Compute “score” for `s + w` (a function of `L`, `P`, and `??`).
 - If (end-of-sentence) set EOS flag for `s + w`.
 - Insert `s + w` into the queue together with its score and EOS flag.
Example (1)

The beginning of the search for the sentence “If music be the food of love” is shown. Alice is the most likely hypothesis. (It has a higher score than the other hypotheses.)

Figure 10.9 The next steps of the search for the sentence “If music be the food of love.” In (a) we’ve now expanded the Alice node and added three extensions which have a relatively high score; the highest-scoring node is START if, which is not on the START Alice path at all. In (b) we’ve expanded the if node. The hypothesis START if music then has the highest score.

If we used probability as the score, the A∗ decoding algorithm would get stuck on the single-word hypotheses. Instead, we use the A∗ evaluation function (Nilsson, 1980; Pearl, 1984)

\[
f^*(p) = g(p) + h^*(p)
\]

where

- \(f^*(p)\) is the estimated score of the best complete path (complete sentence) which starts with the partial path \(p\).
- \(g(p)\) is the cost from the start to the end of \(p\) (a string itself, e.g., \(P(\text{START the . . . })\) will be greater than \(P(\text{START the book})\)).
- \(h^*(p)\) is an estimate of how well \(p\) would do if we let it continue through the sentence.

The A∗ algorithm builds this...
Example (2)

Figure 10.8 The beginning of the search for the sentence *If music be the food of love*.

At this early stage *Alice* is the most likely hypothesis. (It has a higher score than the other hypotheses.)

Figure 10.9 The next steps of the search for the sentence *If music be the food of love*.

In (a) we've now expanded the *Alice* node and added three extensions which have a relatively high score; the highest-scoring node is *START if*, which is not on the *START Alice* path at all. In (b) we've expanded the *if* node. The hypothesis *START if music* then has the highest score.

If we used probability as the score, the A∗ decoding algorithm would get stuck on the single-word hypotheses. Instead, we use the A∗ evaluation function (Nilsson, 1980; Pearl, 1984)

\[
\hat{f}(p) = g(p) + h^*(p)
\]

\(\hat{f}(p)\) is the estimated score of the best complete path (complete sentence) which starts with the partial path \(p\). In other words, it is an estimate of how well this path would do if we let it continue through the sentence. The A∗ algorithm builds this...
Moving on to multi-pass decoding

• We learned about two algorithms (beam search & A*) with the help of which one can search through the decoding graph in a first-pass decoding

• However, some models are too expensive to implement in first-pass decoding (e.g. RNN-based LMs)

• Multi-pass decoding:
 • First, use simpler model (e.g. Ngram LMs) to find most probable word sequences and represent as a word lattice or N-best list
 • Rescore first-pass hypotheses using complex model to find the best word sequence
Multi-pass decoding with N-best lists

- Simple algorithm: Modify the Viterbi algorithm to return the N-best word sequences for a given speech input

<table>
<thead>
<tr>
<th>Rank</th>
<th>Path</th>
<th>AM logprob</th>
<th>LM logprob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>it’s an area that’s naturally sort of mysterious</td>
<td>-7193.53</td>
<td>-20.25</td>
</tr>
<tr>
<td>2.</td>
<td>that’s an area that’s naturally sort of mysterious</td>
<td>-7192.28</td>
<td>-21.11</td>
</tr>
<tr>
<td>3.</td>
<td>it’s an area that’s not really sort of mysterious</td>
<td>-7221.68</td>
<td>-18.91</td>
</tr>
<tr>
<td>4.</td>
<td>that scenario that’s naturally sort of mysterious</td>
<td>-7189.19</td>
<td>-22.08</td>
</tr>
<tr>
<td>5.</td>
<td>there’s an area that’s naturally sort of mysterious</td>
<td>-7198.35</td>
<td>-21.34</td>
</tr>
<tr>
<td>6.</td>
<td>that’s an area that’s not really sort of mysterious</td>
<td>-7220.44</td>
<td>-19.77</td>
</tr>
<tr>
<td>7.</td>
<td>the scenario that’s naturally sort of mysterious</td>
<td>-7205.42</td>
<td>-21.50</td>
</tr>
<tr>
<td>8.</td>
<td>so it’s an area that’s naturally sort of mysterious</td>
<td>-7195.92</td>
<td>-21.71</td>
</tr>
<tr>
<td>9.</td>
<td>that scenario that’s not really sort of mysterious</td>
<td>-7217.34</td>
<td>-20.70</td>
</tr>
<tr>
<td>10.</td>
<td>there’s an area that’s not really sort of mysterious</td>
<td>-7226.51</td>
<td>-20.01</td>
</tr>
</tbody>
</table>

- Problem: N-best lists aren’t as diverse as we’d like. And, not enough information in N-best lists to effectively use other knowledge sources

Image from [JM]: Jurafsky & Martin, SLP 2nd edition, Chapter 10
Multi-pass decoding with N-best lists

- Simple algorithm: Modify the Viterbi algorithm to return the N-best word sequences for a given speech input
Multi-pass decoding with lattices

ASR lattice: Weighted automata/directed graph representing alternate ASR hypotheses

its/5.23
it’s/2.35
there’s/4.22
that’s
that/1.56
Scenario
an area
that’s naturally sort of mysterious
the
not really
Section 10.1. Multipass Decoding:

N-best lists and lattices

Transitions between words. In others, arcs represent word hypotheses and nodes are points in time. Let's use this latter model, and so each arc represents lots of information about the word hypothesis, including the start and end time, the acoustic model and language model probabilities, the sequence of phones (the pronunciation of the word), or even the phone durations. Fig. 10.3 shows a sample lattice corresponding to the N-best list in Fig. 10.2. Note that the lattice contains many distinct links (records) for the same word, each with a slightly different starting or ending time. Such lattices are not produced from N-best lists; instead, a lattice is produced during first-pass decoding by including some of the word hypotheses which were active (in the beam) at each time-step. Since the acoustic and language models are context-dependent, distinct links need to be created for each relevant context, resulting in a large number of links with the same word but different times and contexts.

N-best lists like Fig. 10.2 can also be produced by first building a lattice like Fig. 10.3 and then tracing through the paths to produce N-word strings.

Figure 10.3
Word lattice corresponding to the N-best list in Fig. 10.2. The arcs beneath each word show the different start and end times for each word hypothesis in the lattice; for some of these we've shown schematically how each word hypothesis must start at the end of a previous hypothesis. Not shown in this figure are the acoustic and language model probabilities that decorate each arc.

The fact that each word hypothesis in a lattice is augmented separately with its acoustic model likelihood and language model probability allows us to rescore any path through the lattice, using either a more sophisticated language model or a more sophisticated acoustic model. As with N-best lists, the goal of this rescoring is to replace the 1-best utterance with a different utterance that perhaps had a lower score on the first decoding pass. For this second-pass knowledge source to get perfect word error rate, the actual correct sentence would have to be in the lattice or N-best list. If the correct sentence isn't there, the rescoring knowledge source can't find it. Thus it needs the lattice.

Multi-pass decoding with lattices

Image from [JM]: Jurafsky & Martin, SLP 2nd edition, Chapter 10
Multi-pass decoding with confusion networks

- Confusion networks/sausages: Lattices that show competing/confusable words and can be used to compute posterior probabilities at the word level
Word Confusion Networks

Word confusion networks are normalised word lattices that provide alignments for a fraction of word sequences in the word lattice.

(a) Word Lattice

(b) Confusion Network

Image from [GY08]: Gales & Young, Application of HMMs in speech recognition, NOW book, 2008
Word posterior probabilities in the word confusion network

- Each arc in the confusion network is marked with the posterior probability of the corresponding word w.
- First, find the link probability of w from the word lattice:
 - Joint probability of a path a (corr. to word sequence w) and acoustic observations O: \(\Pr(a, O) = \Pr_{AM}(O|a)\Pr_{LM}(w) \)
 - For each link l, the joint probabilities of all paths through l are summed to find the link probability:
 \[
 \Pr(l|O) = \frac{\sum_{a \in A} \Pr(a, O)}{\Pr(O)}
 \]
Constructing word confusion network

- Second step in estimating word posteriors is the clustering of links that correspond to the same word/confusion set.

- This clustering is done in two stages:
 1. Links that correspond to the same word and overlap in time are combined.
 2. Links corresponding to different words are clustered into confusion sets. Clustering algorithm is based on phonetic similarity, time overlap and word posteriors. More details in [LBS00].
System Combination

- Combining recognition outputs from multiple systems to produce a hypothesis that is more accurate than any of the original systems

- Most widely used technique: ROVER [ROVER].

- 1-best word sequences from each system are aligned using a greedy dynamic programming algorithm

- Voting-based decision made for words aligned together

- Can we do better than just looking at 1-best sequences?
System Combination

- Combining recognition outputs from multiple systems to produce a hypothesis that is more accurate than any of the original systems

- Most widely used technique: ROVER [ROVER].

- 1-best word sequences from each system are aligned using a greedy dynamic programming algorithm

- Voting-based decision made for words aligned together

- Could align confusion networks instead of 1-best sequences
Say we generate a lattice for an utterance as shown in the figure above. Tick the correct answers for how the graph will change if this lattice is pruned with different values of beam size, B.

1. B = 2
 a) Graph will stay the same
 b) States 4 and 5 and arcs labeled with D and E will be pruned
 c) States 6 and 7 and arcs labeled with F and G will be pruned
 d) State 8 and the arc labeled with H will be pruned

2. B = 0.4
 a) Graph will stay the same
 b) States 4 and 5 and arcs labeled with D and E will be pruned
 c) States 6 and 7 and arcs labeled with F and G will be pruned
 d) State 8 and the arc labeled with H will be pruned