
Instructor: Preethi Jyothi

Search and Decoding (Part II)

Lecture 17

CS 753

Recap: Viterbi beam search decoder

• Time-synchronous search algorithm:

• For time t, each state is updated by the best score from all
states in time t-1

• Beam search prunes unpromising states at every time step.

• At each time-step t, only retain those nodes in the time-
state trellis that are within a fixed threshold δ (beam width)
of the score of the best hypothesis.

Recap: What are lattices?

• “Lattices” are useful when more than one hypothesis is
desired from a recognition pass

• A lattice is a weighted, directed acyclic graph which
encodes a large number of ASR hypotheses weighted by
acoustic model +language model scores specific to a given
utterance

Lattice construction using lattice-beam

• Produce a state-level lattice, prune it using “lattice-beam” width
(s.t. only arcs or states on paths that are within cutoff cost =
best_path_cost + lattice-beam will be retained) and then
determinize s.t. there’s a single path for every word sequence

• Naive algorithm

• Maintain a list of active tokens and links during decoding

• Turn this structure into an FST, L.

• When we reach the end of the utterance, prune L using
lattice-beam.

A* stack decoder

• So far, we considered a time-synchronous search algorithm
that moves through the observation sequence step-by-step

• A* stack decoding is a time-asynchronous algorithm that
proceeds by extending one or more hypotheses word by word
(i.e. no constraint on hypotheses ending at the same time)

• Running hypotheses are handled using a priority queue sorted
on scores. Two problems to be addressed:

1. Which hypotheses should be extended? (Use A*)

2. How to choose the next word used in the extensions?
(fast-match)

Recall A* algorithm

• To find the best path from a node to a goal node within a
weighted graph,

• A* maintains a tree of paths until one of them terminates in a
goal node

• A* expands a path that minimises f(n) = g(n) + h(n)
where n is the final node on the path, g(n) is the cost from
the start node to n and h(n) is a heuristic determining the
cost from n to the goal node

• h(n)must be admissible i.e. it shouldn’t overestimate the
true cost to the nearest goal node

Nice animations: http://www.redblobgames.com/pathfinding/a-star/introduction.html

A* stack decoder

• So far, we considered a time-synchronous search algorithm
that moves through the observation sequence step-by-step

• A* stack decoding is a time-asynchronous algorithm that
proceeds by extending one or more hypotheses word by word
(i.e. no constraint on hypotheses ending at the same time)

• Running hypotheses are handled using a priority queue sorted
on scores. Two problems to be addressed:

1. Which hypotheses should be extended? (Use A*)

2. How to choose the next word used in the extensions?
(fast-match)

Which hypotheses should be extended?
• A* maintains a priority queue of partial paths and chooses the one with the

highest score to be extended

• Score should be related to probability: For a word sequence W given an
acoustic sequence O, score ∝ Pr(O|W)Pr(W)

• But not exactly this score because this will be biased towards shorter paths

• A* evaluation function based on f(p) = g(p) + h(p) for a partial path p where  
 g(p) = score from the beginning of the utterance to the end of p  
 h(p) = estimate of best scoring extension from p to end of the  
 utterance

• An example of h(p): Compute some average probability prob per frame
(over a training corpus). Then h(p) = prob × (T-t) where t is the end time of
the hypothesis and T is the length of the utterance

A* stack decoder

• So far, we considered a time-synchronous search algorithm that
moves through the observation sequence step-by-step

• A* stack decoding is a time-asynchronous algorithm that
proceeds by extending one or more hypotheses word by word
(i.e. no constraint on hypotheses ending at the same time)

• Running hypotheses are handled using a stack which is a
priority queue sorted on scores. Two problems to be addressed:

1. Which hypotheses should be extended? (Use A*)

2. How to choose the next word used in the extensions? (fast-
match)

Fast-match

• Fast-match: Algorithm to quickly find words in the lexicon that
are a good match to a portion of the acoustic input

• Acoustics are split into a front part, A, (accounted by the word
string so far, W) and the remaining part A’. Fast-match is to find
a small subset of words that best match the beginning of A’.

• Many techniques exist: 1) Rapidly find Pr(A’|w) for all w in the
vocabulary and choose words that exceed a threshold  
2) Vocabulary is pre-clustered into subsets of acoustically
similar words. Each cluster is associated with a centroid.
Match A’ against the centroids and choose subsets having
centroids whose match exceeds a threshold

[B et al.]: Bahl et al., Fast match for continuous speech recognition using allophonic models, 1992

A* stack decoder

DR
AF
T

Section 10.2. A∗ (‘Stack’) Decoding 9

annotated with a score). In a priority queue each element has a score, and the pop oper-
ation returns the element with the highest score. The A∗ decoding algorithm iteratively
chooses the best prefix-so-far, computes all the possible next words for that prefix, and
adds these extended sentences to the queue. Fig. 10.7 shows the complete algorithm.

function STACK-DECODING() returns min-distance

Initialize the priority queue with a null sentence.
Pop the best (highest score) sentence s off the queue.
If (s is marked end-of-sentence (EOS)) output s and terminate.
Get list of candidate next words by doing fast matches.
For each candidate next word w:

Create a new candidate sentence s+w.
Use forward algorithm to compute acoustic likelihood L of s+w
Compute language model probability P of extended sentence s+w
Compute “score” for s+w (a function of L, P, and ???)
if (end-of-sentence) set EOS flag for s+w.
Insert s+w into the queue together with its score and EOS flag

Figure 10.7 The A∗ decoding algorithm (modified from Paul (1991) and Jelinek
(1997)). The evaluation function that is used to compute the score for a sentence is not
completely defined here; possible evaluation functions are discussed below.

Let’s consider a stylized example of an A∗ decoder working on a waveform for
which the correct transcription is If music be the food of love. Fig. 10.8 shows the
search space after the decoder has examined paths of length one from the root. A fast
match is used to select the likely next words. A fast match is one of a class of heuristicsFAST MATCH

designed to efficiently winnow down the number of possible following words, often
by computing some approximation to the forward probability (see below for further
discussion of fast matching).

At this point in our example, we’ve done the fast match, selected a subset of the
possible next words, and assigned each of them a score. The word Alice has the highest
score. We haven’t yet said exactly how the scoring works.

Fig. 10.9a show the next stage in the search. We have expanded the Alice node.
This means that the Alice node is no longer on the queue, but its children are. Note that
now the node labeled if actually has a higher score than any of the children of Alice.
Fig. 10.9b shows the state of the search after expanding the if node, removing it, and
adding if music, if muscle, and if messy on to the queue.

We clearly want the scoring criterion for a hypothesis to be related to its probability.
Indeed it might seem that the score for a string of words wi1 given an acoustic string y

j
1

should be the product of the prior and the likelihood:

P(y j1|w
i
1)P(wi1)

Alas, the score cannot be this probability because the probability will be much
smaller for a longer path than a shorter one. This is due to a simple fact about prob-
abilities and substrings; any prefix of a string must have a higher probability than the

Image from [JM]: Jurafsky & Martin, SLP 2nd edition, Chapter 10

Example (1)

Image from [JM]: Jurafsky & Martin, SLP 2nd edition, Chapter 10

DRAFT
10 Chapter 10. Speech Recognition: Advanced Topics

(none)
1

Alice

Every

In

30

25

4

P(in|START)

40

If
P("if" | START)

P(acoustic | "if") =
 forward probability

Figure 10.8 The beginning of the search for the sentence If music be the food of love.
At this early stage Alice is the most likely hypothesis. (It has a higher score than the other
hypotheses.)

(none)
1

Alice

Every

In

30

25

4

40

was

wants

walls
2

29

24

P(acoustics| "if") =
 forward probability

P("if" |START)
if

(none)
1

Alice

Every

In

30

25

4

40

walls
2

was
29

wants
24

32

31

25

P(acoustic | whether) =
 forward probability

P(music | if

if
P("if" | START)

music
P(acoustic | music) =
 forward probability

muscle

messy

(a) (b)

Figure 10.9 The next steps of the search for the sentence If music be the food of love. In
(a) we’ve now expanded the Alice node and added three extensions which have a relatively
high score; the highest-scoring node is START if, which is not along the START Alice path
at all. In (b) we’ve expanded the if node. The hypothesis START if music then has the
highest score.

string itself (e.g., P(START the . . .) will be greater than P(START the book)). Thus
if we used probability as the score, the A∗ decoding algorithm would get stuck on the
single-word hypotheses.

Instead, we use the A∗ evaluation function (Nilsson, 1980; Pearl, 1984) f ∗(p),
given a partial path p:

f ∗(p) = g(p)+h∗(p)

f ∗(p) is the estimated score of the best complete path (complete sentence) which
starts with the partial path p. In other words, it is an estimate of how well this path
would do if we let it continue through the sentence. The A∗ algorithm builds this

Example (2)

DRAFT
10 Chapter 10. Speech Recognition: Advanced Topics

(none)
1

Alice

Every

In

30

25

4

P(in|START)

40

If
P("if" | START)

P(acoustic | "if") =
 forward probability

Figure 10.8 The beginning of the search for the sentence If music be the food of love.
At this early stage Alice is the most likely hypothesis. (It has a higher score than the other
hypotheses.)

(none)
1

Alice

Every

In

30

25

4

40

was

wants

walls
2

29

24

P(acoustics| "if") =
 forward probability

P("if" |START)
if

(none)
1

Alice

Every

In

30

25

4

40

walls
2

was
29

wants
24

32

31

25

P(acoustic | whether) =
 forward probability

P(music | if

if
P("if" | START)

music
P(acoustic | music) =
 forward probability

muscle

messy

(a) (b)

Figure 10.9 The next steps of the search for the sentence If music be the food of love. In
(a) we’ve now expanded the Alice node and added three extensions which have a relatively
high score; the highest-scoring node is START if, which is not along the START Alice path
at all. In (b) we’ve expanded the if node. The hypothesis START if music then has the
highest score.

string itself (e.g., P(START the . . .) will be greater than P(START the book)). Thus
if we used probability as the score, the A∗ decoding algorithm would get stuck on the
single-word hypotheses.

Instead, we use the A∗ evaluation function (Nilsson, 1980; Pearl, 1984) f ∗(p),
given a partial path p:

f ∗(p) = g(p)+h∗(p)

f ∗(p) is the estimated score of the best complete path (complete sentence) which
starts with the partial path p. In other words, it is an estimate of how well this path
would do if we let it continue through the sentence. The A∗ algorithm builds this

Image from [JM]: Jurafsky & Martin, SLP 2nd edition, Chapter 10

Moving on to multi-pass decoding
• We learned about two algorithms (beam search & A*) with

the help of which one can search through the decoding
graph in a first-pass decoding

• However, some models are too expensive to implement in
first-pass decoding (e.g. RNN-based LMs)

• Multi-pass decoding:

‣ First, use simpler model (e.g. Ngram LMs) to find most
probable word sequences and represent as a word lattice
or N-best list

‣ Rescore first-pass hypotheses using complex model to
find the best word sequence

Multi-pass decoding with N-best lists

• Simple algorithm: Modify the Viterbi algorithm to return the N-
best word sequences for a given speech input

Image from [JM]: Jurafsky & Martin, SLP 2nd edition, Chapter 10

• Problem: N-best lists aren’t as diverse as we’d like. And, not
enough information in N-best lists to effectively use other
knowledge sources

DR
AF
T

4 Chapter 10. Speech Recognition: Advanced Topics

for finding the N most likely hypotheses (?). There are however, a number of ap-
proximate (non-admissible) algorithms; we will introduce just one of them, the “Exact
N-best” algorithm of Schwartz and Chow (1990). In Exact N-best, instead of each state
maintaining a single path/backtrace, we maintain up to N different paths for each state.
But we’d like to insure that these paths correspond to different word paths; we don’t
want to waste our N paths on different state sequences that map to the same words. To
do this, we keep for each path the word history, the entire sequence of words up to
the current word/state. If two paths with the same word history come to a state at the
same time, we merge the paths and sum the path probabilities. To keep the N best word
sequences, the resulting algorithm requires O(N) times the normal Viterbi time.

AM LM
Rank Path logprob logprob
1. it’s an area that’s naturally sort of mysterious -7193.53 -20.25
2. that’s an area that’s naturally sort of mysterious -7192.28 -21.11
3. it’s an area that’s not really sort of mysterious -7221.68 -18.91
4. that scenario that’s naturally sort of mysterious -7189.19 -22.08
5. there’s an area that’s naturally sort of mysterious -7198.35 -21.34
6. that’s an area that’s not really sort of mysterious -7220.44 -19.77
7. the scenario that’s naturally sort of mysterious -7205.42 -21.50
8. so it’s an area that’s naturally sort of mysterious -7195.92 -21.71
9. that scenario that’s not really sort of mysterious -7217.34 -20.70
10. there’s an area that’s not really sort of mysterious -7226.51 -20.01

Figure 10.2 An example 10-Best list from the Broadcast News corpus, produced by the
CU-HTK BN system (thanks to Phil Woodland). Logprobs use log10; the language model
scale factor (LMSF) is 15.

The result of any of these algorithms is anN-best list like the one shown in Fig. 10.2.
In Fig. 10.2 the correct hypothesis happens to be the first one, but of course the reason
to use N-best lists is that isn’t always the case. Each sentence in an N-best list is also
annotated with an acoustic model probability and a language model probability. This
allows a second-stage knowledge source to replace one of those two probabilities with
an improved estimate.

One problem with an N-best list is that when N is large, listing all the sentences
is extremely inefficient. Another problem is that N-best lists don’t give quite as much
information as we might want for a second-pass decoder. For example, we might want
distinct acoustic model information for each word hypothesis so that we can reapply a
new acoustic model for the word. Or we might want to have available different start
and end times of each word so that we can apply a new duration model.

For this reason, the output of a first-pass decoder is usually a more sophisticated
representation called a word lattice (Murveit et al., 1993; Aubert and Ney, 1995). AWORD LATTICE

word lattice is a directed graph that efficiently represents much more information about
possible word sequences.1 In some systems, nodes in the graph are words and arcs are

1 Actually an ASR lattice is not the kind of lattice that may be familiar to you from mathematics, since it is
not required to have the properties of a true lattice (i.e., be a partially ordered set with particular properties,
such as a unique join for each pair of elements). Really it’s just a graph, but it is conventional to call it a

Multi-pass decoding with N-best lists

DRAFT
Section 10.1. Multipass Decoding: N-best lists and lattices 3

to wy didn’t include wz (i.e., P(wy|wq,wz) was low for all q). Advanced probabilistic
LMs like SCFGs also violate the same dynamic programming assumptions.

There are two solutions to these problems with Viterbi decoding. The most com-
mon is to modify the Viterbi decoder to return multiple potential utterances, instead
of just the single best, and then use other high-level language model or pronunciation-
modeling algorithms to re-rank these multiple outputs (Schwartz and Austin, 1991;
Soong and Huang, 1990; Murveit et al., 1993).

The second solution is to employ a completely different decoding algorithm, such
as the stack decoder, or A∗ decoder (Jelinek, 1969; Jelinek et al., 1975). We beginSTACK DECODER

A
∗ in this section with multiple-pass decoding, and return to stack decoding in the next

section.
In multiple-pass decoding we break up the decoding process into two stages. In

the first stage we use fast, efficient knowledge sources or algorithms to perform a non-
optimal search. So for example we might use an unsophisticated but time-and-space
efficient language model like a bigram, or use simplified acoustic models. In the second
decoding pass we can apply more sophisticated but slower decoding algorithms on a
reduced search space. The interface between these passes is an N-best list or word
lattice.

The simplest algorithm for multipass decoding is to modify the Viterbi algorithm
to return the N-best sentences (word sequences) for a given speech input. SupposeN-BEST

for example a bigram grammar is used with such an N-best-Viterbi algorithm to return
the 1000 most highly-probable sentences, each with their AM likelihood and LM prior
score. This 1000-best list can now be passed to a more sophisticated language model
like a trigram grammar. This new LM is used to replace the bigram LM score of
each hypothesized sentence with a new trigram LM probability. These priors can be
combined with the acoustic likelihood of each sentence to generate a new posterior
probability for each sentence. Sentences are thus rescored and re-ranked using thisRESCORED

more sophisticated probability. Fig. 10.1 shows an intuition for this algorithm.

If music be the
 food of love...

If music be the
 food of love...

N-Best List

?Every happy family...
?In a hole in the ground...
?If music be the food of love...
?If music be the foot of dove...

?Alice was beginning to get...

N-Best
Decoder

Smarter
Knowledge
Source

1-Best Utterance

Simple
Knowledge
Source

speech
input Rescoring

Figure 10.1 The use of N-best decoding as part of a two-stage decoding model. Effi-
cient but unsophisticated knowledge sources are used to return the N-best utterances. This
significantly reduces the search space for the second pass models, which are thus free to
be very sophisticated but slow.

There are a number of algorithms for augmenting the Viterbi algorithm to generate
N-best hypotheses. It turns out that there is no polynomial-time admissible algorithm

• Simple algorithm: Modify the Viterbi algorithm to return the N-
best word sequences for a given speech input

Image from [JM]: Jurafsky & Martin, SLP 2nd edition, Chapter 10

Multi-pass decoding with lattices

ASR lattice: Weighted automata/directed graph representing alternate ASR hypotheses

its/5.23
it’s/2.35

there’s/4.22
that’s

that/1.56 scenario

an area that’s naturally sort of mysterious

the not really

DR
AF
T

Section 10.1. Multipass Decoding: N-best lists and lattices 5

transitions between words. In others, arcs represent word hypotheses and nodes are
points in time. Let’s use this latter model, and so each arc represents lots of information
about the word hypothesis, including the start and end time, the acoustic model and
language model probabilities, the sequence of phones (the pronunciation of the word),
or even the phone durations. Fig. 10.3 shows a sample lattice corresponding to the N-
best list in Fig. 10.2. Note that the lattice contains many distinct links (records) for the
same word, each with a slightly different starting or ending time. Such lattices are not
produced from N-best lists; instead, a lattice is produced during first-pass decoding by
including some of the word hypotheses which were active (in the beam) at each time-
step. Since the acoustic and language models are context-dependent, distinct links
need to be created for each relevant context, resulting in a large number of links with
the same word but different times and contexts. N-best lists like Fig. 10.2 can also be
produced by first building a lattice like Fig. 10.3 and then tracing through the paths to
produce N word strings.

Figure 10.3 Word lattice corresponding to the N-best list in Fig. 10.2. The arcs beneath
each word show the different start and end times for each word hypothesis in the lattice;
for some of these we’ve shown schematically how each word hypothesis must start at the
end of a previous hypothesis. Not shown in this figure are the acoustic and language model
probabilities that decorate each arc.

The fact that each word hypothesis in a lattice is augmented separately with its
acoustic model likelihood and language model probability allows us to rescore any
path through the lattice, using either a more sophisticated language model or a more
sophisticated acoustic model. As with N-best lists, the goal of this rescoring is to
replace the 1-best utterance with a different utterance that perhaps had a lower score
on the first decoding pass. For this second-pass knowledge source to get perfect word
error rate, the actual correct sentence would have to be in the lattice or N-best list. If
the correct sentence isn’t there, the rescoring knowledge source can’t find it. Thus it

lattice.

Multi-pass decoding with lattices

Image from [JM]: Jurafsky & Martin, SLP 2nd edition, Chapter 10

Multi-pass decoding with confusion networks

• Confusion networks/sausages: Lattices that show competing/
confusable words and can be used to compute posterior
probabilities at the word level

it’s
there’s
that’s

that scenario

an area that’s naturally/0.15 sort of mysterious

the

not/0.52

Word Confusion Networks
Word confusion networks are normalised word lattices that provide
alignments for a fraction of word sequences in the word lattice214 Architecture of an HMM-Based Recogniser

HAVE

HAVE
HAVE

I
I

MOVE

VERY

VERY

ISIL

SIL

VEAL

OFTEN

OF
TE

N SIL

SIL
SIL

SIL

FINE

IT VERY FAST

V
ER

Y

MOVE

HAVE IT

(a) Word Lattice

I HAVE IT VEAL FINE

 - MOVE - VERY OFTEN

FAST

(b) Confusion Network

Time

FINE

Fig. 2.6 Example lattice and confusion network.

longer correspond to discrete points in time, instead they simply enforce
word sequence constraints. Thus, parallel arcs in the confusion network
do not necessarily correspond to the same acoustic segment. However,
it is assumed that most of the time the overlap is sufficient to enable
parallel arcs to be regarded as competing hypotheses. A confusion net-
work has the property that for every path through the original lattice,
there exists a corresponding path through the confusion network. Each
arc in the confusion network carries the posterior probability of the
corresponding word w. This is computed by finding the link probabil-
ity of w in the lattice using a forward–backward procedure, summing
over all occurrences of w and then normalising so that all competing
word arcs in the confusion network sum to one. Confusion networks can
be used for minimum word-error decoding [165] (an example of min-
imum Bayes’ risk (MBR) decoding [22]), to provide confidence scores
and for merging the outputs of different decoders [41, 43, 63, 72] (see
Multi-Pass Recognition Architectures).

Image from [GY08]: Gales & Young, Application of HMMs in speech recognition, NOW book, 2008

Word posterior probabilities in the word
confusion network

• Each arc in the confusion network is marked with the
posterior probability of the corresponding word w

• First, find the link probability of w from the word lattice:

• Joint probability of a path a (corr. to word sequence w)
and acoustic observations O:

• For each link l, the joint probabilities of all paths through l
are summed to find the link probability:

214 Architecture of an HMM-Based Recogniser

HAVE

HAVE
HAVE

I
I

MOVE

VERY

VERY

ISIL

SIL

VEAL

OFTEN

OF
TE

N SIL
SIL
SIL

SIL

FINE

IT VERY FAST

V
ER

Y

MOVE

HAVE IT

(a) Word Lattice

I HAVE IT VEAL FINE

 - MOVE - VERY OFTEN

FAST

(b) Confusion Network

Time

FINE

Fig. 2.6 Example lattice and confusion network.

longer correspond to discrete points in time, instead they simply enforce
word sequence constraints. Thus, parallel arcs in the confusion network
do not necessarily correspond to the same acoustic segment. However,
it is assumed that most of the time the overlap is sufficient to enable
parallel arcs to be regarded as competing hypotheses. A confusion net-
work has the property that for every path through the original lattice,
there exists a corresponding path through the confusion network. Each
arc in the confusion network carries the posterior probability of the
corresponding word w. This is computed by finding the link probabil-
ity of w in the lattice using a forward–backward procedure, summing
over all occurrences of w and then normalising so that all competing
word arcs in the confusion network sum to one. Confusion networks can
be used for minimum word-error decoding [165] (an example of min-
imum Bayes’ risk (MBR) decoding [22]), to provide confidence scores
and for merging the outputs of different decoders [41, 43, 63, 72] (see
Multi-Pass Recognition Architectures).

Pr(a,O) = PrAM(O|a)PrLM(w)

Pr(l|O) =

P
a2A Pr(a,O)

Pr(O)

0.8

0.2 0.5 0.3
0.3

0.1

0.60.70.50.6

0.4

Constructing word confusion network
• Second step in estimating word posteriors is the clustering

of links that correspond to the same word/confusion set

• This clustering is done in two stages:

1. Links that correspond to the same word and overlap in
time are combined

2. Links corresponding to different words are clustered
into confusion sets. Clustering algorithm is based on
phonetic similarity, time overlap and word posteriors.
More details in [LBS00]

214 Architecture of an HMM-Based Recogniser

HAVE

HAVE
HAVE

I
I

MOVE

VERY

VERY

ISIL

SIL

VEAL

OFTEN

OF
TE

N SIL

SIL
SIL

SIL

FINE

IT VERY FAST

V
ER

Y

MOVE

HAVE IT

(a) Word Lattice

I HAVE IT VEAL FINE

 - MOVE - VERY OFTEN

FAST

(b) Confusion Network

Time

FINE

Fig. 2.6 Example lattice and confusion network.

longer correspond to discrete points in time, instead they simply enforce
word sequence constraints. Thus, parallel arcs in the confusion network
do not necessarily correspond to the same acoustic segment. However,
it is assumed that most of the time the overlap is sufficient to enable
parallel arcs to be regarded as competing hypotheses. A confusion net-
work has the property that for every path through the original lattice,
there exists a corresponding path through the confusion network. Each
arc in the confusion network carries the posterior probability of the
corresponding word w. This is computed by finding the link probabil-
ity of w in the lattice using a forward–backward procedure, summing
over all occurrences of w and then normalising so that all competing
word arcs in the confusion network sum to one. Confusion networks can
be used for minimum word-error decoding [165] (an example of min-
imum Bayes’ risk (MBR) decoding [22]), to provide confidence scores
and for merging the outputs of different decoders [41, 43, 63, 72] (see
Multi-Pass Recognition Architectures).

Image from [LBS00]: L. Mangu et al., “Finding consensus in speech recognition”, Computer Speech & Lang, 2000

System Combination
• Combining recognition outputs from multiple systems to produce

a hypothesis that is more accurate than any of the original
systems

• Most widely used technique: ROVER [ROVER].

• 1-best word sequences from each system are aligned using a
greedy dynamic programming algorithm

• Voting-based decision made for words aligned together

• Can we do better than just looking at 1-best sequences?

Image from [ROVER]: Fiscus, Post-processing method to yield reduced word error rates, 1997

System Combination
• Combining recognition outputs from multiple systems to produce

a hypothesis that is more accurate than any of the original
systems

• Most widely used technique: ROVER [ROVER].

• 1-best word sequences from each system are aligned using  
a greedy dynamic programming algorithm

• Voting-based decision made for words aligned together

• Could align confusion networks instead of 1-best sequences

Image from [ROVER]: Fiscus, Post-processing method to yield reduced word error rates, 1997

0 1 2 3

4 5

6 7

8/2.9

A:2000.1 B:1657.4 C:3282.7

D:1255 E:2792.4

G:838.16F:3210.2

H:4044.8

Say we generate a lattice for an utterance as shown in the figure above.
Tick the correct answers for how the graph will change if this lattice is
pruned with different values of beam size, B.

1. B = 2

a) Graph will stay the same

b) States 4 and 5 and arcs labeled with D and E will be pruned

c) States 6 and 7 and arcs labeled with F and G will be pruned

d) State 8 and the arc labeled with H will be pruned

2. B = 0.4

a) Graph will stay the same

b) States 4 and 5 and arcs labeled with D and E will be pruned

c) States 6 and 7 and arcs labeled with F and G will be pruned

d) State 8 and the arc labeled with H will be pruned

