
Instructor: Preethi Jyothi

Multilingual and low-resource ASR

Lecture 18

CS 753

Recall Hybrid DNN-HMM Systems

• Instead of GMMs, use scaled
DNN posteriors as the HMM
observation probabilities

• DNN trained using triphone
labels derived from a forced
alignment “Viterbi” step.

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

Fixed window of  
5 speech frames

Triphone state labels 
(DNN posteriors)

…
39 features

in one frame

… …

Multilingual Training  
(Hybrid DNN/HMM System)

Image/Table from Ghoshal et al., “Multilingual training of deep neural networks”, ICASSP, 2013.

DNN finetuned
on CZ

Stacked RBMs
trained on PL

DNN finetuned
on DE

DNN finetuned
on PT

DNN finetuned
on PL

Fig. 1. Multilingual training of deep neural networks.

does not require retraining any previously trained models for
other languages. Ideally, one would like the hidden layers
to converge to an optimized set of feature extractors that can
be reused across domains and languages. However, such a
study is inherently empirical, and variations of the techniques
reported here are currently under investigation.

4. EXPERIMENTS

We used the GlobalPhone corpus [25] for our experiments.
The corpus consists of recordings of speakers reading news-
papers in their native language. There are 19 languages from
a variety of geographical locations: Asia (Chinese, Japanese,
Korean), Middle East (Arabic, Turkish), Africa (Hausa), Eu-
rope (French, German, Polish), and Americas (Costa Rican
Spanish, Brazilian Portuguese). Recordings are made under
relatively quiet conditions using close-talking microphones;
however acoustic conditions may vary within a language and
between languages.

In this work we use seven languages from three differ-
ent language families: Germanic, Romance, and Slavic. The
languages used are: Czech, French, German, Polish, Brazil-
ian Portuguese, Russian and Costa Rican Spanish. Each lan-
guage has roughly 20 hours of speech for training and two
hours each for development and evaluation sets, from a total
of about 100 speakers. The detailed statistics for each of the
languages is shown in Table 1.

4.1. Baseline systems

For each language, we built standard maximum-likelihood
(ML) trained GMM-HMM systems, using 39-dimensional
MFCC features (C0-C12, with delta and acceleration coeffi-
cients), using the Kaldi speech recognition toolkit [26]. The
number of context-dependent triphone states for each lan-
guage is 3100 with a total of 50K Gaussians (an average of
roughly 16 Gaussians per state). The development set word
error rates (WER) for the different languages are presented
in Table 2. The results reported here are better than those in
our earlier work [13] because we used better LMs obtained

Table 1. Statistics of the subset of GlobalPhone languages
used in this work: the amounts of speech data for training,
development, and evaluation sets are in hours.

Language #Phones #Spkrs Train Dev Eval
Czech (CZ) 41 102 26.8 2.4 2.7
French (FR) 38 100 22.8 2.1 2.0
German (DE) 41 77 14.9 2.0 1.5
Polish (PL) 36 99 19.4 2.9 2.3
Portuguese (PT) 45 101 22.8 1.6 1.8
Russian (RU) 48 115 19.8 2.5 2.4
Spanish (SP) 40 100 17.6 2.0 1.7

from the authors of [3, 27]. We must stress that the ML
baseline results are presented here to serve as a point of ref-
erence, and not for direct comparison with the DNN results.
The scripts needed to replicate the GMM-HMM results are
publicly available as a part of the Kaldi toolkit2.

4.2. DNN configuration and results

For training DNNs, our tools utilize the Theano library [28],
which supports transparent computation using both CPUs and
GPUs. We train the networks on the same 39-dimensional
MFCCs as the GMM-HMM baseline. The features are glob-
ally normalised to zero mean and unit variance, and 9 frames
(4 on each side of the current frame) are used as the input to
the networks. All the networks used here are 7 layers deep,
with 2000 neurons per hidden layer. The initial weights for
the softmax layer were chosen uniformly at random: w ⇠

U [�r, r], where r = 4
p

6/(nl�1 + nl) and nl is the num-
ber of units in layer l. Fine-tuning is done using stochastic
gradient descent on 256-frame mini-batches and an exponen-
tially decaying schedule, learning at a fixed rate (0.08) un-
til improvement in accuracy on cross-validation set between
two successive epochs falls below 0.5%. The learning rate is
then halved at each epoch until the overall accuracy fails to
increase by 0.5% or more, at which point the algorithm ter-
minates. While learning, the gradients were smoothed with

2Available from: http://kaldi.sf.net

Multilingual Training  
(Hybrid DNN/HMM System)

Image/Table from Ghoshal et al., “Multilingual training of deep neural networks”, ICASSP, 2013.

DNN finetuned
on CZ

Stacked RBMs
trained on PL

DNN finetuned
on DE

DNN finetuned
on PT

DNN finetuned
on PL

Fig. 1. Multilingual training of deep neural networks.

does not require retraining any previously trained models for
other languages. Ideally, one would like the hidden layers
to converge to an optimized set of feature extractors that can
be reused across domains and languages. However, such a
study is inherently empirical, and variations of the techniques
reported here are currently under investigation.

4. EXPERIMENTS

We used the GlobalPhone corpus [25] for our experiments.
The corpus consists of recordings of speakers reading news-
papers in their native language. There are 19 languages from
a variety of geographical locations: Asia (Chinese, Japanese,
Korean), Middle East (Arabic, Turkish), Africa (Hausa), Eu-
rope (French, German, Polish), and Americas (Costa Rican
Spanish, Brazilian Portuguese). Recordings are made under
relatively quiet conditions using close-talking microphones;
however acoustic conditions may vary within a language and
between languages.

In this work we use seven languages from three differ-
ent language families: Germanic, Romance, and Slavic. The
languages used are: Czech, French, German, Polish, Brazil-
ian Portuguese, Russian and Costa Rican Spanish. Each lan-
guage has roughly 20 hours of speech for training and two
hours each for development and evaluation sets, from a total
of about 100 speakers. The detailed statistics for each of the
languages is shown in Table 1.

4.1. Baseline systems

For each language, we built standard maximum-likelihood
(ML) trained GMM-HMM systems, using 39-dimensional
MFCC features (C0-C12, with delta and acceleration coeffi-
cients), using the Kaldi speech recognition toolkit [26]. The
number of context-dependent triphone states for each lan-
guage is 3100 with a total of 50K Gaussians (an average of
roughly 16 Gaussians per state). The development set word
error rates (WER) for the different languages are presented
in Table 2. The results reported here are better than those in
our earlier work [13] because we used better LMs obtained

Table 1. Statistics of the subset of GlobalPhone languages
used in this work: the amounts of speech data for training,
development, and evaluation sets are in hours.

Language #Phones #Spkrs Train Dev Eval
Czech (CZ) 41 102 26.8 2.4 2.7
French (FR) 38 100 22.8 2.1 2.0
German (DE) 41 77 14.9 2.0 1.5
Polish (PL) 36 99 19.4 2.9 2.3
Portuguese (PT) 45 101 22.8 1.6 1.8
Russian (RU) 48 115 19.8 2.5 2.4
Spanish (SP) 40 100 17.6 2.0 1.7

from the authors of [3, 27]. We must stress that the ML
baseline results are presented here to serve as a point of ref-
erence, and not for direct comparison with the DNN results.
The scripts needed to replicate the GMM-HMM results are
publicly available as a part of the Kaldi toolkit2.

4.2. DNN configuration and results

For training DNNs, our tools utilize the Theano library [28],
which supports transparent computation using both CPUs and
GPUs. We train the networks on the same 39-dimensional
MFCCs as the GMM-HMM baseline. The features are glob-
ally normalised to zero mean and unit variance, and 9 frames
(4 on each side of the current frame) are used as the input to
the networks. All the networks used here are 7 layers deep,
with 2000 neurons per hidden layer. The initial weights for
the softmax layer were chosen uniformly at random: w ⇠

U [�r, r], where r = 4
p

6/(nl�1 + nl) and nl is the num-
ber of units in layer l. Fine-tuning is done using stochastic
gradient descent on 256-frame mini-batches and an exponen-
tially decaying schedule, learning at a fixed rate (0.08) un-
til improvement in accuracy on cross-validation set between
two successive epochs falls below 0.5%. The learning rate is
then halved at each epoch until the overall accuracy fails to
increase by 0.5% or more, at which point the algorithm ter-
minates. While learning, the gradients were smoothed with

2Available from: http://kaldi.sf.net

Table 2. Development set results: vocabulary size is the intersection between LM and pronunciation dictionary vocabularies;
perplexity (PPL) figures are obtained considering sentence beginning and ending markers; and for multilingual DNNs we show
the order of the languages used to train the networks.

Language Vocab PPL ML-GMM DNN Multilingual DNN
WER(%) WER(%) Languages WER(%)

CZ 29K 823 18.5 15.8 — —
DE 36K 115 13.9 11.2 CZ!DE 9.4
FR 16K 341 25.8 22.6 CZ!DE!FR 22.6
SP 17K 134 26.3 22.3 CZ!DE!FR!SP 21.2
PT 52K 184 24.1 19.1 CZ!DE!FR!SP!PT 18.9
RU 24K 634 32.5 27.5 CZ!DE!FR!SP!PT!RU 26.3
PL 29K 705 20.0 17.4 CZ!DE!FR!SP!PT!RU!PL 15.9

Fig. 2. Mono- and multi-lingual DNN results on Polish. The
languages are added left-to-right starting with Czech and end-
ing with Polish. Hence ‘+FR’ corresponds to the schedule CZ
!DE!FR!PL.

a first-order low-pass momentum (0.5). For the multilingual
DNNs, an initial learning rate of 0.04 is used.

A comparison of the WERs obtained by the monolingual
and multilingual DNNs for the different languages in Table 2
supports our hypotheses: the hidden layers are indeed trans-
ferable between languages, and training them with more lan-
guages, by and large, makes them better suited for the target
languages. These trends are shown in greater detail for Polish
(in Figure 2) and Russian (in Table 3).

It is important to note that the different systems do not
control for the amount of data; a system with more languages
is trained on more data and some of the performance gains
may well be attributed to that. However, we also notice that
just adding more data may not always improve results. For
example, in Figure 2 we see worse performance by adding
Portuguese, and the Czech data did not lower WER for either
Polish or Russian. This may indicate a need for better cross-
corpus normalization, for example, using speaker adaptive
training. Conversely, this may also indicate that the sequential
training protocol followed here is suboptimal. In fact, for the
systems shown in Figure 2, training on Russian after Spanish

Table 3. Mono- and multi-lingual DNN results on Russian.

Languages Dev Eval
RU 27.5 24.3
CZ!RU 27.5 24.6
CZ!DE!FR!SP!RU 26.6 23.8
CZ!DE!FR!SP!PT!RU 26.3 23.6

and then on Polish leads to similar WER as when Portuguese
is used for finetuning after Spanish. These issues are currently
under investigation.

5. DISCUSSION

We presented experiments with multilingual training of hy-
brid DNN-HMM systems showing that training the hidden
layers using data from multiple languages leads to improved
recognition accuracy. The results are very promising and
point to areas of future work: for instance, determining if the
number of layers in the network has an effect on these results.
The notion of deep neural networks performing a cascade of
feature extraction, from lower-level to higher-level features,
provides both an explanation for the observed effect, as well
as the inkling that the effect may be more pronounced for
deeper structures. There are also practical engineering issues
to consider: checking whether a simultaneous training, where
the randomization of observations is done across all lan-
guages in consideration, improves on the current sequential
protocol; experimenting with transformations of the feature
space as well as with discriminative features, some of which
may enhance or mitigate this effect; and experimenting with
a broader set of languages.

6. ACKNOWLEDGMENTS

This research was supported by EPSRC Programme Grant grant, no.
EP/I031022/1 (Natural Speech Technology). We would also like to
thank Tanja Schultz and Ngoc Thang Vu for making the Global-
Phone language models available to us, and Miloš Janda for help
with the baseline systems.

Different training language schedules
Table 2. Development set results: vocabulary size is the intersection between LM and pronunciation dictionary vocabularies;
perplexity (PPL) figures are obtained considering sentence beginning and ending markers; and for multilingual DNNs we show
the order of the languages used to train the networks.

Language Vocab PPL ML-GMM DNN Multilingual DNN
WER(%) WER(%) Languages WER(%)

CZ 29K 823 18.5 15.8 — —
DE 36K 115 13.9 11.2 CZ!DE 9.4
FR 16K 341 25.8 22.6 CZ!DE!FR 22.6
SP 17K 134 26.3 22.3 CZ!DE!FR!SP 21.2
PT 52K 184 24.1 19.1 CZ!DE!FR!SP!PT 18.9
RU 24K 634 32.5 27.5 CZ!DE!FR!SP!PT!RU 26.3
PL 29K 705 20.0 17.4 CZ!DE!FR!SP!PT!RU!PL 15.9

Fig. 2. Mono- and multi-lingual DNN results on Polish. The
languages are added left-to-right starting with Czech and end-
ing with Polish. Hence ‘+FR’ corresponds to the schedule CZ
!DE!FR!PL.

a first-order low-pass momentum (0.5). For the multilingual
DNNs, an initial learning rate of 0.04 is used.

A comparison of the WERs obtained by the monolingual
and multilingual DNNs for the different languages in Table 2
supports our hypotheses: the hidden layers are indeed trans-
ferable between languages, and training them with more lan-
guages, by and large, makes them better suited for the target
languages. These trends are shown in greater detail for Polish
(in Figure 2) and Russian (in Table 3).

It is important to note that the different systems do not
control for the amount of data; a system with more languages
is trained on more data and some of the performance gains
may well be attributed to that. However, we also notice that
just adding more data may not always improve results. For
example, in Figure 2 we see worse performance by adding
Portuguese, and the Czech data did not lower WER for either
Polish or Russian. This may indicate a need for better cross-
corpus normalization, for example, using speaker adaptive
training. Conversely, this may also indicate that the sequential
training protocol followed here is suboptimal. In fact, for the
systems shown in Figure 2, training on Russian after Spanish

Table 3. Mono- and multi-lingual DNN results on Russian.

Languages Dev Eval
RU 27.5 24.3
CZ!RU 27.5 24.6
CZ!DE!FR!SP!RU 26.6 23.8
CZ!DE!FR!SP!PT!RU 26.3 23.6

and then on Polish leads to similar WER as when Portuguese
is used for finetuning after Spanish. These issues are currently
under investigation.

5. DISCUSSION

We presented experiments with multilingual training of hy-
brid DNN-HMM systems showing that training the hidden
layers using data from multiple languages leads to improved
recognition accuracy. The results are very promising and
point to areas of future work: for instance, determining if the
number of layers in the network has an effect on these results.
The notion of deep neural networks performing a cascade of
feature extraction, from lower-level to higher-level features,
provides both an explanation for the observed effect, as well
as the inkling that the effect may be more pronounced for
deeper structures. There are also practical engineering issues
to consider: checking whether a simultaneous training, where
the randomization of observations is done across all lan-
guages in consideration, improves on the current sequential
protocol; experimenting with transformations of the feature
space as well as with discriminative features, some of which
may enhance or mitigate this effect; and experimenting with
a broader set of languages.

6. ACKNOWLEDGMENTS

This research was supported by EPSRC Programme Grant grant, no.
EP/I031022/1 (Natural Speech Technology). We would also like to
thank Tanja Schultz and Ngoc Thang Vu for making the Global-
Phone language models available to us, and Miloš Janda for help
with the baseline systems.

Mono- and multilingual results

softmax layers, however, are not shared. Instead, each language
has its own softmax layer to estimate the posterior probabilities of
the senones (tied triphone states) specific to that language.

...

...

...

...

...

...

...Language 1 senones

Input Layer:
A window of acoustic feature frames

Shared
Feature Transformation

Language 2 senones Language 3 senones Language 4 senones

Lang 1 Lang 2 Lang 3 Lang 4 Training or Testing Samples

Text

Many Hidden Layers

Figure 1: Architecture of the shared-hidden-layer multilingual
DNN

As usual, the input layer covers a long contextual window of

the acoustic feature (e.g., MFCC or log filter bank) frames. Since
the shared hidden layers are to be used by many languages,
language specific transformations such as HLDA cannot be applied.
This requirement will not limit the performance of the CD-DNN-
HMM, though, because any linear transformation can be subsumed
by the DNN as indicated in [4].

The key to the successful learning of the SHL-MDNN is to
train the model for all the languages simultaneously. When batch
training algorithms, such as L-BFGS or the Hessian free algorithm
[8], are used, this is trivial since all the data will be used in each
update of the model. However, if mini-batch training algorithms,
such as the mini-batch stochastic gradient ascent (SGA), are used,
it means each mini-batch should be drawn from all the training
data available. This can be efficiently accomplished by
randomizing the training utterance list across the languages before
feeding it into our DNN training tool.

The SHL-MDNN can be pretrained in either supervised or
unsupervised way. In this study we have adopted the unsupervised
pre-training procedure used in our previous study [1]. This is
because the unsupervised pretraining does not involve the
language-specific softmax layer and so can be carried out easily
without any modification of our existing tool.

The fine-tuning of the SHL-MDNN can be carried out using
the conventional backpropagation (BP) algorithm. However, since
a different softmax layer is used for each different language, the
algorithm needs to be adjusted slightly. When a training sample is
presented to the SHL-MDNN trainer, only the shared hidden layers
and the language-specific softmax layer are updated. Other
softmax layers are kept intact. The SHLs serve as a structural
regularization to the model and the entire SHL-MDNN and its
training procedure can be considered as an example of multi-task
learning.

After being trained, the SHL-MDNN can be used to recognize
speech of any language used in the training process. By sharing the
hidden layers in the SHL-MDNN and by using the joint training
strategy, we can improve the recognition accuracy of all the

languages decodable by the SHL-MDNN over the monolingual
DNNs trained using data from individual languages only.

We evaluated the SHL-MDNN on a Microsoft internal speech
recognition task. The training set contains 138-hour (hr) French
(FRA), 195-hr German (DEU), 63-hr Spanish (ESP), and 63-hr
Italian (ITA) speech data. The SHL-MDNN used in the experiment
has 5 hidden layers, each with 2048 nodes. The input to the DNN
is 11 (5-1-5) frames of the 13-dim MFCC feature with its
derivatives and accelerations. For each language, the output layer
has 1.8k senones determined by the GMM-HMM system trained
with the maximum likelihood estimation (MLE) on the same
training set. The SHL-MDNN was initialized using the
unsupervised DBN-pretraining procedure, and then refined with
BP using senone labels derived from the MLE model alignment.
The trained DNNs are plugged in the CD-DNN-HMM framework
designed for LVSR [1].

Table 1: Compare Monolingual DNN and Shared-Hidden-Layer
Multilingual DNN in WER (%)

 FRA DEU ESP ITA
Test Set Size (Words) 40k 37k 18k 31k
Monolingual DNN (%) 28.1 24.0 30.6 24.3
SHL-MDNN (%) 27.1 22.7 29.4 23.5
Relative WER Reduction (%) 3.6 5.4 3.9 3.3

Table 1 compares the word error rate (WER) obtained on the

language specific test sets using the monolingual DNN (trained
using only the data from that language) and the SHL-MDNN
(whose hidden layers are trained using data from all four
languages). From the table we can observe that the SHL-MDNN
outperforms the monolingual DNN with a 3-5% relative WER
reduction across all the languages. Note that when training
monolingual DNNs, we shuffled the training utterances as well and
adopted the same epoch numbers per language as in SHL-MDNN.
Therefore, we ascribe the gain of SHL-MDNN to cross-language
knowledge. It is encouraging that even for FRA and DEU, which
have more than 100 hours of training data, SHL-MDNN can still
provide improvement. This is not the only advantage of the SHL-
MDNN. For example, since multiple languages are simultaneously
decodable with its unified DNN structure, the SHL-MDNN makes
multilingual LVSR easy and efficient.

3. CROSS-LINGUAL MODEL TRANSFER

The shared hidden layers (SHLs) extracted from the multilingual
DNN can be considered as an intelligent feature extraction module
jointly trained with data from multiple source languages. As such
they carry rich information to distinguish phonetic classes in
multiple languages and can be carried over to distinguish phones in
new languages.

The procedure of cross-lingual model transfer is simple. We
extract the SHLs from the SHL-MDNN and add a new softmax
layer on top of it. The softmax layer’s output nodes correspond to
the senones in the target language. We then fix the hidden layers
and only train the softmax layer using training data from the target
language. If enough training data is available, additional gains may
be achieved by further tuning the entire network.

To evaluate the effectiveness of cross-lingual model transfer,
we used American English (ENU) (phonetically close to the

7305

Huang et al., “Cross-language knowledge transfer using multilingual DNNs with shared hidden layers”, ICASSP 2013.

Shared hidden layers +
Language-specific softmax layers

Shared hidden layers +
Language-specific softmax layers

Huang et al., “Cross-language knowledge transfer using multilingual DNNs with shared hidden layers”, ICASSP 2013.

• Hidden layers are shared across
languages; treated as a universal feature
transformation

• Each language has its own softmax layer
to estimate posterior probabilities of tied
triphone states specific to each language

softmax layers, however, are not shared. Instead, each language
has its own softmax layer to estimate the posterior probabilities of
the senones (tied triphone states) specific to that language.

...

...

...

...

...

...

...Language 1 senones

Input Layer:
A window of acoustic feature frames

Shared
Feature Transformation

Language 2 senones Language 3 senones Language 4 senones

Lang 1 Lang 2 Lang 3 Lang 4 Training or Testing Samples

Text

Many Hidden Layers

Figure 1: Architecture of the shared-hidden-layer multilingual
DNN

As usual, the input layer covers a long contextual window of

the acoustic feature (e.g., MFCC or log filter bank) frames. Since
the shared hidden layers are to be used by many languages,
language specific transformations such as HLDA cannot be applied.
This requirement will not limit the performance of the CD-DNN-
HMM, though, because any linear transformation can be subsumed
by the DNN as indicated in [4].

The key to the successful learning of the SHL-MDNN is to
train the model for all the languages simultaneously. When batch
training algorithms, such as L-BFGS or the Hessian free algorithm
[8], are used, this is trivial since all the data will be used in each
update of the model. However, if mini-batch training algorithms,
such as the mini-batch stochastic gradient ascent (SGA), are used,
it means each mini-batch should be drawn from all the training
data available. This can be efficiently accomplished by
randomizing the training utterance list across the languages before
feeding it into our DNN training tool.

The SHL-MDNN can be pretrained in either supervised or
unsupervised way. In this study we have adopted the unsupervised
pre-training procedure used in our previous study [1]. This is
because the unsupervised pretraining does not involve the
language-specific softmax layer and so can be carried out easily
without any modification of our existing tool.

The fine-tuning of the SHL-MDNN can be carried out using
the conventional backpropagation (BP) algorithm. However, since
a different softmax layer is used for each different language, the
algorithm needs to be adjusted slightly. When a training sample is
presented to the SHL-MDNN trainer, only the shared hidden layers
and the language-specific softmax layer are updated. Other
softmax layers are kept intact. The SHLs serve as a structural
regularization to the model and the entire SHL-MDNN and its
training procedure can be considered as an example of multi-task
learning.

After being trained, the SHL-MDNN can be used to recognize
speech of any language used in the training process. By sharing the
hidden layers in the SHL-MDNN and by using the joint training
strategy, we can improve the recognition accuracy of all the

languages decodable by the SHL-MDNN over the monolingual
DNNs trained using data from individual languages only.

We evaluated the SHL-MDNN on a Microsoft internal speech
recognition task. The training set contains 138-hour (hr) French
(FRA), 195-hr German (DEU), 63-hr Spanish (ESP), and 63-hr
Italian (ITA) speech data. The SHL-MDNN used in the experiment
has 5 hidden layers, each with 2048 nodes. The input to the DNN
is 11 (5-1-5) frames of the 13-dim MFCC feature with its
derivatives and accelerations. For each language, the output layer
has 1.8k senones determined by the GMM-HMM system trained
with the maximum likelihood estimation (MLE) on the same
training set. The SHL-MDNN was initialized using the
unsupervised DBN-pretraining procedure, and then refined with
BP using senone labels derived from the MLE model alignment.
The trained DNNs are plugged in the CD-DNN-HMM framework
designed for LVSR [1].

Table 1: Compare Monolingual DNN and Shared-Hidden-Layer
Multilingual DNN in WER (%)

 FRA DEU ESP ITA
Test Set Size (Words) 40k 37k 18k 31k
Monolingual DNN (%) 28.1 24.0 30.6 24.3
SHL-MDNN (%) 27.1 22.7 29.4 23.5
Relative WER Reduction (%) 3.6 5.4 3.9 3.3

Table 1 compares the word error rate (WER) obtained on the

language specific test sets using the monolingual DNN (trained
using only the data from that language) and the SHL-MDNN
(whose hidden layers are trained using data from all four
languages). From the table we can observe that the SHL-MDNN
outperforms the monolingual DNN with a 3-5% relative WER
reduction across all the languages. Note that when training
monolingual DNNs, we shuffled the training utterances as well and
adopted the same epoch numbers per language as in SHL-MDNN.
Therefore, we ascribe the gain of SHL-MDNN to cross-language
knowledge. It is encouraging that even for FRA and DEU, which
have more than 100 hours of training data, SHL-MDNN can still
provide improvement. This is not the only advantage of the SHL-
MDNN. For example, since multiple languages are simultaneously
decodable with its unified DNN structure, the SHL-MDNN makes
multilingual LVSR easy and efficient.

3. CROSS-LINGUAL MODEL TRANSFER

The shared hidden layers (SHLs) extracted from the multilingual
DNN can be considered as an intelligent feature extraction module
jointly trained with data from multiple source languages. As such
they carry rich information to distinguish phonetic classes in
multiple languages and can be carried over to distinguish phones in
new languages.

The procedure of cross-lingual model transfer is simple. We
extract the SHLs from the SHL-MDNN and add a new softmax
layer on top of it. The softmax layer’s output nodes correspond to
the senones in the target language. We then fix the hidden layers
and only train the softmax layer using training data from the target
language. If enough training data is available, additional gains may
be achieved by further tuning the entire network.

To evaluate the effectiveness of cross-lingual model transfer,
we used American English (ENU) (phonetically close to the

7305

Shared hidden layers + Language-specific softmax layers

Huang et al., “Cross-language knowledge transfer using multilingual DNNs with shared hidden layers”, ICASSP 2013.

European languages used to train the SHL-MDNN) and Mandarin
Chinese (CHN) (far away from the European languages) as the
target languages and ran a series of experiments. The ENU test set
consists of 2286 utterances (or 18k words) and the CHN test set
has 10510 utterances (or 40k characters).

3.1. Hidden Layers Are Transferable

The first question is whether the hidden layers are transferable to
other languages. To answer this question, we assume we have
access to 9 hours of ENU training data (55737 utterances). We
have several choices in building the ENU CD-DNN-HMM system.
As shown in Table 2 the baseline DNN is trained solely using the
9-hr ENU training set. With this approach we only achieved a
WER of 30.9% on the ENU test set. An alternative approach is to
leverage the hidden layers (feature transformation) learned from
other languages. In this experiment we chose to use 138 hours of
FRA training data to train a monolingual DNN. We then extracted
the hidden layers of this DNN to be used in the ENU DNN. If we
fix the hidden layers and only train the ENU specific softmax layer
using the 9-hr ENU training data we obtain absolute 2.6% WER
reduction (30.9% Æ 27.3%) from the baseline DNN. If we retrain
the whole FRA DNN using the 9-hr ENU data, we got a WER of
30.6%, which is only slightly better than the 30.9% baseline WER.
These results indicate that the feature transformation represented
by the hidden layers in the FRA DNN can be effectively
transferred to recognize the ENU speech.

Table 2: Compare ENU WER with and without Using Hidden
Layers (HLs) Transferred from the FRA DNN.

 WER (%)
Baseline (9-hr ENU) 30.9
FRA HLs + Train All Layers 30.6
FRA HLs + Train Softmax Layer 27.3
SHL-MDNN + Train Softmax Layer 25.3

We further transferred the shared hidden layers (SHLs)

extracted from the SHL-MDNN described in Section 2 to train the
ENU DNN. The last row in Table 2 indicates that the HLs
extracted from the SHL-MDNN are more effective than that
extracted from the FRA DNN when transferred to build the ENU
DNN. In fact we got additional absolute 2.0% WER reduction
(27.3% Æ 25.3%) by doing so. Overall, by using the cross-lingual
model transfer we got 4.6% absolute (or 18.1% relative) WER
reduction from the baseline ENU DNN.

3.2. Size of Target Language Training Data Matters

In this section we examine the effect of multilingual DNN cross-
lingual model transfer when different sizes of target language
training data (ENU, 3, 9 and 36 hours) are available. Table 3
summarizes the results. From the table, we can observe that by
using the transferred SHLs, we can consistently outperform the
baseline DNNs that do not use cross-lingual model transfer. We
can also observe that when different sizes of target languages are
available, the best learning strategy is different. In this experiment,
we can observe that when less than 10 hours of target language
training data are available, the best strategy is to only train a new
softmax layer. By doing so we got 28.0% and 18.1% relative WER

reduction over the baseline DNNs, when 3 and 9 hours of ENU
speech data are available, respectively. However, when the amount
of training data is large enough, further adapting the whole DNN
can provide additional error reduction. For example, when 36
hours of ENU speech data are available, we got additional absolute
0.8% WER reduction (22.4% Æ 21.6%) by adapting all layers.

Table 3: Compare the Effect of Target Language Training Set Size
in WER (%) when SHLs Are Transferred from the SHL-MDNN

ENU training data (#. Hours) 3 9 36
Baseline DNN (no Transfer) 38.9 30.9 23.0
SHL-MDNN + Train Softmax Layer 28.0 25.3 22.4
SHL-MDNN + Train All Layers 33.4 28.9 21.6
Best Case Relative WER Reduction (%) 28.0 18.1 6.1

3.3. Transferring to Mandarin Chinese Is Effective

To understand whether the effectiveness of the cross-lingual model
transfer approach is sensitive to the language similarities between
the source and the target languages, we used Mandarin Chinese
(CHN) to simulate the second target language and applied the
cross-lingual model transfer technique. Table 4 lists the character
error rates (CERs) for both the baseline and the Multilingual-
boosted DNN when the size of Chinese training data varies. We
can see that in all cases CER reduction is observed by using the
transferred SHLs. Even if we have 139 hours Of CHN data we can
still benefit from the SHL-MDNN with 8.3% relative CER
reduction. Moreover, using only 36 hours of CHN data we can
achieve 28.4% CER on the test set by transferring the SHLs from
the SHL-MDNN. This is better than the 29.0% CER obtained with
the baseline DNN trained using the 139 hours of CHN training
data, a save of over 100 hours of CHN transcription effort. To
achieve the results reported in this table, we only trained the
softmax layers when less than 9 hours of CHN data are available
and further retrained all layers when more 10 hours of CHN data
are available.

Table 4: Effectiveness of Cross-Lingual Model Transfer on CHN
Measured in CER Reduction (%).

CHN Training Set (Hrs) 3 9 36 139
Baseline - CHN only 45.1 40.3 31.7 29.0
SHL-MDNN Model Transfer 35.6 33.9 28.4 26.6
Relative CER Reduction 21.1 15.9 10.4 8.3

3.4. Using Label Information Is Important

There is some evidence [13] in the computer vision community to
suggest that features extracted using the unsupervised approach
from a large amount of data are able to do classification tasks very
well. This triggered some interests in the speech recognition
community as it is much easier to obtain untranscribed speech data
than transcribed ones for model training. Therefore, a related
question is whether the label information is important for
effectively learning the shared representation from the multilingual
data. To answer this question, we compared the systems with and
without using the label information when training the shared
hidden layers. More specifically for the case without using the
label information we used the multilingual DNN right after the pre-
training stage. We see from Table 5 that while there is a small gain
by using pre-trained only multilingual DNN and adapting the

7306

Hidden layers are transferable

European languages used to train the SHL-MDNN) and Mandarin
Chinese (CHN) (far away from the European languages) as the
target languages and ran a series of experiments. The ENU test set
consists of 2286 utterances (or 18k words) and the CHN test set
has 10510 utterances (or 40k characters).

3.1. Hidden Layers Are Transferable

The first question is whether the hidden layers are transferable to
other languages. To answer this question, we assume we have
access to 9 hours of ENU training data (55737 utterances). We
have several choices in building the ENU CD-DNN-HMM system.
As shown in Table 2 the baseline DNN is trained solely using the
9-hr ENU training set. With this approach we only achieved a
WER of 30.9% on the ENU test set. An alternative approach is to
leverage the hidden layers (feature transformation) learned from
other languages. In this experiment we chose to use 138 hours of
FRA training data to train a monolingual DNN. We then extracted
the hidden layers of this DNN to be used in the ENU DNN. If we
fix the hidden layers and only train the ENU specific softmax layer
using the 9-hr ENU training data we obtain absolute 2.6% WER
reduction (30.9% Æ 27.3%) from the baseline DNN. If we retrain
the whole FRA DNN using the 9-hr ENU data, we got a WER of
30.6%, which is only slightly better than the 30.9% baseline WER.
These results indicate that the feature transformation represented
by the hidden layers in the FRA DNN can be effectively
transferred to recognize the ENU speech.

Table 2: Compare ENU WER with and without Using Hidden
Layers (HLs) Transferred from the FRA DNN.

 WER (%)
Baseline (9-hr ENU) 30.9
FRA HLs + Train All Layers 30.6
FRA HLs + Train Softmax Layer 27.3
SHL-MDNN + Train Softmax Layer 25.3

We further transferred the shared hidden layers (SHLs)

extracted from the SHL-MDNN described in Section 2 to train the
ENU DNN. The last row in Table 2 indicates that the HLs
extracted from the SHL-MDNN are more effective than that
extracted from the FRA DNN when transferred to build the ENU
DNN. In fact we got additional absolute 2.0% WER reduction
(27.3% Æ 25.3%) by doing so. Overall, by using the cross-lingual
model transfer we got 4.6% absolute (or 18.1% relative) WER
reduction from the baseline ENU DNN.

3.2. Size of Target Language Training Data Matters

In this section we examine the effect of multilingual DNN cross-
lingual model transfer when different sizes of target language
training data (ENU, 3, 9 and 36 hours) are available. Table 3
summarizes the results. From the table, we can observe that by
using the transferred SHLs, we can consistently outperform the
baseline DNNs that do not use cross-lingual model transfer. We
can also observe that when different sizes of target languages are
available, the best learning strategy is different. In this experiment,
we can observe that when less than 10 hours of target language
training data are available, the best strategy is to only train a new
softmax layer. By doing so we got 28.0% and 18.1% relative WER

reduction over the baseline DNNs, when 3 and 9 hours of ENU
speech data are available, respectively. However, when the amount
of training data is large enough, further adapting the whole DNN
can provide additional error reduction. For example, when 36
hours of ENU speech data are available, we got additional absolute
0.8% WER reduction (22.4% Æ 21.6%) by adapting all layers.

Table 3: Compare the Effect of Target Language Training Set Size
in WER (%) when SHLs Are Transferred from the SHL-MDNN

ENU training data (#. Hours) 3 9 36
Baseline DNN (no Transfer) 38.9 30.9 23.0
SHL-MDNN + Train Softmax Layer 28.0 25.3 22.4
SHL-MDNN + Train All Layers 33.4 28.9 21.6
Best Case Relative WER Reduction (%) 28.0 18.1 6.1

3.3. Transferring to Mandarin Chinese Is Effective

To understand whether the effectiveness of the cross-lingual model
transfer approach is sensitive to the language similarities between
the source and the target languages, we used Mandarin Chinese
(CHN) to simulate the second target language and applied the
cross-lingual model transfer technique. Table 4 lists the character
error rates (CERs) for both the baseline and the Multilingual-
boosted DNN when the size of Chinese training data varies. We
can see that in all cases CER reduction is observed by using the
transferred SHLs. Even if we have 139 hours Of CHN data we can
still benefit from the SHL-MDNN with 8.3% relative CER
reduction. Moreover, using only 36 hours of CHN data we can
achieve 28.4% CER on the test set by transferring the SHLs from
the SHL-MDNN. This is better than the 29.0% CER obtained with
the baseline DNN trained using the 139 hours of CHN training
data, a save of over 100 hours of CHN transcription effort. To
achieve the results reported in this table, we only trained the
softmax layers when less than 9 hours of CHN data are available
and further retrained all layers when more 10 hours of CHN data
are available.

Table 4: Effectiveness of Cross-Lingual Model Transfer on CHN
Measured in CER Reduction (%).

CHN Training Set (Hrs) 3 9 36 139
Baseline - CHN only 45.1 40.3 31.7 29.0
SHL-MDNN Model Transfer 35.6 33.9 28.4 26.6
Relative CER Reduction 21.1 15.9 10.4 8.3

3.4. Using Label Information Is Important

There is some evidence [13] in the computer vision community to
suggest that features extracted using the unsupervised approach
from a large amount of data are able to do classification tasks very
well. This triggered some interests in the speech recognition
community as it is much easier to obtain untranscribed speech data
than transcribed ones for model training. Therefore, a related
question is whether the label information is important for
effectively learning the shared representation from the multilingual
data. To answer this question, we compared the systems with and
without using the label information when training the shared
hidden layers. More specifically for the case without using the
label information we used the multilingual DNN right after the pre-
training stage. We see from Table 5 that while there is a small gain
by using pre-trained only multilingual DNN and adapting the

7306

Training strategy based on target language data

European languages used to train the SHL-MDNN) and Mandarin
Chinese (CHN) (far away from the European languages) as the
target languages and ran a series of experiments. The ENU test set
consists of 2286 utterances (or 18k words) and the CHN test set
has 10510 utterances (or 40k characters).

3.1. Hidden Layers Are Transferable

The first question is whether the hidden layers are transferable to
other languages. To answer this question, we assume we have
access to 9 hours of ENU training data (55737 utterances). We
have several choices in building the ENU CD-DNN-HMM system.
As shown in Table 2 the baseline DNN is trained solely using the
9-hr ENU training set. With this approach we only achieved a
WER of 30.9% on the ENU test set. An alternative approach is to
leverage the hidden layers (feature transformation) learned from
other languages. In this experiment we chose to use 138 hours of
FRA training data to train a monolingual DNN. We then extracted
the hidden layers of this DNN to be used in the ENU DNN. If we
fix the hidden layers and only train the ENU specific softmax layer
using the 9-hr ENU training data we obtain absolute 2.6% WER
reduction (30.9% Æ 27.3%) from the baseline DNN. If we retrain
the whole FRA DNN using the 9-hr ENU data, we got a WER of
30.6%, which is only slightly better than the 30.9% baseline WER.
These results indicate that the feature transformation represented
by the hidden layers in the FRA DNN can be effectively
transferred to recognize the ENU speech.

Table 2: Compare ENU WER with and without Using Hidden
Layers (HLs) Transferred from the FRA DNN.

 WER (%)
Baseline (9-hr ENU) 30.9
FRA HLs + Train All Layers 30.6
FRA HLs + Train Softmax Layer 27.3
SHL-MDNN + Train Softmax Layer 25.3

We further transferred the shared hidden layers (SHLs)

extracted from the SHL-MDNN described in Section 2 to train the
ENU DNN. The last row in Table 2 indicates that the HLs
extracted from the SHL-MDNN are more effective than that
extracted from the FRA DNN when transferred to build the ENU
DNN. In fact we got additional absolute 2.0% WER reduction
(27.3% Æ 25.3%) by doing so. Overall, by using the cross-lingual
model transfer we got 4.6% absolute (or 18.1% relative) WER
reduction from the baseline ENU DNN.

3.2. Size of Target Language Training Data Matters

In this section we examine the effect of multilingual DNN cross-
lingual model transfer when different sizes of target language
training data (ENU, 3, 9 and 36 hours) are available. Table 3
summarizes the results. From the table, we can observe that by
using the transferred SHLs, we can consistently outperform the
baseline DNNs that do not use cross-lingual model transfer. We
can also observe that when different sizes of target languages are
available, the best learning strategy is different. In this experiment,
we can observe that when less than 10 hours of target language
training data are available, the best strategy is to only train a new
softmax layer. By doing so we got 28.0% and 18.1% relative WER

reduction over the baseline DNNs, when 3 and 9 hours of ENU
speech data are available, respectively. However, when the amount
of training data is large enough, further adapting the whole DNN
can provide additional error reduction. For example, when 36
hours of ENU speech data are available, we got additional absolute
0.8% WER reduction (22.4% Æ 21.6%) by adapting all layers.

Table 3: Compare the Effect of Target Language Training Set Size
in WER (%) when SHLs Are Transferred from the SHL-MDNN

ENU training data (#. Hours) 3 9 36
Baseline DNN (no Transfer) 38.9 30.9 23.0
SHL-MDNN + Train Softmax Layer 28.0 25.3 22.4
SHL-MDNN + Train All Layers 33.4 28.9 21.6
Best Case Relative WER Reduction (%) 28.0 18.1 6.1

3.3. Transferring to Mandarin Chinese Is Effective

To understand whether the effectiveness of the cross-lingual model
transfer approach is sensitive to the language similarities between
the source and the target languages, we used Mandarin Chinese
(CHN) to simulate the second target language and applied the
cross-lingual model transfer technique. Table 4 lists the character
error rates (CERs) for both the baseline and the Multilingual-
boosted DNN when the size of Chinese training data varies. We
can see that in all cases CER reduction is observed by using the
transferred SHLs. Even if we have 139 hours Of CHN data we can
still benefit from the SHL-MDNN with 8.3% relative CER
reduction. Moreover, using only 36 hours of CHN data we can
achieve 28.4% CER on the test set by transferring the SHLs from
the SHL-MDNN. This is better than the 29.0% CER obtained with
the baseline DNN trained using the 139 hours of CHN training
data, a save of over 100 hours of CHN transcription effort. To
achieve the results reported in this table, we only trained the
softmax layers when less than 9 hours of CHN data are available
and further retrained all layers when more 10 hours of CHN data
are available.

Table 4: Effectiveness of Cross-Lingual Model Transfer on CHN
Measured in CER Reduction (%).

CHN Training Set (Hrs) 3 9 36 139
Baseline - CHN only 45.1 40.3 31.7 29.0
SHL-MDNN Model Transfer 35.6 33.9 28.4 26.6
Relative CER Reduction 21.1 15.9 10.4 8.3

3.4. Using Label Information Is Important

There is some evidence [13] in the computer vision community to
suggest that features extracted using the unsupervised approach
from a large amount of data are able to do classification tasks very
well. This triggered some interests in the speech recognition
community as it is much easier to obtain untranscribed speech data
than transcribed ones for model training. Therefore, a related
question is whether the label information is important for
effectively learning the shared representation from the multilingual
data. To answer this question, we compared the systems with and
without using the label information when training the shared
hidden layers. More specifically for the case without using the
label information we used the multilingual DNN right after the pre-
training stage. We see from Table 5 that while there is a small gain
by using pre-trained only multilingual DNN and adapting the

7306

Cross-lingual transfer

softmax layers, however, are not shared. Instead, each language
has its own softmax layer to estimate the posterior probabilities of
the senones (tied triphone states) specific to that language.

...

...

...

...

...

...

...Language 1 senones

Input Layer:
A window of acoustic feature frames

Shared
Feature Transformation

Language 2 senones Language 3 senones Language 4 senones

Lang 1 Lang 2 Lang 3 Lang 4 Training or Testing Samples

Text

Many Hidden Layers

Figure 1: Architecture of the shared-hidden-layer multilingual
DNN

As usual, the input layer covers a long contextual window of

the acoustic feature (e.g., MFCC or log filter bank) frames. Since
the shared hidden layers are to be used by many languages,
language specific transformations such as HLDA cannot be applied.
This requirement will not limit the performance of the CD-DNN-
HMM, though, because any linear transformation can be subsumed
by the DNN as indicated in [4].

The key to the successful learning of the SHL-MDNN is to
train the model for all the languages simultaneously. When batch
training algorithms, such as L-BFGS or the Hessian free algorithm
[8], are used, this is trivial since all the data will be used in each
update of the model. However, if mini-batch training algorithms,
such as the mini-batch stochastic gradient ascent (SGA), are used,
it means each mini-batch should be drawn from all the training
data available. This can be efficiently accomplished by
randomizing the training utterance list across the languages before
feeding it into our DNN training tool.

The SHL-MDNN can be pretrained in either supervised or
unsupervised way. In this study we have adopted the unsupervised
pre-training procedure used in our previous study [1]. This is
because the unsupervised pretraining does not involve the
language-specific softmax layer and so can be carried out easily
without any modification of our existing tool.

The fine-tuning of the SHL-MDNN can be carried out using
the conventional backpropagation (BP) algorithm. However, since
a different softmax layer is used for each different language, the
algorithm needs to be adjusted slightly. When a training sample is
presented to the SHL-MDNN trainer, only the shared hidden layers
and the language-specific softmax layer are updated. Other
softmax layers are kept intact. The SHLs serve as a structural
regularization to the model and the entire SHL-MDNN and its
training procedure can be considered as an example of multi-task
learning.

After being trained, the SHL-MDNN can be used to recognize
speech of any language used in the training process. By sharing the
hidden layers in the SHL-MDNN and by using the joint training
strategy, we can improve the recognition accuracy of all the

languages decodable by the SHL-MDNN over the monolingual
DNNs trained using data from individual languages only.

We evaluated the SHL-MDNN on a Microsoft internal speech
recognition task. The training set contains 138-hour (hr) French
(FRA), 195-hr German (DEU), 63-hr Spanish (ESP), and 63-hr
Italian (ITA) speech data. The SHL-MDNN used in the experiment
has 5 hidden layers, each with 2048 nodes. The input to the DNN
is 11 (5-1-5) frames of the 13-dim MFCC feature with its
derivatives and accelerations. For each language, the output layer
has 1.8k senones determined by the GMM-HMM system trained
with the maximum likelihood estimation (MLE) on the same
training set. The SHL-MDNN was initialized using the
unsupervised DBN-pretraining procedure, and then refined with
BP using senone labels derived from the MLE model alignment.
The trained DNNs are plugged in the CD-DNN-HMM framework
designed for LVSR [1].

Table 1: Compare Monolingual DNN and Shared-Hidden-Layer
Multilingual DNN in WER (%)

 FRA DEU ESP ITA
Test Set Size (Words) 40k 37k 18k 31k
Monolingual DNN (%) 28.1 24.0 30.6 24.3
SHL-MDNN (%) 27.1 22.7 29.4 23.5
Relative WER Reduction (%) 3.6 5.4 3.9 3.3

Table 1 compares the word error rate (WER) obtained on the

language specific test sets using the monolingual DNN (trained
using only the data from that language) and the SHL-MDNN
(whose hidden layers are trained using data from all four
languages). From the table we can observe that the SHL-MDNN
outperforms the monolingual DNN with a 3-5% relative WER
reduction across all the languages. Note that when training
monolingual DNNs, we shuffled the training utterances as well and
adopted the same epoch numbers per language as in SHL-MDNN.
Therefore, we ascribe the gain of SHL-MDNN to cross-language
knowledge. It is encouraging that even for FRA and DEU, which
have more than 100 hours of training data, SHL-MDNN can still
provide improvement. This is not the only advantage of the SHL-
MDNN. For example, since multiple languages are simultaneously
decodable with its unified DNN structure, the SHL-MDNN makes
multilingual LVSR easy and efficient.

3. CROSS-LINGUAL MODEL TRANSFER

The shared hidden layers (SHLs) extracted from the multilingual
DNN can be considered as an intelligent feature extraction module
jointly trained with data from multiple source languages. As such
they carry rich information to distinguish phonetic classes in
multiple languages and can be carried over to distinguish phones in
new languages.

The procedure of cross-lingual model transfer is simple. We
extract the SHLs from the SHL-MDNN and add a new softmax
layer on top of it. The softmax layer’s output nodes correspond to
the senones in the target language. We then fix the hidden layers
and only train the softmax layer using training data from the target
language. If enough training data is available, additional gains may
be achieved by further tuning the entire network.

To evaluate the effectiveness of cross-lingual model transfer,
we used American English (ENU) (phonetically close to the

7305

Recall Tandem DNN-HMM Systems

• Neural network outputs are
used as “features” to train
HMM-GMM models

• Use a low-dimensional
bottleneck layer representation
to extract features from the
bottleneck layer 

Bottleneck Layer

Output Layer

Input Layer

Vesely et al., “The language-independent bottleneck features”, SLT, 2012.

Multilingual Training  
(Tandem System)

⋮

Language-independent 
hidden layers

bottleneck 
layer

softmax layer for language 1

softmax layer for language 2

softmax layer for language N

Vesely et al., “The language-independent bottleneck features”, SLT, 2012.

Multilingual Training  
(Tandem System)

⋮
Language-independent 

hidden layers

bottleneck 
layer

softmax layer for language 1

softmax layer for language 2

softmax layer for language N

Language Czech English German Portugese Spanish Russian Turkish Vietnamese
HMM 22.6 16.8 26.6 27.0 23.0 33.5 32.0 27.3

1-Softmax 20.3 16.1 25.9 27.2 24.2 33.4 31.3 26.9
mono-BN 19.7 15.9 25.5 27.2 23.2 32.5 30.4 23.4

1-Softmax(IPA) 19.4 15.5 24.8 25.6 23.2 32.5 30.3 25.9
8-Softmax 19.3 14.7 24.0 25.2 22.6 31.5 29.4 24.3

 Monolingual/multilingual BN feature-based results

Vesely et al., “The language-independent bottleneck features”, SLT, 2012.

Multilingual Training  
(Tandem System)

⋮
Language-independent 

hidden layers

bottleneck 
layer

softmax layer for language 1

softmax layer for language 2

softmax layer for language N
Cross-lingual WERs

Table 4. Cross-lingual mismatch of Mono-lingual Bottleneck Features; comparison with PLP-HLDA baseline

ANN Test-set language [WER%]
Language Czech English German Portuguese Spanish Russian Turkish Vietnamese

Czech 19.7 16.3 26.6 27.6 25.1 33.7 32.0 29.2
English 21.9 15.9 27.4 29.2 26.1 35.9 33.8 30.2
German 21.9 17.6 25.5 29.7 27.3 36.3 35.1 31.9

Portuguese 21.4 17.4 27.9 27.2 24.7 34.8 32.7 28.4
Spanish 21.3 16.7 27.4 28.1 23.2 35.3 32.5 28.1
Russian 20.7 16.8 26.9 27.9 25.0 32.5 32.4 30.1
Turkish 22.0 17.4 28.0 29.4 25.1 35.8 30.4 28.8

Vietnamese 23.9 18.3 30.9 31.9 26.3 38.3 34.7 23.4
PLP-HLDA (II.) 22.6 16.8 26.6 27.0 23.0 33.5 32.0 27.3

by using more languages, we can observe a synergy effect,
which leads to lower error rates. This might be caused by
the fact that we use more training data for the ANN training.
Also, from the same observation we can deduce, that there
definitely must exist some commonalities in the structure of
speech patterns across the languages, otherwise we would
observe degradations rather than improvements, while adding
more languages to the training set.

The ANNs corresponding to the first column (a) and the
third column (c) have both 933 outputs, the difference is in
grouping into languages via the Softmax function. The ANN
from the second column (b) has 354 outputs due to mapping
to common phoneme set. In all the cases the targets are three-
state monophones.

Table 6. Results [WER%] for cross-lingual generalization
experiment with Language-Independent Bottleneck Features.
The 5-Softmax ANN is trained on the first five languages, the
unseen languages are Russian, Turkish and Vietnamese.

Language
baselines ANN output :

5-Softmax
PLP-HLDA Mono-BN (lang-pooled)

(II.) (III.) (d)
Czech 22.6 19.7 19.2

English 16.8 15.9 14.7
German 26.6 25.5 24.5

Portuguese 27.0 27.2 26.0
Spanish 23.0 23.2 23.0
Russian 33.5 32.5 32.3
Turkish 32.0 30.4 30.7

Vietnamese 27.3 23.4 26.8

4.3. Cross-lingual generalization

The previous promising results lead us to investigate into the
cross-lingual generalization. In this experiment we trained the
ANN on 5 source languages (Czech, English, German, Por-
tuguese, Spanish) and tested on 3 other languages (Russian,
Turkish, Vietnamese).

In table 6, we see that the cross-language generalization is
very good. In the case of Russian, the 5-Softmax ANN system
(d) outperformed the Mono-lingual BN-feature baseline (III.)
by 0.2% absolute. Here we should clearly recall, that Rus-
sian plays role of unseen language. This unexpected result
can be interpreted in the way, that for Russian, a better BN-
feature extractor can be obtained by unification of feature-
spaces from 5 other languages, rather than training solely on
Russian data, which has no precedent in the case of so far
published BN-feature experiments.

In the case of Turkish, there is a slight hit of 0.3%, which
is still a very good result, if we consider that Turkish is unseen
language. The improvement over PLP-HLDA baseline (II.) is
still solid 1.3% absolute.

In the case of Vietnamese, the cross-language generaliza-
tion is poorer, this may be caused by the fact that the tonal
Vietnamese is very different from all the 5 source languages,
which all come from the Indo-European family. Anyway, the
performance is still 0.5% better than the Mono-lingual PLP-
HLDA baseline (II.).

Very interesting is to compare the performance of 5 source
languages with the 8-language system from column (c) in ta-
ble 5. The slight degradation for German 0.5% Portuguese
0.8% and Spanish 0.4% shows us that the synergy effect is
stronger when training on more languages and of course on
more training data.

At this point it is also good to look back at table VIII in
[7]. By comparing the results of the 3 unseen languages, we
see an absolute improvement between 0.3% for Russian and
1.7% for Vietnamese.

340

Cross- and Multilingual Bottleneck features

DE FR

EN . . .

. . .

. . .

GER

ENU

FRA

. . .
. . .

. . .

Fig. 1. The joint training of bottleneck MLP on multiple languages (GER, ENU, FRA). The different colors indicate different languages, and

language dependent back-propagation from the output layer. The other parts of the network including the bottleneck layer are shared between

the languages.

Table 2. Baseline MFCC results in Word Error Rate (WER) are

compared with the performance of the target and cross-lingual bot-

tleneck (MFCC+BN) features. The relative improvements over the

MFCC system of the target language are indicated in round brackets.

WER [%] MFCC
MFCC+BN

Bottleneck trained on
GER ENU FRA

Te
st

la
ng

ua
ge GER 29.97 27.50 29.63 30.38

(8.2) (1.1) (-1.4)

ENU 21.69 21.31 18.85 22.63
(1.8) (13.1) (-4.3)

FRA 37.78 37.76 38.72 33.95

(0.1) (-2.5) (10.1)

5.2. Cross-lingual portability of mono-lingual BN features

In the second experiment, the cross lingual portability of the MLPs
trained in the previous experiment was investigated. Comparing
the off-diagonal entries of Table 2 to the first column, we observed
only a slight maximal 2% relative improvements compared to MFCC
alone. There exists cross-lingual portability between German and
English to a certain extent (1-2% relative), but using French BN fea-
tures for the remaining two languages or BN features from other
languages on the French task shows WER increase. As a summary,
the cross-lingual portability of BN could help, but the performance
remained far behind that was achieved by using target language data
to train the BN. Our short-time BN features are much simpler as
the long-term features applied in [6], thus our observation is similar
to [7], where short-time MLP features did not lead to performance
improvement without additional weight adaptation.

5.3. Results with multilingual BN features

In the third experiment, we investigated the multilingual BN features
trained according to Section 3. In the first tests the multilingual BNs
were trained on two languages other than the target one. E.g. BN
features trained on US English and French were tested in German
ASR experiments. The results are presented in the first column of Ta-
ble 3. Although the cross-lingual French BN deteriorated the recog-
nition performance, the multilingual training on the merged French
and English data improved the German system more than 5% rela-

tive. The improvement does not reach the target language BN perfor-
mance, but clearly – 4% relative – outperformed the best results of
cross-lingual BN. Similar observations can be made on English and
on French using German+French or German+English multilingual
BN features respectively. The results indicate that through the multi-
lingual training the BN features capture more language-independent
representation of the speech, and are better suited for cross-lingual
porting to new languages.

In the next experiment, multilingual bottleneck features were
trained using target language data with other languages. The results
can be seen in the 2nd-4th columns of Table 3. It is encouraging to
see that adding additional data from a non-target language further
improved the performance. To obtain common BN features for the
three languages, we also trained a network on all the 450 hours of
data. Remarkably, this single net outperformed all the above results
in Table 2.

Experimental results indicate that multilingual BN feature esti-
mation is superior compared to the monolingual case despite possi-
ble differences in the type of cars and noise conditions specific to the
country (and therefore language). Since in our experiments, we used
only about 150 hours of data per language, we attribute this to avail-
ability of larger training data. Therefore, if more data were available
in individual languages, the trend could be different.

To investigate the effect of language dependent softmax and
back-propagation, BN features using a unified phoneme set as in
[11] were also tested. On German task this BN showed 27.57%
WER which is 2.5% relative worse than the proposed multilingual
training. In order to have a better understanding of the multilingual
BN features and the effect of the amount of data, the previous ex-
periment was repeated with a multilingual BN trained on one third
(chosen randomly) of the merged corpora resulting in about the same
amount of speech data from each language. This multilingual BN
achieved 27.90% on the German task, which is slightly worse than
using same amount of source language speech. The previous results
prove the effectiveness of the multilingual training, and underline
the importance of target language data.

The results so far are obtained using an GMM-HMM system
trained using the ML criterion. Table 4 shows WERs of the dis-
criminatively trained German GMM-HMM systems. It can be seen
that the gain we observed previously with ML models are not dimin-
ished by MCE. Again, the multilingual BN achieved the best perfor-
mance outperforming the BN trained on target language data only.
The BN trained on French and English (without seeing any German

7351

Tuske et al., “Investigation on cross- and multilingual MLP features”, ICASSP, 2013

Cross- and Multilingual Bottleneck features

DE FR

EN . . .

. . .

. . .

GER

ENU

FRA

. . .
. . .

. . .

Fig. 1. The joint training of bottleneck MLP on multiple languages (GER, ENU, FRA). The different colors indicate different languages, and

language dependent back-propagation from the output layer. The other parts of the network including the bottleneck layer are shared between

the languages.

Table 2. Baseline MFCC results in Word Error Rate (WER) are

compared with the performance of the target and cross-lingual bot-

tleneck (MFCC+BN) features. The relative improvements over the

MFCC system of the target language are indicated in round brackets.

WER [%] MFCC
MFCC+BN

Bottleneck trained on
GER ENU FRA

Te
st

la
ng

ua
ge GER 29.97 27.50 29.63 30.38

(8.2) (1.1) (-1.4)

ENU 21.69 21.31 18.85 22.63
(1.8) (13.1) (-4.3)

FRA 37.78 37.76 38.72 33.95

(0.1) (-2.5) (10.1)

5.2. Cross-lingual portability of mono-lingual BN features

In the second experiment, the cross lingual portability of the MLPs
trained in the previous experiment was investigated. Comparing
the off-diagonal entries of Table 2 to the first column, we observed
only a slight maximal 2% relative improvements compared to MFCC
alone. There exists cross-lingual portability between German and
English to a certain extent (1-2% relative), but using French BN fea-
tures for the remaining two languages or BN features from other
languages on the French task shows WER increase. As a summary,
the cross-lingual portability of BN could help, but the performance
remained far behind that was achieved by using target language data
to train the BN. Our short-time BN features are much simpler as
the long-term features applied in [6], thus our observation is similar
to [7], where short-time MLP features did not lead to performance
improvement without additional weight adaptation.

5.3. Results with multilingual BN features

In the third experiment, we investigated the multilingual BN features
trained according to Section 3. In the first tests the multilingual BNs
were trained on two languages other than the target one. E.g. BN
features trained on US English and French were tested in German
ASR experiments. The results are presented in the first column of Ta-
ble 3. Although the cross-lingual French BN deteriorated the recog-
nition performance, the multilingual training on the merged French
and English data improved the German system more than 5% rela-

tive. The improvement does not reach the target language BN perfor-
mance, but clearly – 4% relative – outperformed the best results of
cross-lingual BN. Similar observations can be made on English and
on French using German+French or German+English multilingual
BN features respectively. The results indicate that through the multi-
lingual training the BN features capture more language-independent
representation of the speech, and are better suited for cross-lingual
porting to new languages.

In the next experiment, multilingual bottleneck features were
trained using target language data with other languages. The results
can be seen in the 2nd-4th columns of Table 3. It is encouraging to
see that adding additional data from a non-target language further
improved the performance. To obtain common BN features for the
three languages, we also trained a network on all the 450 hours of
data. Remarkably, this single net outperformed all the above results
in Table 2.

Experimental results indicate that multilingual BN feature esti-
mation is superior compared to the monolingual case despite possi-
ble differences in the type of cars and noise conditions specific to the
country (and therefore language). Since in our experiments, we used
only about 150 hours of data per language, we attribute this to avail-
ability of larger training data. Therefore, if more data were available
in individual languages, the trend could be different.

To investigate the effect of language dependent softmax and
back-propagation, BN features using a unified phoneme set as in
[11] were also tested. On German task this BN showed 27.57%
WER which is 2.5% relative worse than the proposed multilingual
training. In order to have a better understanding of the multilingual
BN features and the effect of the amount of data, the previous ex-
periment was repeated with a multilingual BN trained on one third
(chosen randomly) of the merged corpora resulting in about the same
amount of speech data from each language. This multilingual BN
achieved 27.90% on the German task, which is slightly worse than
using same amount of source language speech. The previous results
prove the effectiveness of the multilingual training, and underline
the importance of target language data.

The results so far are obtained using an GMM-HMM system
trained using the ML criterion. Table 4 shows WERs of the dis-
criminatively trained German GMM-HMM systems. It can be seen
that the gain we observed previously with ML models are not dimin-
ished by MCE. Again, the multilingual BN achieved the best perfor-
mance outperforming the BN trained on target language data only.
The BN trained on French and English (without seeing any German

7351

• Features from three languages are merged and presented as input to the model

• Language-specific softmax layers

• Bottleneck layer which is shared across languages

Cross- and Multilingual Bottleneck features

DE FR

EN . . .

. . .

. . .

GER

ENU

FRA

. . .
. . .

. . .

Fig. 1. The joint training of bottleneck MLP on multiple languages (GER, ENU, FRA). The different colors indicate different languages, and

language dependent back-propagation from the output layer. The other parts of the network including the bottleneck layer are shared between

the languages.

Table 2. Baseline MFCC results in Word Error Rate (WER) are

compared with the performance of the target and cross-lingual bot-

tleneck (MFCC+BN) features. The relative improvements over the

MFCC system of the target language are indicated in round brackets.

WER [%] MFCC
MFCC+BN

Bottleneck trained on
GER ENU FRA

Te
st

la
ng

ua
ge GER 29.97 27.50 29.63 30.38

(8.2) (1.1) (-1.4)

ENU 21.69 21.31 18.85 22.63
(1.8) (13.1) (-4.3)

FRA 37.78 37.76 38.72 33.95

(0.1) (-2.5) (10.1)

5.2. Cross-lingual portability of mono-lingual BN features

In the second experiment, the cross lingual portability of the MLPs
trained in the previous experiment was investigated. Comparing
the off-diagonal entries of Table 2 to the first column, we observed
only a slight maximal 2% relative improvements compared to MFCC
alone. There exists cross-lingual portability between German and
English to a certain extent (1-2% relative), but using French BN fea-
tures for the remaining two languages or BN features from other
languages on the French task shows WER increase. As a summary,
the cross-lingual portability of BN could help, but the performance
remained far behind that was achieved by using target language data
to train the BN. Our short-time BN features are much simpler as
the long-term features applied in [6], thus our observation is similar
to [7], where short-time MLP features did not lead to performance
improvement without additional weight adaptation.

5.3. Results with multilingual BN features

In the third experiment, we investigated the multilingual BN features
trained according to Section 3. In the first tests the multilingual BNs
were trained on two languages other than the target one. E.g. BN
features trained on US English and French were tested in German
ASR experiments. The results are presented in the first column of Ta-
ble 3. Although the cross-lingual French BN deteriorated the recog-
nition performance, the multilingual training on the merged French
and English data improved the German system more than 5% rela-

tive. The improvement does not reach the target language BN perfor-
mance, but clearly – 4% relative – outperformed the best results of
cross-lingual BN. Similar observations can be made on English and
on French using German+French or German+English multilingual
BN features respectively. The results indicate that through the multi-
lingual training the BN features capture more language-independent
representation of the speech, and are better suited for cross-lingual
porting to new languages.

In the next experiment, multilingual bottleneck features were
trained using target language data with other languages. The results
can be seen in the 2nd-4th columns of Table 3. It is encouraging to
see that adding additional data from a non-target language further
improved the performance. To obtain common BN features for the
three languages, we also trained a network on all the 450 hours of
data. Remarkably, this single net outperformed all the above results
in Table 2.

Experimental results indicate that multilingual BN feature esti-
mation is superior compared to the monolingual case despite possi-
ble differences in the type of cars and noise conditions specific to the
country (and therefore language). Since in our experiments, we used
only about 150 hours of data per language, we attribute this to avail-
ability of larger training data. Therefore, if more data were available
in individual languages, the trend could be different.

To investigate the effect of language dependent softmax and
back-propagation, BN features using a unified phoneme set as in
[11] were also tested. On German task this BN showed 27.57%
WER which is 2.5% relative worse than the proposed multilingual
training. In order to have a better understanding of the multilingual
BN features and the effect of the amount of data, the previous ex-
periment was repeated with a multilingual BN trained on one third
(chosen randomly) of the merged corpora resulting in about the same
amount of speech data from each language. This multilingual BN
achieved 27.90% on the German task, which is slightly worse than
using same amount of source language speech. The previous results
prove the effectiveness of the multilingual training, and underline
the importance of target language data.

The results so far are obtained using an GMM-HMM system
trained using the ML criterion. Table 4 shows WERs of the dis-
criminatively trained German GMM-HMM systems. It can be seen
that the gain we observed previously with ML models are not dimin-
ished by MCE. Again, the multilingual BN achieved the best perfor-
mance outperforming the BN trained on target language data only.
The BN trained on French and English (without seeing any German

7351

DE FR

EN . . .

. . .

. . .

GER

ENU

FRA

. . .
. . .

. . .

Fig. 1. The joint training of bottleneck MLP on multiple languages (GER, ENU, FRA). The different colors indicate different languages, and

language dependent back-propagation from the output layer. The other parts of the network including the bottleneck layer are shared between

the languages.

Table 2. Baseline MFCC results in Word Error Rate (WER) are

compared with the performance of the target and cross-lingual bot-

tleneck (MFCC+BN) features. The relative improvements over the

MFCC system of the target language are indicated in round brackets.

WER [%] MFCC
MFCC+BN

Bottleneck trained on
GER ENU FRA

Te
st

la
ng

ua
ge GER 29.97 27.50 29.63 30.38

(8.2) (1.1) (-1.4)

ENU 21.69 21.31 18.85 22.63
(1.8) (13.1) (-4.3)

FRA 37.78 37.76 38.72 33.95

(0.1) (-2.5) (10.1)

5.2. Cross-lingual portability of mono-lingual BN features

In the second experiment, the cross lingual portability of the MLPs
trained in the previous experiment was investigated. Comparing
the off-diagonal entries of Table 2 to the first column, we observed
only a slight maximal 2% relative improvements compared to MFCC
alone. There exists cross-lingual portability between German and
English to a certain extent (1-2% relative), but using French BN fea-
tures for the remaining two languages or BN features from other
languages on the French task shows WER increase. As a summary,
the cross-lingual portability of BN could help, but the performance
remained far behind that was achieved by using target language data
to train the BN. Our short-time BN features are much simpler as
the long-term features applied in [6], thus our observation is similar
to [7], where short-time MLP features did not lead to performance
improvement without additional weight adaptation.

5.3. Results with multilingual BN features

In the third experiment, we investigated the multilingual BN features
trained according to Section 3. In the first tests the multilingual BNs
were trained on two languages other than the target one. E.g. BN
features trained on US English and French were tested in German
ASR experiments. The results are presented in the first column of Ta-
ble 3. Although the cross-lingual French BN deteriorated the recog-
nition performance, the multilingual training on the merged French
and English data improved the German system more than 5% rela-

tive. The improvement does not reach the target language BN perfor-
mance, but clearly – 4% relative – outperformed the best results of
cross-lingual BN. Similar observations can be made on English and
on French using German+French or German+English multilingual
BN features respectively. The results indicate that through the multi-
lingual training the BN features capture more language-independent
representation of the speech, and are better suited for cross-lingual
porting to new languages.

In the next experiment, multilingual bottleneck features were
trained using target language data with other languages. The results
can be seen in the 2nd-4th columns of Table 3. It is encouraging to
see that adding additional data from a non-target language further
improved the performance. To obtain common BN features for the
three languages, we also trained a network on all the 450 hours of
data. Remarkably, this single net outperformed all the above results
in Table 2.

Experimental results indicate that multilingual BN feature esti-
mation is superior compared to the monolingual case despite possi-
ble differences in the type of cars and noise conditions specific to the
country (and therefore language). Since in our experiments, we used
only about 150 hours of data per language, we attribute this to avail-
ability of larger training data. Therefore, if more data were available
in individual languages, the trend could be different.

To investigate the effect of language dependent softmax and
back-propagation, BN features using a unified phoneme set as in
[11] were also tested. On German task this BN showed 27.57%
WER which is 2.5% relative worse than the proposed multilingual
training. In order to have a better understanding of the multilingual
BN features and the effect of the amount of data, the previous ex-
periment was repeated with a multilingual BN trained on one third
(chosen randomly) of the merged corpora resulting in about the same
amount of speech data from each language. This multilingual BN
achieved 27.90% on the German task, which is slightly worse than
using same amount of source language speech. The previous results
prove the effectiveness of the multilingual training, and underline
the importance of target language data.

The results so far are obtained using an GMM-HMM system
trained using the ML criterion. Table 4 shows WERs of the dis-
criminatively trained German GMM-HMM systems. It can be seen
that the gain we observed previously with ML models are not dimin-
ished by MCE. Again, the multilingual BN achieved the best perfor-
mance outperforming the BN trained on target language data only.
The BN trained on French and English (without seeing any German

7351

Target and cross-lingual BN features Multilingual BN features using mismatched data
Table 3. Recognition results achieved with multilingual BN features.

The relative improvements over the MFCC (in Table 2) are indicated

in round brackets.

WER MFCC+BN
[%] BN trained on

Te
st

la
ng

ua
ge

GER
ENU+FRA GER+FRA GER+ENU GER+ENU+FRA

28.37 27.06 26.89 26.90
(5.3) (9.7) (10.3) (10.2)

ENU
GER+FRA ENU+FRA ENU+GER GER+ENU+FRA

20.29 18.21 17.99 17.89
(6.5) (16.0) (17.1) (17.5)

FRA
GER+ENU FRA+GER FRA+ENU GER+ENU+FRA

35.88 33.52 33.45 33.61
(5.0) (11.3) (11.5) (11.0)

data) improved the MFCC system more than 7% relative, whereas
the monolingual English BN hardly resulted in better performance
than baseline MFCC.

Table 4. Recognition results after discriminative training of GMM-

HMM on the German task

Features WER [%] rel.imp [%]
MFCC 29.10 -

M
FC

C
+B

N

B
N

tra
in

ed
on GER 26.40 9.3

ENU 28.78 1.1
ENU+FRA 27.06 7.0
GER+ENU 25.68 11.8

GER+ENU+FRA 25.61 12.0

5.4. Multilingual BN in mismatched acoustical conditions

The BN features were also investigated in an experiment where it is
assumed that only acoustically mismatched training data is available
on the target language. However, matched data from other languages
is available, and the multilingual MLP is applied to take advantage
of them. Column 1 in Table 5 shows the WERs obtained by train-
ing GMM-HMM acoustic models using baseline MFCC features on
mismatched data. Comparing to the results in Table 2, the base-
lines become 15% worse because of the acoustical difference be-
tween training and test recordings. Concatenating MFCC with BN
trained on the target language showed less improvement than in the
matched case (2nd column). In this special ASR experiment, using
non-target monolingual BN (3rd column) led to more improvement
than previously, since it had seen matched data, but in another lan-
guage. Moreover, porting acoustically matched knowledge from two
other languages through multilingual BN improved the results fur-
ther. However, as the last column of Table 5 shows, the best results
were achieved when the mismatched data available in the target lan-
guage and all matched data from other languages was used to train
the BN. In this case, the amount of target language data is less than
1/5 during BN training. The final systems achieved comparable re-
sults as the MFCC system trained on matched data (Table 2).

Table 5. Baseline (MFCC), cross-, and multilingual results using

only mismatched data in the test language. Bold font indicates the

availability of both matched and mismatched data in the language

WER MFCC MFCC+BN
[%] BN trained on

Te
st

la
ng

ua
ge

GER ENU +
ENU
FRA +

GER
ENU+FRA

GER 34.58 33.39 34.07 32.74 31.72
(3.4) (1.5) (5.3) (8.3)
ENU GER +

GER
FRA +

GER
ENU+FRA

ENU 26.14 23.54 24.81 23.68 21.79
(9.9) (5.1) (9.4) (16.6)
FRA GER +

GER
ENU +

GER
ENU+FRA

FRA 43.52 40.51 43.65 41.96 39.98
(6.9) (-0.3) (3.6) (8.1)

5.5. Discussion

Although the experiments were designed to have similar acoustic
conditions for all languages, there is a slight driving condition and
car noise characteristic mismatch between them. Consequently, the
neural networks in the multilingual experiments were trained not
only on more languages but also on more types of noises, which con-
tribute to better generalization. However, as the results on cross- and
multilingual porting of BN for another languages showed, the im-
provements increased only slightly even in completely mismatched
training and testing conditions. This could also indicate that the im-
provement is mainly related to the better cross-language generaliza-
tion property of multilingual MLP.

Since our research was limited to three languages and phoneme
sets, as a future direction, we intend to carry out experiments with
more languages and corresponding MLP output targets.

6. CONCLUSIONS

A recently introduced multilingual MLP training was extensively
evaluated within the bottleneck TANDEM framework. Applying the
multilingual technique for bottleneck MLP to extract more language
independent features, it was experimentally shown that the multilin-
gual BN features offered better cross-lingual portability. Moreover,
we also showed, that through the multilingual approach a single BN
net can be trained for three languages, and in all cases it outper-
formed the BN features trained only on target language data. Finally,
the multilingual BN was successfully applied to reduce the mismatch
between training and testing acoustical conditions reusing matched
data from other languages.

Acknowledgement
This work has received funding from the European Community’s
Seventh Framework Programme FP7/2007-2013 under grant agree-
ment no. [213850]. 11, Speech Communication with Adaptive
Learning - SCALE.

7352

e2e multilingual models

x1 x2 xT

hUh1

x3 x4

h = (h1, . . . , hU)

y2 y3

hsosi

heosi

y2 y3

y4

yS�1

c1 c2

Speller

Listener

s1 s2

h h h

Fig. 1: Listen, Attend and Spell (LAS) model: the listener is a pyra-
midal BLSTM encoding our input sequence x into high level fea-
tures h, the speller is an attention-based decoder generating the y
characters from h.

consumes h and produces a probability distribution over character
sequences:

h = Listen(x) (2)
P (yi|x, y<i) = AttendAndSpell(y<i,h) (3)

Figure 1 depicts these two components. We provide more details of
these components in the following sections.

2.1. Listen

The Listen operation uses a Bidirectional Long Short Term Memory
RNN (BLSTM) [15, 16, 2] with a pyramidal structure. This modi-
fication is required to reduce the length U of h, from T , the length
of the input x, because the input speech signals can be hundreds to
thousands of frames long. A direct application of BLSTM for the
operation Listen converged slowly and produced results inferior to
those reported here, even after a month of training time. This is
presumably because the operation AttendAndSpell has a hard time
extracting the relevant information from a large number of input time
steps.

We circumvent this problem by using a pyramidal BLSTM
(pBLSTM). In each successive stacked pBLSTM layer, we reduce
the time resolution by a factor of 2. In a typical deep BLSTM
architecture, the output at the i-th time step, from the j-th layer is
computed as follows:

h
j
i = BLSTM(hj

i�1, h
j�1
i) (4)

In the pBLSTM model, we concatenate the outputs at consecutive
steps of each layer before feeding it to the next layer, i.e.:

h
j
i = pBLSTM(hj

i�1,

h
h
j�1
2i , h

j�1
2i+1

i
) (5)

In our model, we stack 3 pBLSTMs on top of the bottom
BLSTM layer to reduce the time resolution 23 = 8 times. This
allows the attention model (described in the next section) to extract
the relevant information from a smaller number of times steps. In
addition to reducing the resolution, the deep architecture allows the
model to learn nonlinear feature representations of the data. See
Figure 1 for a visualization of the pBLSTM.

The pyramidal structure also reduces the computational com-
plexity. The attention mechanism in the speller U has a computa-
tional complexity of O(US). Thus, reducing U speeds up learning
and inference significantly. Other neural network architectures have
been described in literature with similar motivations, including the
hierarchical RNN [17], clockwork RNN [18] and CNN [19].

2.2. Attend and Spell

The AttendAndSpell function is computed using an attention-
based LSTM transducer [10, 12]. At every output step, the trans-
ducer produces a probability distribution over the next character
conditioned on all the characters seen previously. The distribution
for yi is a function of the decoder state si and context ci. The de-
coder state si is a function of the previous state si�1, the previously
emitted character yi�1 and context ci�1. The context vector ci is
produced by an attention mechanism. Specifically,

ci = AttentionContext(si,h) (6)
si = RNN(si�1, yi�1, ci�1) (7)

P (yi|x, y<i) = CharacterDistribution(si, ci) (8)

where CharacterDistribution is an MLP with softmax outputs
over characters, and where RNN is a 2 layer LSTM.

At each time step, i, the attention mechanism, AttentionContext
generates a context vector, ci encapsulating the information in the
acoustic signal needed to generate the next character. The attention
model is content based - the contents of the decoder state si are
matched to the contents of hu representing time step u of h, to
generate an attention vector ↵i. The vectors hu are linearly blended
using ↵i to create ci.

Specifically, at each decoder timestep i, the AttentionContext
function computes the scalar energy ei,u for each time step u, using
vector hu 2 h and si. The scalar energy ei,u is converted into
a probability distribution over times steps (or attention) ↵i using
a softmax function. The softmax probabilities are used as mixing
weights for blending the listener features hu to the context vector ci
for output time step i:

ei,u = h�(si), (hu)i (9)

↵i,u =
exp(ei,u)P
u0 exp(ei,u0)

(10)

ci =
X

u

↵i,uhu (11)

����

Image from: Chan et al., Listen, Attend and Spell: A NN for LVCSR, ICASSP 2016

Multilingual ASR with an e2e Model

• Use attention-based encoder-decoder models

• Decoder outputs one character per time-step

• For multilingual models, use union over character sets

Bengali 
Gujarati
Hindi 
Kannada
Malayalam
Marathi
Tamil
Telugu
Urdu

আজ #মঘলা িদন
તે વાદળછા(ું iદવસ છે
यह एक बादल का िदन है
ಇದು $␣ೂೕಡ ಕ*␣ದ +␣ನ
ഇത് െതളി' ദിവസമാണ്

तो ढगाळ िदवस आहे
இ" ஒ$ ேமக()டமான நாll

ఇ" #$వృత(న *+!"# $%& &'()+ٓ ,-(.+ / 012

x1 x2 xT

hUh1

x3 x4

h = (h1, . . . , hU)

y2 y3

hsosi

heosi

y2 y3

y4

yS�1

c1 c2

Speller

Listener

s1 s2

h h h

Fig. 1: Listen, Attend and Spell (LAS) model: the listener is a pyra-
midal BLSTM encoding our input sequence x into high level fea-
tures h, the speller is an attention-based decoder generating the y
characters from h.

consumes h and produces a probability distribution over character
sequences:

h = Listen(x) (2)
P (yi|x, y<i) = AttendAndSpell(y<i,h) (3)

Figure 1 depicts these two components. We provide more details of
these components in the following sections.

2.1. Listen

The Listen operation uses a Bidirectional Long Short Term Memory
RNN (BLSTM) [15, 16, 2] with a pyramidal structure. This modi-
fication is required to reduce the length U of h, from T , the length
of the input x, because the input speech signals can be hundreds to
thousands of frames long. A direct application of BLSTM for the
operation Listen converged slowly and produced results inferior to
those reported here, even after a month of training time. This is
presumably because the operation AttendAndSpell has a hard time
extracting the relevant information from a large number of input time
steps.

We circumvent this problem by using a pyramidal BLSTM
(pBLSTM). In each successive stacked pBLSTM layer, we reduce
the time resolution by a factor of 2. In a typical deep BLSTM
architecture, the output at the i-th time step, from the j-th layer is
computed as follows:

h
j
i = BLSTM(hj

i�1, h
j�1
i) (4)

In the pBLSTM model, we concatenate the outputs at consecutive
steps of each layer before feeding it to the next layer, i.e.:

h
j
i = pBLSTM(hj

i�1,

h
h
j�1
2i , h

j�1
2i+1

i
) (5)

In our model, we stack 3 pBLSTMs on top of the bottom
BLSTM layer to reduce the time resolution 23 = 8 times. This
allows the attention model (described in the next section) to extract
the relevant information from a smaller number of times steps. In
addition to reducing the resolution, the deep architecture allows the
model to learn nonlinear feature representations of the data. See
Figure 1 for a visualization of the pBLSTM.

The pyramidal structure also reduces the computational com-
plexity. The attention mechanism in the speller U has a computa-
tional complexity of O(US). Thus, reducing U speeds up learning
and inference significantly. Other neural network architectures have
been described in literature with similar motivations, including the
hierarchical RNN [17], clockwork RNN [18] and CNN [19].

2.2. Attend and Spell

The AttendAndSpell function is computed using an attention-
based LSTM transducer [10, 12]. At every output step, the trans-
ducer produces a probability distribution over the next character
conditioned on all the characters seen previously. The distribution
for yi is a function of the decoder state si and context ci. The de-
coder state si is a function of the previous state si�1, the previously
emitted character yi�1 and context ci�1. The context vector ci is
produced by an attention mechanism. Specifically,

ci = AttentionContext(si,h) (6)
si = RNN(si�1, yi�1, ci�1) (7)

P (yi|x, y<i) = CharacterDistribution(si, ci) (8)

where CharacterDistribution is an MLP with softmax outputs
over characters, and where RNN is a 2 layer LSTM.

At each time step, i, the attention mechanism, AttentionContext
generates a context vector, ci encapsulating the information in the
acoustic signal needed to generate the next character. The attention
model is content based - the contents of the decoder state si are
matched to the contents of hu representing time step u of h, to
generate an attention vector ↵i. The vectors hu are linearly blended
using ↵i to create ci.

Specifically, at each decoder timestep i, the AttentionContext
function computes the scalar energy ei,u for each time step u, using
vector hu 2 h and si. The scalar energy ei,u is converted into
a probability distribution over times steps (or attention) ↵i using
a softmax function. The softmax probabilities are used as mixing
weights for blending the listener features hu to the context vector ci
for output time step i:

ei,u = h�(si), (hu)i (9)

↵i,u =
exp(ei,u)P
u0 exp(ei,u0)

(10)

ci =
X

u

↵i,uhu (11)

����

Image from: Chan et al., Listen, Attend and Spell: A NN for LVCSR, ICASSP 2016

Multilingual ASR with an e2e Model
Table 1: Multilingual dataset statistics.

Language # training utts. # test utts.

Bengali 364617 14679
Gujarati 243390 14935
Hindi 213753 14718
Kannada 192523 14765
Malayalam 285051 14095
Marathi 227092 13898
Tamil 164088 9850
Telugu 232861 14130
Urdu 196554 14486

Total 2119929 125556

3.2. Model and Training Details

As a baseline, we train nine monolingual models independently on
data for each language. We tune the hyperparameters on Marathi
and reuse the optimal configuration to train models for the remaining
languages. The best configuration for Marathi uses a 4 layer encoder
comprised of 350 bidirectional long short-term memory (biLSTM)
cells (i.e. 350 cells in forward layer and 350 cells in backward layer),
and a 2 layer decoder containing 768 LSTM cells in each layer. For
regularization, we apply a small L2 weight penalty of 1e-6 and add
Gaussian weight noise [23] with standard deviation of 0.01 to all pa-
rameters after 20k training steps. All the monolingual models con-
verge within 200-300k gradient steps.

Since the multilingual training corpus is much larger, we were
able to train a joint larger multilingual model without overfitting.
As with the training set, the validation set is also a union of the
language-specific validation sets. The best configuration uses a 5
layer encoder comprised of 700 biLSTM cells, and a 2 layer decoder
containing 1024 LSTM cells in each layer. For the multitask model,
we find � = 0.01 among {0.1, 0.01} to work the best. We restricted
ourselves to these values because for a very large �, the language
ID prediction task would dominate the primary task of ASR, while
for a very small � the additional task would have no effect on the
training loss. For all conditional models, we use a 5-dimensional
language embedding. For regularization we add Gaussian weight
noise with standard deviation of 0.0075 after 25k training steps. All
multilingual models are trained for approximately 2 million steps.

All models are implemented in TensorFlow [24] and trained us-
ing asynchronous stochastic gradient descent [25] using 16 workers.
The initial learning rate is set to 1e-3 for the monolingual models
and 1e-4 for the multilingual models with learning rate decay in all
the models.

4. RESULTS

We first compare the language-specific LAS models with the joint
LAS model trained on all languages. As shown in Table 2, the joint
LAS model outperforms the language-specific models for all the lan-
guages. In fact, the joint model decreases weighted average WERs
across all the 9 languages, weighted by number of words, by more
than 21% relative to the monolingual models. This result is quite
interesting not only because the joint model is a single model that
is being compared to 9 different monolingual models, but unlike the
monolingual models the joint model it not language-aware at run-
time. Finally, the large performance gain of the joint model is also

Table 2: WER(%) of language-specific, joint, and joint+MTL LAS
models.

Language Language-specific Joint Joint + MTL

Bengali 19.1 16.8 16.5
Gujarati 26.0 18.0 18.2
Hindi 16.5 14.4 14.4
Kannada 35.4 34.5 34.6
Malayalam 44.0 36.9 36.7
Marathi 28.8 27.6 27.2
Tamil 13.3 10.7 10.6
Telugu 37.4 22.5 22.7
Urdu 29.5 26.8 26.7

Weighted Avg. 29.05 22.93 22.91

attributable to the fact that the Indian languages are very similar in
the phonetic space [26], despite using different grapheme sets.

Second, we compare the joint LAS model with the multitask
trained variant. As shown in the right two columns of Table 2, the
MTL model shows limited improvements over the joint model. This
might be due to the following reasons: (a) Static choice of �. Since
the language ID prediction task is easier than ASR, a dynamic �
which is high initially and decays over time might be better suited,
and (b) The language ID prediction mechanism of averaging over
encoder outputs might not be ideal. A learned weighting of the en-
coder outputs, similar to the attention module, might be better suited
for the task.

Table 3: WER(%) of joint LAS model and the joint language-
conditioned models, namely decoder-conditioned (Dec), encoder-
conditioned (Enc), and encoder+decoder-conditioned (Enc + Dec).

Language Joint Dec Enc Enc + Dec

Bengali 16.8 16.9 16.5 16.5
Gujarati 18.0 17.7 17.2 17.3
Hindi 14.4 14.6 14.5 14.4
Kannada 34.5 30.1 29.4 29.2
Malayalam 36.9 35.5 34.8 34.3
Marathi 27.6 24.0 22.8 23.1
Tamil 10.7 10.4 10.3 10.4
Telugu 22.5 22.5 21.9 21.5
Urdu 26.8 25.7 24.2 24.5

Weighted Avg. 22.93 22.03 21.37 21.32

Third, Table 3 shows that all the joint models conditioned on the
language ID outperform the joint model. The encoder-conditioned
model (Enc) is better than the decoder-conditioned model (Dec) in-
dicating that some form of acoustic model adaptation towards differ-
ent languages and accents occurs when the encoder is conditioned.
In addition, conditioning both the encoder and decoder (Enc + Dec)
does not improve much over conditioning just the encoder, suggest-
ing that feeding the encoder with language ID information is suffi-
cient, as the encoder outputs are then fed to the decoder anyways via
the attention mechanism.

Comparing model performances across languages we see that
all the models perform worst on Malayalam and Kannada. We hy-
pothesize that this has to do with the agglutinative nature of these
languages which makes the average word longer in these languages

3

Language-specific vs. Multilingual models

Table 1: Multilingual dataset statistics.

Language # training utts. # test utts.

Bengali 364617 14679
Gujarati 243390 14935
Hindi 213753 14718
Kannada 192523 14765
Malayalam 285051 14095
Marathi 227092 13898
Tamil 164088 9850
Telugu 232861 14130
Urdu 196554 14486

Total 2119929 125556

3.2. Model and Training Details

As a baseline, we train nine monolingual models independently on
data for each language. We tune the hyperparameters on Marathi
and reuse the optimal configuration to train models for the remaining
languages. The best configuration for Marathi uses a 4 layer encoder
comprised of 350 bidirectional long short-term memory (biLSTM)
cells (i.e. 350 cells in forward layer and 350 cells in backward layer),
and a 2 layer decoder containing 768 LSTM cells in each layer. For
regularization, we apply a small L2 weight penalty of 1e-6 and add
Gaussian weight noise [23] with standard deviation of 0.01 to all pa-
rameters after 20k training steps. All the monolingual models con-
verge within 200-300k gradient steps.

Since the multilingual training corpus is much larger, we were
able to train a joint larger multilingual model without overfitting.
As with the training set, the validation set is also a union of the
language-specific validation sets. The best configuration uses a 5
layer encoder comprised of 700 biLSTM cells, and a 2 layer decoder
containing 1024 LSTM cells in each layer. For the multitask model,
we find � = 0.01 among {0.1, 0.01} to work the best. We restricted
ourselves to these values because for a very large �, the language
ID prediction task would dominate the primary task of ASR, while
for a very small � the additional task would have no effect on the
training loss. For all conditional models, we use a 5-dimensional
language embedding. For regularization we add Gaussian weight
noise with standard deviation of 0.0075 after 25k training steps. All
multilingual models are trained for approximately 2 million steps.

All models are implemented in TensorFlow [24] and trained us-
ing asynchronous stochastic gradient descent [25] using 16 workers.
The initial learning rate is set to 1e-3 for the monolingual models
and 1e-4 for the multilingual models with learning rate decay in all
the models.

4. RESULTS

We first compare the language-specific LAS models with the joint
LAS model trained on all languages. As shown in Table 2, the joint
LAS model outperforms the language-specific models for all the lan-
guages. In fact, the joint model decreases weighted average WERs
across all the 9 languages, weighted by number of words, by more
than 21% relative to the monolingual models. This result is quite
interesting not only because the joint model is a single model that
is being compared to 9 different monolingual models, but unlike the
monolingual models the joint model it not language-aware at run-
time. Finally, the large performance gain of the joint model is also

Table 2: WER(%) of language-specific, joint, and joint+MTL LAS
models.

Language Language-specific Joint Joint + MTL

Bengali 19.1 16.8 16.5
Gujarati 26.0 18.0 18.2
Hindi 16.5 14.4 14.4
Kannada 35.4 34.5 34.6
Malayalam 44.0 36.9 36.7
Marathi 28.8 27.6 27.2
Tamil 13.3 10.7 10.6
Telugu 37.4 22.5 22.7
Urdu 29.5 26.8 26.7

Weighted Avg. 29.05 22.93 22.91

attributable to the fact that the Indian languages are very similar in
the phonetic space [26], despite using different grapheme sets.

Second, we compare the joint LAS model with the multitask
trained variant. As shown in the right two columns of Table 2, the
MTL model shows limited improvements over the joint model. This
might be due to the following reasons: (a) Static choice of �. Since
the language ID prediction task is easier than ASR, a dynamic �
which is high initially and decays over time might be better suited,
and (b) The language ID prediction mechanism of averaging over
encoder outputs might not be ideal. A learned weighting of the en-
coder outputs, similar to the attention module, might be better suited
for the task.

Table 3: WER(%) of joint LAS model and the joint language-
conditioned models, namely decoder-conditioned (Dec), encoder-
conditioned (Enc), and encoder+decoder-conditioned (Enc + Dec).

Language Joint Dec Enc Enc + Dec

Bengali 16.8 16.9 16.5 16.5
Gujarati 18.0 17.7 17.2 17.3
Hindi 14.4 14.6 14.5 14.4
Kannada 34.5 30.1 29.4 29.2
Malayalam 36.9 35.5 34.8 34.3
Marathi 27.6 24.0 22.8 23.1
Tamil 10.7 10.4 10.3 10.4
Telugu 22.5 22.5 21.9 21.5
Urdu 26.8 25.7 24.2 24.5

Weighted Avg. 22.93 22.03 21.37 21.32

Third, Table 3 shows that all the joint models conditioned on the
language ID outperform the joint model. The encoder-conditioned
model (Enc) is better than the decoder-conditioned model (Dec) in-
dicating that some form of acoustic model adaptation towards differ-
ent languages and accents occurs when the encoder is conditioned.
In addition, conditioning both the encoder and decoder (Enc + Dec)
does not improve much over conditioning just the encoder, suggest-
ing that feeding the encoder with language ID information is suffi-
cient, as the encoder outputs are then fed to the decoder anyways via
the attention mechanism.

Comparing model performances across languages we see that
all the models perform worst on Malayalam and Kannada. We hy-
pothesize that this has to do with the agglutinative nature of these
languages which makes the average word longer in these languages

3

LAS models conditioned on language ID

Fig. 1. The proposed language-independent architecture. The system learns to predict the language ID in the beginning of an utterance
followed by a text output.

step of attention-based speech recognition is performed by output-
label synchronous decoding with a beam search. However, we take
the CTC probabilities into account to find a better aligned hypothesis
to the input speech, i.e. the decoder finds the most probable character
sequence Ĉ given speech input X , according to

Ĉ = arg max
C2U⇤

{� log pctc(C|X)

+(1� �) log patt(C|X)} . (10)

In the beam search process, the decoder computes a score of each
partial hypothesis. With the attention model, the score can be com-
puted recursively as

↵att(gl) = ↵att(gl�1) + log p(c|gl�1, X), (11)

where gl is a partial hypothesis with length l, and c is the last char-
acter of gl, which is appended to gl�1, i.e. gl = gl�1 · c. The score
for gl is obtained as the addition of the original score ↵(gl�1) and
the conditional log probability given by the attention decoder in (5).
During the beam search, the number of partial hypotheses for each
length is limited to a predefined number, called a beam width, to
exclude hypotheses with relatively low scores, which dramatically
improves the search efficiency.

3.5. Decoder with RNN-LM

Finally, we combine an RNN-LM network in parallel with the at-
tention decoder. The hybrid attention/CTC and RNN-LM is trained
separately, where the RNN-LM is trained with character sequences
without word-level knowledge. Although the attention decoder im-
plicitly includes a language model as in Eq. (5), we aim at intro-
ducing language model states purely dependent on the output label
sequence in the decoder, which potentially brings a complementary
effect.

The RNN-LM probabilities are used to predict the output label
jointly with the decoder network. The RNN-LM information is com-

bined in the log-probability domain, as follows:

Ĉ = arg max
C2U⇤

{� log pctc(C|X)

+(1� �) log patt(C|X)}
+� log prnnlm(C)} , (12)

where � is an additional scaling parameter for RNN-LMs. Although
it is possible to apply the RNN-LM as a rescoring step, we combine
the RNN-LM network in the end-to-end model because we do not
wish to have an additional rescoring step for better latency. Also, we
can view this as a single large neural network model, even if parts of
it are separately pretrained. Furthermore, [3] also proposes to train
the RNN-LM and hybrid attention/CTC jointly, but this paper only
uses a pretrained RNN-LM.

4. LANGUAGE-INDEPENDENT ARCHITECTURE

This section explains the proposed monolithic multilingual ASR sys-
tem with a language-independent neural network architecture, as
shown in Figure 1. All the network parameters are shared across
languages including output softmax layer, which is represented by
the following augmented character set.

4.1. Augmented character set

We augment its set of output symbols to include the union of char-
acter sets appearing in all the target languages, i.e.,

U = UEN [U JP [· · · , (13)

where UEN/JP/··· is a character set of a specific language. The advan-
tage of using this augmented character set is to accept any language
without language identification modules. The network learns to pre-
dict a character sequence in a target language, automatically. How-
ever, since we do not explicitly constrain the character set for each
language, there is a risk that the language can be switched to the oth-
ers during an utterance. However, our preliminary experiments show
that this language switch was not observed frequently, probably due
to the strong context modeling in the decoder network.

Watanabe et al., “e2e architecture for joint language identification and ASR”, ASRU, 2017

Hybrid End-to-end Multilingual ASR

• Hybrid attention+CTC model: Use the CTC objective function as an auxiliary task

to train the encoder

• Minimize a linear combination of log-losses of the CTC and attention objectives

• Model also predicts a language ID along with the text outputs

Fig. 1. The proposed language-independent architecture. The system learns to predict the language ID in the beginning of an utterance
followed by a text output.

step of attention-based speech recognition is performed by output-
label synchronous decoding with a beam search. However, we take
the CTC probabilities into account to find a better aligned hypothesis
to the input speech, i.e. the decoder finds the most probable character
sequence Ĉ given speech input X , according to

Ĉ = arg max
C2U⇤

{� log pctc(C|X)

+(1� �) log patt(C|X)} . (10)

In the beam search process, the decoder computes a score of each
partial hypothesis. With the attention model, the score can be com-
puted recursively as

↵att(gl) = ↵att(gl�1) + log p(c|gl�1, X), (11)

where gl is a partial hypothesis with length l, and c is the last char-
acter of gl, which is appended to gl�1, i.e. gl = gl�1 · c. The score
for gl is obtained as the addition of the original score ↵(gl�1) and
the conditional log probability given by the attention decoder in (5).
During the beam search, the number of partial hypotheses for each
length is limited to a predefined number, called a beam width, to
exclude hypotheses with relatively low scores, which dramatically
improves the search efficiency.

3.5. Decoder with RNN-LM

Finally, we combine an RNN-LM network in parallel with the at-
tention decoder. The hybrid attention/CTC and RNN-LM is trained
separately, where the RNN-LM is trained with character sequences
without word-level knowledge. Although the attention decoder im-
plicitly includes a language model as in Eq. (5), we aim at intro-
ducing language model states purely dependent on the output label
sequence in the decoder, which potentially brings a complementary
effect.

The RNN-LM probabilities are used to predict the output label
jointly with the decoder network. The RNN-LM information is com-

bined in the log-probability domain, as follows:

Ĉ = arg max
C2U⇤

{� log pctc(C|X)

+(1� �) log patt(C|X)}
+� log prnnlm(C)} , (12)

where � is an additional scaling parameter for RNN-LMs. Although
it is possible to apply the RNN-LM as a rescoring step, we combine
the RNN-LM network in the end-to-end model because we do not
wish to have an additional rescoring step for better latency. Also, we
can view this as a single large neural network model, even if parts of
it are separately pretrained. Furthermore, [3] also proposes to train
the RNN-LM and hybrid attention/CTC jointly, but this paper only
uses a pretrained RNN-LM.

4. LANGUAGE-INDEPENDENT ARCHITECTURE

This section explains the proposed monolithic multilingual ASR sys-
tem with a language-independent neural network architecture, as
shown in Figure 1. All the network parameters are shared across
languages including output softmax layer, which is represented by
the following augmented character set.

4.1. Augmented character set

We augment its set of output symbols to include the union of char-
acter sets appearing in all the target languages, i.e.,

U = UEN [U JP [· · · , (13)

where UEN/JP/··· is a character set of a specific language. The advan-
tage of using this augmented character set is to accept any language
without language identification modules. The network learns to pre-
dict a character sequence in a target language, automatically. How-
ever, since we do not explicitly constrain the character set for each
language, there is a risk that the language can be switched to the oth-
ers during an utterance. However, our preliminary experiments show
that this language switch was not observed frequently, probably due
to the strong context modeling in the decoder network.

Fig. 1. The proposed language-independent architecture. The system learns to predict the language ID in the beginning of an utterance
followed by a text output.

step of attention-based speech recognition is performed by output-
label synchronous decoding with a beam search. However, we take
the CTC probabilities into account to find a better aligned hypothesis
to the input speech, i.e. the decoder finds the most probable character
sequence Ĉ given speech input X , according to

Ĉ = arg max
C2U⇤

{� log pctc(C|X)

+(1� �) log patt(C|X)} . (10)

In the beam search process, the decoder computes a score of each
partial hypothesis. With the attention model, the score can be com-
puted recursively as

↵att(gl) = ↵att(gl�1) + log p(c|gl�1, X), (11)

where gl is a partial hypothesis with length l, and c is the last char-
acter of gl, which is appended to gl�1, i.e. gl = gl�1 · c. The score
for gl is obtained as the addition of the original score ↵(gl�1) and
the conditional log probability given by the attention decoder in (5).
During the beam search, the number of partial hypotheses for each
length is limited to a predefined number, called a beam width, to
exclude hypotheses with relatively low scores, which dramatically
improves the search efficiency.

3.5. Decoder with RNN-LM

Finally, we combine an RNN-LM network in parallel with the at-
tention decoder. The hybrid attention/CTC and RNN-LM is trained
separately, where the RNN-LM is trained with character sequences
without word-level knowledge. Although the attention decoder im-
plicitly includes a language model as in Eq. (5), we aim at intro-
ducing language model states purely dependent on the output label
sequence in the decoder, which potentially brings a complementary
effect.

The RNN-LM probabilities are used to predict the output label
jointly with the decoder network. The RNN-LM information is com-

bined in the log-probability domain, as follows:

Ĉ = arg max
C2U⇤

{� log pctc(C|X)

+(1� �) log patt(C|X)}
+� log prnnlm(C)} , (12)

where � is an additional scaling parameter for RNN-LMs. Although
it is possible to apply the RNN-LM as a rescoring step, we combine
the RNN-LM network in the end-to-end model because we do not
wish to have an additional rescoring step for better latency. Also, we
can view this as a single large neural network model, even if parts of
it are separately pretrained. Furthermore, [3] also proposes to train
the RNN-LM and hybrid attention/CTC jointly, but this paper only
uses a pretrained RNN-LM.

4. LANGUAGE-INDEPENDENT ARCHITECTURE

This section explains the proposed monolithic multilingual ASR sys-
tem with a language-independent neural network architecture, as
shown in Figure 1. All the network parameters are shared across
languages including output softmax layer, which is represented by
the following augmented character set.

4.1. Augmented character set

We augment its set of output symbols to include the union of char-
acter sets appearing in all the target languages, i.e.,

U = UEN [U JP [· · · , (13)

where UEN/JP/··· is a character set of a specific language. The advan-
tage of using this augmented character set is to accept any language
without language identification modules. The network learns to pre-
dict a character sequence in a target language, automatically. How-
ever, since we do not explicitly constrain the character set for each
language, there is a risk that the language can be switched to the oth-
ers during an utterance. However, our preliminary experiments show
that this language switch was not observed frequently, probably due
to the strong context modeling in the decoder network.

Table 3. Character Error Rates (CERs) of language-dependent and language-independent ASR experiments for 7 and 10 multilingual setups.
Language-dependent 7lang 7lang 7lang 10lang

4BLSTM 4BLSTM CNN-7BLSTM CNN-7BLSTM CNN-7BLSTM
RNN-LM RNN-LM

HKUST CH train dev 40.1 43.9 40.5 40.2 32.0
dev 40.4 43.6 40.5 40.0 31.0

WSJ EN dev93 9.4 9.6 7.7 7.0 9.7
eval92 7.4 7.3 5.6 5.1 7.4

CSJ JP
eval1 13.5 14.3 12.4 11.9 10.2
eval2 10.8 10.8 9.0 8.5 7.2
eval3 23.2 24.9 22.0 21.4 8.7

Voxforge

DE dev 6.6 7.4 5.7 5.4 7.3
eval 5.2 7.4 5.8 5.5 7.3

ES dev 50.9 28.1 31.9 31.5 25.8
eval 50.8 29.6 34.7 34.4 26.7

FR dev 27.7 25.0 22.0 21.0 24.1
eval 26.5 23.5 21.2 20.3 23.2

IT dev 14.3 14.3 11.8 11.1 13.8
eval 14.3 14.4 12.0 11.2 14.1

NL dev 27.0 23.2
eval 25.5 22.4

RU dev 47.8 45.0
eval 49.4 43.2

PT dev 56.9 35.5
eval 52.2 31.9

Avg. 7 langs 22.7 20.3 18.9 18.3 16.6
Avg. 10 langs 27.4 21.4

implemented in Kaldi [33] for both 8/16 kHz speech signals2. With
CNN/BLSTM-based encoder network, we used additional delta and
delta-delata features to form 3-channel inputs in the CNN. Our ini-
tial experiments only used BLSTM as an encoder network, and in
this configuration, we only used the static 43-dimensional feature
and subsampled hidden output activations on 1st and 2nd bottom
layers (skip every 2nd feature, yielding 4/T).

The language-dependent multilingual ASR model was trained
for each of 10 languages. Similar to the 7lang setup, we only used
subsets for Japanese (150 hours from a subset of CSJ training data)
and Mandarin (90 hours from a subset of HKUST CTS training
data) corpora. This paper also strictly followed an end-to-end ASR
concept, and did not use any pronunciation lexicon, word-based
language model, GMM/HMM, or DNN/HMM. Our hybrid atten-
tion/CTC architecture was implemented with Chainer [34].

5.2. Results

Table 3 shows the character error rate (CER) of language-dependent
and language-independent end-to-end ASR systems with several
experimental configurations. The first experiment is to compare the
language-dependent and language-independent end-to-end ASR sys-
tems with the same network architecture, based on relatively small-
scale setup. To do this comparison, we only used 4-layer BLSTM
instead of CNN/BLSTM in the encoder network, and also limit
the training data with 7lang for language-independent architecture.
Columns ”Language-dependent 4BLSTM” and ”7lang 4BLSTM”
corresponds to this comparison. The language-independent ASR

2The features obtained from 8/16 kHz on this setup are not consistent,
and we may need to compensate this feature difference, which is one of our
future work.

system successfully improved the performance in average by 2.4%,
mainly improving the performance of Spanish task, which was ex-
tremely poor performance on a language-dependent setup. Although
the average performance was improved, the performance of many
languages were actually degraded probably due to the straightfor-
ward mixing of all languages into a sigle network.

The second experiments in the ”7lang CNN-7BLSTM” and
”7lang CNN-7BLSTM, RNN-LM” columns enhanced the network
architecture by using the CNN followed by the 7-layer BLSTM
instead of the 4-layer BLSTM in the encoder network, and also
combining RNN-LM, as described in Section 3. We first prepared
a language-independent LSTM-based RNN-LM with 800 cell size
trained by mixing the transcripts of 7lang with the same augmented
character set as the language-independent end-to-end architecture.
These two extensions significantly improved the performance by
2.0% absolutely in average, and also recovered most of degradations
observed in the previous experiments. We only observed marginal
degradation on the HKUST train dev and dev, and Voxforge German
evaluation set.

Given the success of our very deep encoder network, the final
experiment in the column ”10lang CNN-7BLSTM, RNN-LM” used
full training data of 10 language with the same CNN-7BLSTM
architecture in the encoder network. Similarly to the previous ex-
periment, we also prepared a language-independent LSTM-based
RNN-LM with 800 cell size trained by mixing the transcripts of
10lang. With the training data extension, we achieved further im-
provement for the 7 language test sets with 16.6% CER. We also
obtained 21.4% CER for the 10 language test set. Although it
cannot be directly compared with the average CER of 27.4% ob-
tained by language-dependent systems due to the different network
architectures and different amounts of training data, we could still

Language-dependent and language-independent CERs

probabilities over graphemes to encourage mono-
tonicity in decoding.

4.2 Phoneme Objective
The end-to-end neural model performs direct
grapheme prediction without recourse to a pronun-
ciation lexicon as traditional hybrid HMM-DNN
models do. Since different orthographies may be
mutually disjoint or only weakly related to the
phonetic content of the input speech, we use a
context-independent phoneme CTC objective to
encourage learning of representations independent
of such orthographic idiosyncrasies.

We performed limited preliminary experiments
to determine how best to use the phoneme objec-
tive, which corroborated recent work in hierarchi-
cal training objectives that supports inserting the
phoneme objective in the layers below the final
layer (Krishna et al., 2018). We also found that us-
ing the phoneme objective during adaptation was
harmful and therefore in all reported experiments
we use it only during multilingual pretraining.

4.3 Language-Adversarial Pretraining
For language-adversarial training we used a log-
linear classifier over all languages seen in pretrain-
ing. An utterance-level mean of the penultimate
encoder layer states is fed into the classifier. For
each batch in training we update the network us-
ing the interpolated grapheme and phoneme objec-
tives before a separate update step using the adver-
sarial objective.

We follow the learning rate scheduling of Ganin
et al. (2016), where the weight of the adversarial
objective relative to the speech recognition tasks
follows �(p) = 2

1+exp(�10p) �1 over the course of
training, where p 2 [0, 1] is a measure of training
progress. We drop the adversarial objective during
target language adaptation.

5 Experimental Setup

5.1 Language Versus Reading Adaptation
We chose as target adaptation languages those lan-
guages for which we have multiple readings of the
Bible. This allows us to assess adaptation of the
pretrained multilingual model in two scenarios:
language adaptation and reading adaptation. In
reading adaptation, it is adapted to data from each
reading of the target language, including the read-
ing from which we select held-out evaluation ut-
terances. In language adaptation it is adapted only

x

Encoder

Encoder Last Layer

Attention

Decoder

y1, y2, . . . , yn
y1, y2, . . . , yn

CTC

Phoneme CTC

�1,�2, . . . ,�m

Adv

Lx

Figure 1: The end-to-end architecture used during pre-
training. x is the input speech features, y1, y2, . . . , yn
is a character sequence the model is trained to output
(eg. “knife”). �1,�2, . . . ,�m is a phoneme sequence
the model is trained to output (eg. /naIf/), and Lx is the
language identity of the input speech x.

to readings that are not represented in the evalu-
ation set. This last case, of adapting to just one
or several speakers of a new language (in order to
ultimately have a system that generalizes beyond
those speakers in the language) is not common in
speech recognition experimentation. Results and
findings for language adaptation will be presented
in Section 8.

5.2 Training Settings
We established training, validation and test sets for
each reading using a random 80/10/10 split. When
pretraining or adapting the multilingual systems,
we used the combined training sets of the con-
stituent readings.

We used 80-dimensional log Mel filterbank fea-
tures with 3-dimensional pitch features. We tuned
hyperparameters for these models using one Ay-
mara reading.5 We found that a 4 layer encoder, 1
layer decoder with 768 for the encoder hidden size
and projections, decoder hidden size, and attention
hidden size yielded equal-best results with deeper
models. These settings were then used for training
the models used in our experiments.

For the training objective, we linearly interpo-
lated the the attentional decoder cross-entropy loss
with the grapheme CTC and phoneme CTC objec-
tives. Equal weight was given to all three since
we found that to be effective in preliminary exper-
iments. Note however, that the effective weight of

5CMU Wilderness reading ID: AYMSBU.

Massively multilingual adversarial ASR

• Pretrain multilingual ASR models using
speech from as many as 100 languages!

• To encourage learning language-
independent representations:

• Context-independent phoneme sequence
prediction

• Domain-adversarial language classification
objective to encourage language
invariance

Image from: Adams et al.,Massively multingual adversarial ASR, 2019

probabilities over graphemes to encourage mono-
tonicity in decoding.

4.2 Phoneme Objective
The end-to-end neural model performs direct
grapheme prediction without recourse to a pronun-
ciation lexicon as traditional hybrid HMM-DNN
models do. Since different orthographies may be
mutually disjoint or only weakly related to the
phonetic content of the input speech, we use a
context-independent phoneme CTC objective to
encourage learning of representations independent
of such orthographic idiosyncrasies.

We performed limited preliminary experiments
to determine how best to use the phoneme objec-
tive, which corroborated recent work in hierarchi-
cal training objectives that supports inserting the
phoneme objective in the layers below the final
layer (Krishna et al., 2018). We also found that us-
ing the phoneme objective during adaptation was
harmful and therefore in all reported experiments
we use it only during multilingual pretraining.

4.3 Language-Adversarial Pretraining
For language-adversarial training we used a log-
linear classifier over all languages seen in pretrain-
ing. An utterance-level mean of the penultimate
encoder layer states is fed into the classifier. For
each batch in training we update the network us-
ing the interpolated grapheme and phoneme objec-
tives before a separate update step using the adver-
sarial objective.

We follow the learning rate scheduling of Ganin
et al. (2016), where the weight of the adversarial
objective relative to the speech recognition tasks
follows �(p) = 2

1+exp(�10p) �1 over the course of
training, where p 2 [0, 1] is a measure of training
progress. We drop the adversarial objective during
target language adaptation.

5 Experimental Setup

5.1 Language Versus Reading Adaptation
We chose as target adaptation languages those lan-
guages for which we have multiple readings of the
Bible. This allows us to assess adaptation of the
pretrained multilingual model in two scenarios:
language adaptation and reading adaptation. In
reading adaptation, it is adapted to data from each
reading of the target language, including the read-
ing from which we select held-out evaluation ut-
terances. In language adaptation it is adapted only

x

Encoder

Encoder Last Layer

Attention

Decoder

y1, y2, . . . , yn
y1, y2, . . . , yn

CTC

Phoneme CTC

�1,�2, . . . ,�m

Adv

Lx

Figure 1: The end-to-end architecture used during pre-
training. x is the input speech features, y1, y2, . . . , yn
is a character sequence the model is trained to output
(eg. “knife”). �1,�2, . . . ,�m is a phoneme sequence
the model is trained to output (eg. /naIf/), and Lx is the
language identity of the input speech x.

to readings that are not represented in the evalu-
ation set. This last case, of adapting to just one
or several speakers of a new language (in order to
ultimately have a system that generalizes beyond
those speakers in the language) is not common in
speech recognition experimentation. Results and
findings for language adaptation will be presented
in Section 8.

5.2 Training Settings
We established training, validation and test sets for
each reading using a random 80/10/10 split. When
pretraining or adapting the multilingual systems,
we used the combined training sets of the con-
stituent readings.

We used 80-dimensional log Mel filterbank fea-
tures with 3-dimensional pitch features. We tuned
hyperparameters for these models using one Ay-
mara reading.5 We found that a 4 layer encoder, 1
layer decoder with 768 for the encoder hidden size
and projections, decoder hidden size, and attention
hidden size yielded equal-best results with deeper
models. These settings were then used for training
the models used in our experiments.

For the training objective, we linearly interpo-
lated the the attentional decoder cross-entropy loss
with the grapheme CTC and phoneme CTC objec-
tives. Equal weight was given to all three since
we found that to be effective in preliminary exper-
iments. Note however, that the effective weight of

5CMU Wilderness reading ID: AYMSBU.

Massively multilingual adversarial ASR

Image from: Adams et al.,Massively multingual adversarial ASR, 2019

MONO QUE+CYR PHONOLOGY GEO 100-LANG

- +phn+adv - +phn+adv - +phn+adv - +phn+adv

ayr 40.6 34.6 34.2 (-1.2%) 33.9 34.5 (+1.8%) 35.4 34.9 (-1.4%) 34.2 34.5 (+0.9%)
quh 14.8 14.9 13.9 (-6.7%) 14.4 14.5 (+0.7%) 15.5 14.8 (-4.5%) 15.1 14.7 (-2.6%)
kek 23.9 24.8 23.7 (-4.4%) 24.8 24.5 (-1.2%) 23.0 22.9 (-0.4%) 24.9 24.4 (-2.0%)
ixl 20.7 21.2 20.1 (-5.2%) - - 19.7 20.1 (+2.0%) 20.8 20.6 (-1.0%)
mlg 45.2 43.5 41.4 (-4.8%) 43.2 41.7 (-3.5%) 43.3 42.2 (-2.5%) 44.4 42.2 (-5.0%)
ind 14.9 15.8 14.7 (-7.0%) 13.7 14.3 (+4.4%) 14.0 13.7 (-2.1%) 14.7 14.2 (-3.4%)
kia 14.6 14.6 13.2 (-9.6%) - - 12.1 12.1 (-0.0%) 14.4 13.0 (-9.7%)
swe 20.5 22.7 21.6 (-4.9%) 26.4 24.2 (-8.3%) 22.0 21.2 (-3.6%) 23.9 24.6 (+2.9%)
spn 14.5 19.7 14.4 (-26.9%) 13.9 13.8 (-0.7%) 13.1 12.1 (-7.6%) 15.8 14.8 (-6.3%)

Avg. rel. �: (-7.8%) Avg. rel. �: (-1.0%) Avg. rel. �: (-2.3%) Avg. rel. �: (-2.9%)

Table 3: Word error rate (%) comparison of adaptation of models pretrained on: Quechuan and Cyrillic-script
languages (QUE+CYR), languages phonologically and phonetically similar to the target (PHON/INV), geograph-
ically proximate languages (GEO), and a massively multilingual set of languages (100-LANG). In each case we
compared the average relative WER change when adding auxiliary phoneme and language-adversarial objectives
(+phn+adv). Dashed entries had phonology and phonetic inventories that weren’t well attested in URIEL, so
were not assessed.

logical/phonetic characteristics. In this section,
we investigate which factors are most important
in choosing languages for multilingual pretraining
and how useful it is to scale up model pretraining
to many languages. This exploration is conducted
in the reading adaptation scenario; language adap-
tation with unseen target speakers is addressed in
Section 8. Beyond answering these questions, this
investigation reveals more information about the
utility of the proposed auxiliary objectives in dif-
ferent scenarios.

Phonology & Geography We test across a num-
ber of evaluation languages (c.f. Table 1) by de-
termining, for each evaluation language, groups
of pretraining languages that are similar to the
evaluation languages in different ways. In or-
der to determine language similarity in a prin-
cipled way we used URIEL and lang2vec (Lit-
tell et al., 2017) to produce feature vectors for
each language based on information from sev-
eral linguistic resources before calculating their
cosine similarity. For each language we used
two feature vectors. The first is a concate-
nation of the lang2vec phonology average
and inventory average vectors, characteriz-
ing phonological properties and phonetic inven-
tory. The second represents geographic loca-
tion. We denote these two groups PHON/INV and
GEO respectively.8 Geographic proximity may

8We didn’t create PHON/INV sets for Ixil and Garap be-
cause their phonological features and phonetic inventories
were not well attested, and we didn’t use the lang2vec lan-

serve as a proxy for other similarities not captured
in PHON/INV, including language family, ortho-
graphic similarity, and the likelihood of exchanged
loan words.

We filtered for languages in the dataset with
good or very good alignments before rank-
ing them by cosine similarity with the evaluation
languages in terms of phonological and phonetic
similarity as well as geographical proximity. To
create each of the pretraining sets, we took be-
tween 7 and 14 of the top languages, matching
approximately the total duration of the phoneti-
cally/phonologically similar groups with the geo-
graphically proximate language groups.9 For most
languages, there is no overlap between the GEO
and PHON/INV sets.

Massively multilingual model As a further
point of comparison, we pretrain a model on
around 100 languages (denoted 100-LANG), for
approximately 1650 training hours in total.10

7.1 Auxiliary Objectives Findings
The results in Table 3 extend on our findings in
Section 6, continuing to support the benefit of
the use of the auxiliary objectives while shedding
more light on the type of language variability the
objectives help to overcome. GEO and 100-LANG

guage family vectors since most of the Quechuan languages
were not captured as being highly similar to SB Quechua.

9An exhaustive list of the CMU Wilderness language
codes for each pretraining group can be found in Appendix
A, along with durations of each pretraining set.

10These models were pretrained for 6 epochs.

Comparion of pretrained models + auxiliary objectives

