Multilingual and low-resource ASR

Instructor: Preethi Jyothi

Lecture 18

- Instead of GMMs, use scaled • DNN posteriors as the HMM observation probabilities
- DNN trained using triphone labels derived from a forced alignment "Viterbi" step.

Recall Hybrid DNN-HMM Systems

Multilingual Training (Hybrid DNN/HMM System)

Image/Table from Ghoshal et al., "Multilingual training of deep neural networks", ICASSP, 2013.

Multilingual Training (Hybrid DNN/HMM System)

Different training	language	schedules
	language	Scheudies

Languages	Dev	Eval	Language	Vocab	PPL	ML-GMM	DNN	Multilingual DNN
	775	242				WER(%)	WER(%)	Languages
KU	Z1.J	24.3	CZ	29K	823	18.5	15.8	
	775	216	DE	36K	115	13.9	11.2	$CZ \rightarrow DE$
$C \Sigma \rightarrow K U$	$\angle I.J$	J 24.0	FR	16K	341	25.8	22.6	$CZ \rightarrow DE \rightarrow FR$
	266	228	SP	17K	134	26.3	22.3	$CZ \rightarrow DE \rightarrow FR \rightarrow SP$
$CL \rightarrow DE \rightarrow \Gamma K \rightarrow SF \rightarrow KU$	20.0	23.0	PT	52K	184	24.1	19.1	$CZ \rightarrow DE \rightarrow FR \rightarrow SP \rightarrow PT$
$\mathbf{C}7$, $\mathbf{D}\mathbf{E}$, $\mathbf{E}\mathbf{D}$, $\mathbf{C}\mathbf{T}$, $\mathbf{D}\mathbf{T}$, $\mathbf{D}\mathbf{I}$	763	226	RU	24K	634	32.5	27.5	$CZ \rightarrow DE \rightarrow FR \rightarrow SP \rightarrow PT \rightarrow RU$
$CL \rightarrow DL \rightarrow \Gamma K \rightarrow SF \rightarrow \Gamma I \rightarrow KU$	$\angle 0.3$	23.0	PL	29K	705	20.0	17.4	$CZ \rightarrow DE \rightarrow FR \rightarrow SP \rightarrow PT \rightarrow RU \rightarrow PL$

Mono- and multilingual results

neural networks", ICASSP, 2013.

Shared hidden layers + Language-specific softmax layers

Huang et al., "Cross-language knowledge transfer using multilingual DNNs with shared hidden wers", I GASAR BANN

Shared hidden layers + Language-specific softmax layers

FRA DEU ESP ITA 40k 37k 18k 31k Test Set Size (Words) Monolingual DNN (%) 30.6 28.1 24.0 24.3 22.7 29.4 SHL-MDNN (%) 27.1 23.5 Huang et al., "Cross-language knowledge transfertusing environment for the with shared higher layers", 53 ASSP 2013.

- Hidden layers are shared across languages; treated as a universal feature transformation
- Each language has its own softmax layer to estimate posterior probabilities of tied triphone states specific to each language

Shared hidden layers + Language-specific softmax layers

Huang et al., "Cross-language knowledge

Hidden layers are transfera	ble
	WER (%)
Baseline (9-hr ENU)	30.9
FRA HLs + Train All Layers	30.6
FRA HLs + Train Softmax Layer	27.3
SHL-MDNN + Train Softmax Layer	25.3

Training strategy based on target language data

ENU training data (#. Hours)	3	9	36
Baseline DNN (no Transfer)	38.9	30.9	23.0
SHL-MDNN + Train Softmax Layer	28.0	25.3	22.4
SHL-MDNN + Train All Layers	33.4	28.9	21.6
Best Case Relative WER Reduction (%)	28.0	18.1	6.1

Cross-lingual transfer

		× /		
CHN Training Set (Hrs)	3	9	36	139
Baseline - CHN only	45.1	40.3	31.7	29.0
SHL-MDNN Model Transfer	FRA6	PF I	284	2676A
Relative CER Reduction	21.1	15.9	104	83
Monolingual DNN (%)	28.1	24.0	30.6	24.3
SHL-MDNN (%)	27.1	22.7	29.4	23.5
e transfertusing meiltingual DNMs wi	thshare	d hajdade	n l a yoers	s", \$C \$AS\$

Recall Tandem DNN-HMM Systems

- Neural network outputs are used as "features" to train HMM-GMM models
- Use a low-dimensional bottleneck layer representation to extract features from the bottleneck layer

Multilingual Training (Tandem System)

Language-independent hidden layers

softmax layer for language 2

Vesely et al., "The language-independent bottleneck features", SLT, 2012.

Multilingual Training (Tandem System)

Language-independent hidden layers

Monolingual/multilingual BN feature-based results

Language	Czech	English	German	Portugese	Spanish	Russian	Turkish	Vietnamese
HMM	22.6	16.8	26.6	27.0	23.0	33.5	32.0	27.3
1-Softmax	20.3	16.1	25.9	27.2	24.2	33.4	31.3	26.9
mono-BN	19.7	15.9	25.5	27.2	23.2	32.5	30.4	23.4
1-Softmax(IPA)	19.4	15.5	24.8	25.6	23.2	32.5	30.3	25.9
8-Softmax	19.3	14.7	24.0	25.2	22.6	31.5	29.4	24.3

softmax layer for language 2

softmax layer for language N

Vesely et al., "The language-independent bottleneck features", SLT, 2012.

Multilingual Training (Tandem System)

	Cross-ling	ual WERs			
T	basel	baselines			
Language	PLP-HLDA	Mono-BN	(lang-pooled)		
	(II.)	(III.)	(d)		
Czech	22.6	19.7	19.2		
English	16.8	15.9	14.7		
German	26.6	25.5	24.5		
Portuguese	27.0	27.2	26.0		
Spanish	23.0	23.2	23.0		
Russian	33.5	32.5	32.3		
Turkish	32.0	30.4	30.7		
Vietnamese	27.3	23.4	26.8		

Vesely et al., "The language-independent bottleneck features", SLT, 2012.

softmax layer for language 1

softmax layer for language 2

softmax layer for language N

Cross- and Multilingual Bottleneck features

Tuske et al., "Investigation on cross- and multilingual MLP features", ICASSP, 2013

Cross- and Multilingual Bottleneck features

- •
- Language-specific softmax layers ●
- Bottleneck layer which is shared across languages •

Features from three languages are merged and presented as input to the model

Target and cross-lingual BN features							
WER [%]			Ν	AFCC+B	N		
		MFCC	Bottle	eneck train	ned on		
			GER	ENU	FRA		
) lage	GER	GER 29.97	27.50	29.63	30.38		
			(8.2)	(1.1)	(-1.4)		
ngn	ENILI	J 21.69	21.31	18.85	22.63		
st 18			(1.8)	(13.1)	(-4.3)		
Tee	ЕД Л	37.78	37.76	38.72	33.95		
	ГКА		(0.1)	(-2.5)	(10.1)		

Multilingual BN features using mismatched data

V	VER	MFCC+BN					
	[%]	BN trained on					
		ENU+FRA	GER+FRA	GER+ENU	GER+ENU+FRA		
ge	GER	28.37	27.06	26.89	26.90		
		(5.3)	(9.7)	(10.3)	(10.2)		
gua		GER+FRA	ENU+FRA	ENU+GER	GER+ENU+FRA		
lang	ENU	20.29	18.21	17.99	17.89		
est]		(6.5)	(16.0)	(17.1)	(17.5)		
E		GER+ENU	FRA+GER	FRA+ENU	GER+ENU+FRA		
	FRA	35.88	33.52	33.45	33.61		
		(5.0)	(11.3)	(11.5)	(11.0)		

e2e multilingual models

Multilingual ASR with an e2e Model

- •

Use attention-based encoder-decoder models

Decoder outputs one character per time-step

For multilingual models, use union over character sets

Bengali Gujarati Hindi Kannada Malayalam Marathi Tamil Telugu Urdu

আজ মেঘলা দিন તે વાદળછાયું દિવસ છે यह एक बादल का दिन है ಇದು ಮೋಡ ಕವಿದ ದಿನ ഇത് തെളിഞ്ഞ ദിവസമാണ് तो ढगाळ दिवस आहे இது ஒரு மேகமூட்டமான நாள் ఇది మేఘ్రావృతమైన రోజు یہ ابر آلود دن ہے

Multilingual ASR with an e2e Model

Language-specific vs. Multilingual models

Joint	Joint + MTL
16.8	16.5
18.0	18.2
14.4	14.4
34.5	34.6
36.9	36.7
27.6	27.2
10.7	10.6
22.5	22.7
26.8	26.7
22.93	22.91
	Joint 16.8 18.0 14.4 34.5 36.9 27.6 10.7 22.5 26.8 22.93

LAS models conditioned on language ID

Language	Joint	Dec	Enc	Enc + D
Bengali	16.8	16.9	16.5	16.5
Gujarati	18.0	17.7	17.2	17.3
Hindi	14.4	14.6	14.5	14.4
Kannada	34.5	30.1	29.4	29.2
Malayalam	36.9	35.5	34.8	34.3
Marathi	27.6	24.0	22.8	23.1
Tamil	10.7	10.4	10.3	10.4
Telugu	22.5	22.5	21.9	21.5
Urdu	26.8	25.7	24.2	24.5
Weighted Avg.	22.93	22.03	21.37	21.32

Image from: Chan et al., Listen, Attend and Spell: A NN for LVCSR, ICASSP 2016

Hybrid End-to-end Multilingual ASR

Watanabe et al., "e2e architecture for joint language identification and ASR", ASRU, 2017

- to train the encoder
- •
- Model also predicts a language ID along with the text outputs •

Hybrid attention+CTC model: Use the CTC objective function as an auxiliary task

Minimize a linear combination of log-losses of the CTC and attention objectives

Language-dependent and language-independent CERs

			Language-dependent 4BLSTM	7lang 4BLSTM	7lang CNN-7BLSTM	7lang CNN-7BLSTM RNN-LM	10lang CNN-7BLSTM RNN-LM
UVUST	СЦ	train_dev	40.1	43.9	40.5	40.2	32.0
ΠΚΟΣΙ	СП	dev	40.4	43.6	40.5	40.0	31.0
WCI	FN	dev93	9.4	9.6	7.7	7.0	9.7
AA 23		eval92	7.4	7.3	5.6	5.1	7.4
		eval1	13.5	14.3	12.4	11.9	10.2
CSJ	JP	eval2	10.8	10.8	9.0	8.5	7.2
		eval3	23.2	24.9	22.0	21.4	8.7
	DE	dev	6.6	7.4	5.7	5.4	7.3
		eval	5.2	7.4	5.8	5.5	7.3
	ES	dev	50.9	28.1	31.9	31.5	25.8
		eval	50.8	29.6	34.7	34.4	26.7
	EB	dev	27.7	25.0	22.0	21.0	24.1
		eval	26.5	23.5	21.2	20.3	23.2
Voxforce	IT	dev	14.3	14.3	11.8	11.1	13.8
VUAIUISU		eval	14.3	14.4	12.0	11.2	14.1

Massively multilingual adversarial ASR

- Pretrain multilingual ASR models using speech from as many as 100 languages!
- To encourage learning languageindependent representations:
 - Context-independent phoneme sequence prediction
 - Domain-adversarial language classification objective to encourage language invariance

Massively multilingual adversarial ASR

Comparion of pretrained models + auxiliary objectives

E+CYR	PHONOLOGY		GEO		100-lang	
+phn+adv	-	+phn+adv	_	+phn+adv	_	+phn+a
34.2 (-1.2%)	33.9	34.5 (+1.8%)	35.4	34.9 (-1.4%)	34.2	34.5 (+0
13.9 (-6.7%)	14.4	14.5 (+0.7%)	15.5	14.8 (-4.5%)	15.1	14.7 (-2
23.7 (-4.4%)	24.8	24.5 (-1.2%)	23.0	22.9 (-0.4%)	24.9	24.4 (-2
20.1 (-5.2%)	-	-	19.7	20.1 (+2.0%)	20.8	20.6 (-1
41.4 (-4.8%)	43.2	41.7 (-3.5%)	43.3	42.2 (-2.5%)	44.4	42.2 (-5
14.7 (-7.0%)	13.7	14.3 (+4.4%)	14.0	13.7 (-2.1%)	14.7	14.2 (-3
13.2 (-9.6%)	_	-	12.1	12.1 (-0.0%)	14.4	13.0 (-9
21.6 (-4.9%)	26.4	24.2 (-8.3%)	22.0	21.2 (-3.6%)	23.9	24.6 (+2
14.4 (-26.9%)	13.9	13.8 (-0.7%)	13.1	12.1 (-7.6%)	15.8	14.8 (-6
Δ : (-7.8%)	Avg. 1	rel. Δ : (-1.0%)	Avg.	rel. Δ : (-2.3%)	Avg.	rel. Δ : (-2

