Speech Synthesis

Lecture 19




Project Preliminary Report

* Preliminary project report will contribute towards 5% of your final grade. Deadline is on
27th October, 2019.

* Define the following for your project: 1) Input-output behaviour of your system 5 points
2) Evaluation metric 3) At least two existing (or related) approaches to your problem

 Propose a model and an algorithm for the problem you're tackling and give detailed
descriptions for both. Do not provide generic descriptions of the model. Describe
precisely how it applies to your problem. 5 points

* Describe how much of your algorithm has been implemented. If you are using existing
APIls/libraries, clearly demarcate which parts you will be implementing and for which
parts you will rely on existing implementations. S points

* Describe the experiments you are planning to run. If you have already run any 5 points
preliminary experiments, please describe them along with reporting your initial results.



Text-To-Speech (TTS) Systems
Storied History

Von Kempelen’s speaking machine (1791)

Bellows simulated the lungs
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Formant synthesizer for vowels

Computer-aided speech synthesis (1970s)

Concatenative (unit selection)
Parametric (HMM-based and NN-based)

All images from http://www?2 .ling.su.se/staff/hartmut/kemplne.htm



http://www2.ling.su.se/staff/hartmut/kemplne.htm

Speech synthesis or TTS systems

-+ @Goal of a TTS system: Produce a natural-sounding high-

guality speech waveform for a given word sequence

-+ TTS systems are typically divided into two parts:

A. Linguistic specification

B. Waveform generation



Current TTS systems

Constructed using a large amount of speech data

Referred to as corpus-based TTS systems

- Two prominent instances of corpus-based TTS:

1. Unit selection and concatenation

2. Statistical parametric speech synthesis



Unit Selection Synthesis



Unit selection synthesis or
Concatenative speech synthesis
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Image from Zen et al., “Statistical Parametric Speech Synthesis”, SPECOM 2001



Unit selection synthesis

Target cost between a candidate, u;, and a target unit #;:
p
t t
(1) (ti, ui) = Zw]( )CJ(- )(t@-,ui),
j=1

Concatenation cost between candidate units:

C(C) Uz 1,Uz Zw(c)c(c) Uz— ,Uz)

Find string of units that minimises the overall cost:

ﬂl:n — arg IJHH {C(tlzna ul:n)}
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Unit selection synthesis
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Statistical Parametric Speech Synthesis



Parametric Speech Synthesis Framework
O
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Estimate acoustic model given speech utterances (O), word sequences (W)*

Text
N EWAE

text

A

A = arg max p(O|W, \)
A

*Here W could refer to any textual features relevant to the input text



Parametric Speech Synthesis Framework

O

Speech Parameter Speech

speech —
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Text -
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Estimate acoustic model given speech utterances (O), word sequences (W)

@ A = arg max p(O|W, \)
A

Synthesis

Find the most probable 6 from )\ and a given word sequence to be synthesised, w

Analysis

Text W A
N EWAE

text

6 = arg max p(o|w, \)
O

Synthesize speech from 6



HMM-based speech synthesis
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Speech parameter generation

Generate the most probable observation vectors given the HMM and w:

6 = arg max p(o|w, \)
O

= argmax ) _p(o, qlw, )
Vq

~ arg max max p(o, g|lw, \)
o q

= arg max max p(o|q, \)p(qlw, \)
q

O

Determine the best state sequence and outputs sequentially:

arg max p(q|w, \)
q

q

arg max p(o|q, /A\)

O

Let’s explore this first %,



Determining state outputs

6 = arg max p(o|g, \)

O

— arg max A (0; i, )

h _ [T IR
where o = |0y ,...,0r 1S a state-output vector sequence

to be generated, ¢ = {qi1,...,qr} is a state sequence, and

T .
HLg = [“quv e unT] 1s the mean vector for q.

What would o look like?
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Adding dynamic features to state outputs

O; = [c;r, Ac:]T where Act — Ct — Ct+_—1
State output vectors contain both static (¢;) and dynamic (Ac;)

features

o |44 C
Ci_1 .o 0 1 0O O
Aci_1 R v 0 O Ct_9
Cy o 0 0 1 0 Ct—1
Acy |- 0 —I I O Cy
Citi1 R 0 0 0 1 Cii1
ACt_|_1 s 0 0 —I 1

o and c arranged in matrix form



Speech parameter generation

Introducing dynamic feature constraints:

6 = arg max p(o|g, \) where o = We
O

If the output distributions are single Gaussians:

p(ld, A) = N(0; 14, X4)

- Then, by setting 9log N (o; pug,%4)/0c =0  we get:

WS We=W"'S"" g



Synthesis overview
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Speech parameter generation

Generate the most probable observation vectors given the HMM and w:

6 = arg max p(o|w, \)
O

= arg max 0, qlw, \
31 gq:p( glw, A)

~ arg max max p(o, q|w, 3\)
O q

— arg max max p(o|g, \) P(glw, \)
q

O

Determine the best state sequence and outputs sequentially:

arg max p(q|w, \)
q

Let’s explore this next q

arg max p(o|q, /A\)

O

0



Duration modeling

How are durations
modelled within an
HMM?

O
~

O
w

Implicitly modelled by state
self-transition probabilities

pe(d) = aly ' - (1 — akk)

State duration probability p«(d)
o o
— N

PMFs of state durations are
geometric distributions 2 3 4 5 6 7 8 9 10

State duration d (frame)

State durations are determined by maximising:

N
log P(d] ) = ) log p(d)),

j=1

What would this solution look like if the PMFs of state durations are
geometric distributions?



Explicit modeling of state durations

Each state duration is explicitly modelled as a single
Gaussian. The mean £(i) and variance o°(i) of duration
density of state i

T T
>4 >4 Xto,t1 (2)(t1 —to + 1)

to=1t1=tg

L L Xt07t1 (Z)
to=1t1=tp
T T
~ -~ . )
>4 >4 Xto,t1 (2)(t1 —to + 1)
to=1t1=t .
0'2 (Z) — 0 1 ; - B 52 (Z)
>4 >4 Xt07t1 (Z)
to=1t1=tg

where

and y(i) is the probability of being in state i at time t



Determining state durations

During synthesis, for a given speech length T, the goal is to
maximize:

log P(d|A, T) Zlogpk (di) .. (1)

under the constraint that 7' = Z dy,

We saw that each duration density px(dx) can be modelled as a single
Gaussian N(°;€k,()‘2)

State durations, dx, k=1... K , which maximise (1) are given by:

Speaking o i
ae p = (TZak)) Y P (k)



Synthesis using duration models
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Image from Yoshimura et al., “Duration modelling for HMM-based speech synthesis™, ICSLP ‘98



Recap: HMIM-based speech synthesis
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Input features including

Input features including

DNN-based speech synthesis
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Image from Zen et al., “Statistical Parametric Speech Synthesis using DNNs”, 2014



Input features about linguistic
contexts, numeric values (# of
words, duration of the phoneme,

etc.)

Output features are spectral and
excitation parameters and their

DNN-based speech synthesis

delta values

Listening test results

Table 1. Preference scores (%) between speech samples from the
HMM and DNN-based systems. The systems which achieved sig-
nificantly better preference at p < 0.01 level are in the bold font.
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15.8 (16) | 38.5 (4 x 256) 45.7 <107° 9.9
16.1 (4) | 27.2 (4 x 512) 56.8 <1070 -5.1
12.7(1) | 36.6 (4 x 1024) | 50.7 <107° 11.5
Image from Zen et al., “Statistical Parametric Speech Synthesis using DNNs”, 2014



RNN-based speech synthesis
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Image from Fan et al., ““TTS synthesis with BLSTM-based RNNs”, 2014



