
Instructor: Preethi Jyothi

Speech Synthesis

Lecture 19

CS 753

Project Preliminary Report
• Preliminary project report will contribute towards 5% of your final grade. Deadline is on

27th October, 2019.

• Define the following for your project: 1) Input-output behaviour of your system  
2) Evaluation metric 3) At least two existing (or related) approaches to your problem

• Propose a model and an algorithm for the problem you're tackling and give detailed
descriptions for both. Do not provide generic descriptions of the model. Describe
precisely how it applies to your problem.

• Describe how much of your algorithm has been implemented. If you are using existing
APIs/libraries, clearly demarcate which parts you will be implementing and for which
parts you will rely on existing implementations.

• Describe the experiments you are planning to run. If you have already run any
preliminary experiments, please describe them along with reporting your initial results.

5 points

5 points

5 points

5 points

Text-To-Speech (TTS) Systems 
Storied History

• Von Kempelen’s speaking machine (1791)
• Bellows simulated the lungs
• Rubber mouth and nose; nostrils had to be covered with  

two fingers for non-nasals

• Homer Dudley’s VODER (1939)
• First device to synthesize speech sounds via electrical  

means

• Gunnar Fant’s OVE formant synthesizer (1960s)
• Formant synthesizer for vowels

• Computer-aided speech synthesis (1970s)
• Concatenative (unit selection)
• Parametric (HMM-based and NN-based) 

All images from http://www2.ling.su.se/staff/hartmut/kemplne.htm

http://www2.ling.su.se/staff/hartmut/kemplne.htm

Speech synthesis or TTS systems

• Goal of a TTS system: Produce a natural-sounding high-
quality speech waveform for a given word sequence

• TTS systems are typically divided into two parts:

A. Linguistic specification

B. Waveform generation

Current TTS systems

• Constructed using a large amount of speech data

• Referred to as corpus-based TTS systems

• Two prominent instances of corpus-based TTS:

1. Unit selection and concatenation

2. Statistical parametric speech synthesis

Unit Selection Synthesis

Unit selection synthesis or  
Concatenative speech synthesis

All segments

Target cost

Concatenation cost

Figure 1: Overview of general unit-selection scheme. Solid lines represent
target costs and dashed lines represent concatenation costs.

a level where it can stand in its own right. The quality issue
comes down to the fact that, given a parametric representation,
it is necessary to reconstruct the speech from these parameters.
The process of reconstruction is still not ideal. Although mod-
eling the spectral and prosodic features is relatively well de-
fined, models of residual/excitation have yet to be fully devel-
oped, even though composite models like STRAIGHT (Kawa-
hara et al., 1999) are proving to be useful (Irino et al., 2002;
Zen et al., 2007c).
The aim of this review is to give a general overview of tech-

niques in statistical parametric speech synthesis. Although
many research groups have contributed to progress in statisti-
cal parametric speech synthesis, the description given here is
somewhat biased toward implementation on the HMM-based
speech synthesis system (HTS)1 (Yoshimura et al., 1999; Zen
et al., 2007b) for the sake of logical coherence.
The rest of this review is organized as follows. First, a more

formal definition of unit-selection synthesis that allows easier
contrast with statistical parametric synthesis is described. Then,
the core architecture of statistical parametric speech synthesis
is more formally defined, specifically based on the implemen-
tation on HTS. The following sections discuss some of the ad-
vantages and drawbacks in a statistical parametric framework,
highlighting some possible directions to take in the future. Var-
ious refinements that are needed to achieve state-of-the-art per-
formance are also discussed. The final section discusses con-
clusions we drew with some general observations and a discus-
sion.

2. Unit-selection synthesis

The basic unit-selection premise is that we can synthesize
new naturally sounding utterances by selecting appropriate sub-
word units from a database of natural speech.

1Available for free download at the HTS website (Tokuda et al., 2008). This
includes recipes for building state-of-the-art speaker-dependent and speaker-
adaptive synthesizers using CMU ARCTIC databases (Kominek and Black,
2003), which illustrate a number of the approaches described in this review.

Target cost

Concatenation cost

Clustered
segments

Figure 2: Overview of clustering-based unit-selection scheme. Solid lines rep-
resent target costs and dashed lines represent concatenation costs.

There seem to be two basic techniques in unit-selection syn-
thesis, even though they are theoretically not very different.
Hunt and Black presented a selection model (Hunt and Black,
1996), described in Fig. 1, which actually existed previously in
ATR ν-talk (Sagisaka et al., 1992). The basic notion is that of
a target cost, i.e., how well a candidate unit from the database
matches the required unit, and a concatenation cost, which de-
fines how well two selected units combine. The definition of
target cost between a candidate unit, ui, and a required unit, ti,
is

C(t)(ti, ui) =
p∑

j=1

w(t)
j C(t)

j (ti, ui), (1)

where j indexes over all features (phonetic and prosodic con-
texts are typically used). The concatenation cost is defined as

C(c)(ui−1, ui) =
q∑

k=1

w(c)
k C(c)

k (ui−1, ui), (2)

where k, in this case, may include spectral and acoustic fea-
tures. These two costs must then be optimized to find the string
of units, u1:n = {u1, . . . , un}, from the database that mini-
mizes the overall cost, C(t1:n, u1:n), as

û1:n = arg min
u1:n

{C(t1:n, u1:n)} , (3)

where

C(t1:n, u1:n) =
n∑

i=1

C(t)(ti, ui) +
n∑

i=2

C(c)(ui−1, ui). (4)

The second direction, described in Fig. 2, uses a cluster-
ing method that allows the target cost to effectively be pre-
calculated (Donovan and Woodland, 1995; Black and Taylor,
1997). Units of the same type are clustered into a decision tree
that asks questions about features available at the time of syn-
thesis (e.g., phonetic and prosodic contexts).

2

• Synthesize new
sentences by selecting
sub-word units from a
database of speech

• Optimal size of units?
Diphones?  
Half-phones?

Image from Zen et al., “Statistical Parametric Speech Synthesis”, SPECOM 2001

• Target cost between a candidate, ui, and a target unit ti:

• Concatenation cost between candidate units:

• Find string of units that minimises the overall cost:

Unit selection synthesis

All segments

Target cost

Concatenation cost

Figure 1: Overview of general unit-selection scheme. Solid lines represent
target costs and dashed lines represent concatenation costs.

a level where it can stand in its own right. The quality issue
comes down to the fact that, given a parametric representation,
it is necessary to reconstruct the speech from these parameters.
The process of reconstruction is still not ideal. Although mod-
eling the spectral and prosodic features is relatively well de-
fined, models of residual/excitation have yet to be fully devel-
oped, even though composite models like STRAIGHT (Kawa-
hara et al., 1999) are proving to be useful (Irino et al., 2002;
Zen et al., 2007c).
The aim of this review is to give a general overview of tech-

niques in statistical parametric speech synthesis. Although
many research groups have contributed to progress in statisti-
cal parametric speech synthesis, the description given here is
somewhat biased toward implementation on the HMM-based
speech synthesis system (HTS)1 (Yoshimura et al., 1999; Zen
et al., 2007b) for the sake of logical coherence.
The rest of this review is organized as follows. First, a more

formal definition of unit-selection synthesis that allows easier
contrast with statistical parametric synthesis is described. Then,
the core architecture of statistical parametric speech synthesis
is more formally defined, specifically based on the implemen-
tation on HTS. The following sections discuss some of the ad-
vantages and drawbacks in a statistical parametric framework,
highlighting some possible directions to take in the future. Var-
ious refinements that are needed to achieve state-of-the-art per-
formance are also discussed. The final section discusses con-
clusions we drew with some general observations and a discus-
sion.

2. Unit-selection synthesis

The basic unit-selection premise is that we can synthesize
new naturally sounding utterances by selecting appropriate sub-
word units from a database of natural speech.

1Available for free download at the HTS website (Tokuda et al., 2008). This
includes recipes for building state-of-the-art speaker-dependent and speaker-
adaptive synthesizers using CMU ARCTIC databases (Kominek and Black,
2003), which illustrate a number of the approaches described in this review.

Target cost

Concatenation cost

Clustered
segments

Figure 2: Overview of clustering-based unit-selection scheme. Solid lines rep-
resent target costs and dashed lines represent concatenation costs.

There seem to be two basic techniques in unit-selection syn-
thesis, even though they are theoretically not very different.
Hunt and Black presented a selection model (Hunt and Black,
1996), described in Fig. 1, which actually existed previously in
ATR ν-talk (Sagisaka et al., 1992). The basic notion is that of
a target cost, i.e., how well a candidate unit from the database
matches the required unit, and a concatenation cost, which de-
fines how well two selected units combine. The definition of
target cost between a candidate unit, ui, and a required unit, ti,
is

C(t)(ti, ui) =
p∑

j=1

w(t)
j C(t)

j (ti, ui), (1)

where j indexes over all features (phonetic and prosodic con-
texts are typically used). The concatenation cost is defined as

C(c)(ui−1, ui) =
q∑

k=1

w(c)
k C(c)

k (ui−1, ui), (2)

where k, in this case, may include spectral and acoustic fea-
tures. These two costs must then be optimized to find the string
of units, u1:n = {u1, . . . , un}, from the database that mini-
mizes the overall cost, C(t1:n, u1:n), as

û1:n = arg min
u1:n

{C(t1:n, u1:n)} , (3)

where

C(t1:n, u1:n) =
n∑

i=1

C(t)(ti, ui) +
n∑

i=2

C(c)(ui−1, ui). (4)

The second direction, described in Fig. 2, uses a cluster-
ing method that allows the target cost to effectively be pre-
calculated (Donovan and Woodland, 1995; Black and Taylor,
1997). Units of the same type are clustered into a decision tree
that asks questions about features available at the time of syn-
thesis (e.g., phonetic and prosodic contexts).

2

All segments

Target cost

Concatenation cost

Figure 1: Overview of general unit-selection scheme. Solid lines represent
target costs and dashed lines represent concatenation costs.

a level where it can stand in its own right. The quality issue
comes down to the fact that, given a parametric representation,
it is necessary to reconstruct the speech from these parameters.
The process of reconstruction is still not ideal. Although mod-
eling the spectral and prosodic features is relatively well de-
fined, models of residual/excitation have yet to be fully devel-
oped, even though composite models like STRAIGHT (Kawa-
hara et al., 1999) are proving to be useful (Irino et al., 2002;
Zen et al., 2007c).
The aim of this review is to give a general overview of tech-

niques in statistical parametric speech synthesis. Although
many research groups have contributed to progress in statisti-
cal parametric speech synthesis, the description given here is
somewhat biased toward implementation on the HMM-based
speech synthesis system (HTS)1 (Yoshimura et al., 1999; Zen
et al., 2007b) for the sake of logical coherence.
The rest of this review is organized as follows. First, a more

formal definition of unit-selection synthesis that allows easier
contrast with statistical parametric synthesis is described. Then,
the core architecture of statistical parametric speech synthesis
is more formally defined, specifically based on the implemen-
tation on HTS. The following sections discuss some of the ad-
vantages and drawbacks in a statistical parametric framework,
highlighting some possible directions to take in the future. Var-
ious refinements that are needed to achieve state-of-the-art per-
formance are also discussed. The final section discusses con-
clusions we drew with some general observations and a discus-
sion.

2. Unit-selection synthesis

The basic unit-selection premise is that we can synthesize
new naturally sounding utterances by selecting appropriate sub-
word units from a database of natural speech.

1Available for free download at the HTS website (Tokuda et al., 2008). This
includes recipes for building state-of-the-art speaker-dependent and speaker-
adaptive synthesizers using CMU ARCTIC databases (Kominek and Black,
2003), which illustrate a number of the approaches described in this review.

Target cost

Concatenation cost

Clustered
segments

Figure 2: Overview of clustering-based unit-selection scheme. Solid lines rep-
resent target costs and dashed lines represent concatenation costs.

There seem to be two basic techniques in unit-selection syn-
thesis, even though they are theoretically not very different.
Hunt and Black presented a selection model (Hunt and Black,
1996), described in Fig. 1, which actually existed previously in
ATR ν-talk (Sagisaka et al., 1992). The basic notion is that of
a target cost, i.e., how well a candidate unit from the database
matches the required unit, and a concatenation cost, which de-
fines how well two selected units combine. The definition of
target cost between a candidate unit, ui, and a required unit, ti,
is

C(t)(ti, ui) =
p∑

j=1

w(t)
j C(t)

j (ti, ui), (1)

where j indexes over all features (phonetic and prosodic con-
texts are typically used). The concatenation cost is defined as

C(c)(ui−1, ui) =
q∑

k=1

w(c)
k C(c)

k (ui−1, ui), (2)

where k, in this case, may include spectral and acoustic fea-
tures. These two costs must then be optimized to find the string
of units, u1:n = {u1, . . . , un}, from the database that mini-
mizes the overall cost, C(t1:n, u1:n), as

û1:n = arg min
u1:n

{C(t1:n, u1:n)} , (3)

where

C(t1:n, u1:n) =
n∑

i=1

C(t)(ti, ui) +
n∑

i=2

C(c)(ui−1, ui). (4)

The second direction, described in Fig. 2, uses a cluster-
ing method that allows the target cost to effectively be pre-
calculated (Donovan and Woodland, 1995; Black and Taylor,
1997). Units of the same type are clustered into a decision tree
that asks questions about features available at the time of syn-
thesis (e.g., phonetic and prosodic contexts).

2

All segments

Target cost

Concatenation cost

Figure 1: Overview of general unit-selection scheme. Solid lines represent
target costs and dashed lines represent concatenation costs.

a level where it can stand in its own right. The quality issue
comes down to the fact that, given a parametric representation,
it is necessary to reconstruct the speech from these parameters.
The process of reconstruction is still not ideal. Although mod-
eling the spectral and prosodic features is relatively well de-
fined, models of residual/excitation have yet to be fully devel-
oped, even though composite models like STRAIGHT (Kawa-
hara et al., 1999) are proving to be useful (Irino et al., 2002;
Zen et al., 2007c).
The aim of this review is to give a general overview of tech-

niques in statistical parametric speech synthesis. Although
many research groups have contributed to progress in statisti-
cal parametric speech synthesis, the description given here is
somewhat biased toward implementation on the HMM-based
speech synthesis system (HTS)1 (Yoshimura et al., 1999; Zen
et al., 2007b) for the sake of logical coherence.
The rest of this review is organized as follows. First, a more

formal definition of unit-selection synthesis that allows easier
contrast with statistical parametric synthesis is described. Then,
the core architecture of statistical parametric speech synthesis
is more formally defined, specifically based on the implemen-
tation on HTS. The following sections discuss some of the ad-
vantages and drawbacks in a statistical parametric framework,
highlighting some possible directions to take in the future. Var-
ious refinements that are needed to achieve state-of-the-art per-
formance are also discussed. The final section discusses con-
clusions we drew with some general observations and a discus-
sion.

2. Unit-selection synthesis

The basic unit-selection premise is that we can synthesize
new naturally sounding utterances by selecting appropriate sub-
word units from a database of natural speech.

1Available for free download at the HTS website (Tokuda et al., 2008). This
includes recipes for building state-of-the-art speaker-dependent and speaker-
adaptive synthesizers using CMU ARCTIC databases (Kominek and Black,
2003), which illustrate a number of the approaches described in this review.

Target cost

Concatenation cost

Clustered
segments

Figure 2: Overview of clustering-based unit-selection scheme. Solid lines rep-
resent target costs and dashed lines represent concatenation costs.

There seem to be two basic techniques in unit-selection syn-
thesis, even though they are theoretically not very different.
Hunt and Black presented a selection model (Hunt and Black,
1996), described in Fig. 1, which actually existed previously in
ATR ν-talk (Sagisaka et al., 1992). The basic notion is that of
a target cost, i.e., how well a candidate unit from the database
matches the required unit, and a concatenation cost, which de-
fines how well two selected units combine. The definition of
target cost between a candidate unit, ui, and a required unit, ti,
is

C(t)(ti, ui) =
p∑

j=1

w(t)
j C(t)

j (ti, ui), (1)

where j indexes over all features (phonetic and prosodic con-
texts are typically used). The concatenation cost is defined as

C(c)(ui−1, ui) =
q∑

k=1

w(c)
k C(c)

k (ui−1, ui), (2)

where k, in this case, may include spectral and acoustic fea-
tures. These two costs must then be optimized to find the string
of units, u1:n = {u1, . . . , un}, from the database that mini-
mizes the overall cost, C(t1:n, u1:n), as

û1:n = arg min
u1:n

{C(t1:n, u1:n)} , (3)

where

C(t1:n, u1:n) =
n∑

i=1

C(t)(ti, ui) +
n∑

i=2

C(c)(ui−1, ui). (4)

The second direction, described in Fig. 2, uses a cluster-
ing method that allows the target cost to effectively be pre-
calculated (Donovan and Woodland, 1995; Black and Taylor,
1997). Units of the same type are clustered into a decision tree
that asks questions about features available at the time of syn-
thesis (e.g., phonetic and prosodic contexts).

2

All segments

Target cost

Concatenation cost

Figure 1: Overview of general unit-selection scheme. Solid lines represent
target costs and dashed lines represent concatenation costs.

a level where it can stand in its own right. The quality issue
comes down to the fact that, given a parametric representation,
it is necessary to reconstruct the speech from these parameters.
The process of reconstruction is still not ideal. Although mod-
eling the spectral and prosodic features is relatively well de-
fined, models of residual/excitation have yet to be fully devel-
oped, even though composite models like STRAIGHT (Kawa-
hara et al., 1999) are proving to be useful (Irino et al., 2002;
Zen et al., 2007c).
The aim of this review is to give a general overview of tech-

niques in statistical parametric speech synthesis. Although
many research groups have contributed to progress in statisti-
cal parametric speech synthesis, the description given here is
somewhat biased toward implementation on the HMM-based
speech synthesis system (HTS)1 (Yoshimura et al., 1999; Zen
et al., 2007b) for the sake of logical coherence.
The rest of this review is organized as follows. First, a more

formal definition of unit-selection synthesis that allows easier
contrast with statistical parametric synthesis is described. Then,
the core architecture of statistical parametric speech synthesis
is more formally defined, specifically based on the implemen-
tation on HTS. The following sections discuss some of the ad-
vantages and drawbacks in a statistical parametric framework,
highlighting some possible directions to take in the future. Var-
ious refinements that are needed to achieve state-of-the-art per-
formance are also discussed. The final section discusses con-
clusions we drew with some general observations and a discus-
sion.

2. Unit-selection synthesis

The basic unit-selection premise is that we can synthesize
new naturally sounding utterances by selecting appropriate sub-
word units from a database of natural speech.

1Available for free download at the HTS website (Tokuda et al., 2008). This
includes recipes for building state-of-the-art speaker-dependent and speaker-
adaptive synthesizers using CMU ARCTIC databases (Kominek and Black,
2003), which illustrate a number of the approaches described in this review.

Target cost

Concatenation cost

Clustered
segments

Figure 2: Overview of clustering-based unit-selection scheme. Solid lines rep-
resent target costs and dashed lines represent concatenation costs.

There seem to be two basic techniques in unit-selection syn-
thesis, even though they are theoretically not very different.
Hunt and Black presented a selection model (Hunt and Black,
1996), described in Fig. 1, which actually existed previously in
ATR ν-talk (Sagisaka et al., 1992). The basic notion is that of
a target cost, i.e., how well a candidate unit from the database
matches the required unit, and a concatenation cost, which de-
fines how well two selected units combine. The definition of
target cost between a candidate unit, ui, and a required unit, ti,
is

C(t)(ti, ui) =
p∑

j=1

w(t)
j C(t)

j (ti, ui), (1)

where j indexes over all features (phonetic and prosodic con-
texts are typically used). The concatenation cost is defined as

C(c)(ui−1, ui) =
q∑

k=1

w(c)
k C(c)

k (ui−1, ui), (2)

where k, in this case, may include spectral and acoustic fea-
tures. These two costs must then be optimized to find the string
of units, u1:n = {u1, . . . , un}, from the database that mini-
mizes the overall cost, C(t1:n, u1:n), as

û1:n = arg min
u1:n

{C(t1:n, u1:n)} , (3)

where

C(t1:n, u1:n) =
n∑

i=1

C(t)(ti, ui) +
n∑

i=2

C(c)(ui−1, ui). (4)

The second direction, described in Fig. 2, uses a cluster-
ing method that allows the target cost to effectively be pre-
calculated (Donovan and Woodland, 1995; Black and Taylor,
1997). Units of the same type are clustered into a decision tree
that asks questions about features available at the time of syn-
thesis (e.g., phonetic and prosodic contexts).

2

All segments

Target cost

Concatenation cost

Figure 1: Overview of general unit-selection scheme. Solid lines represent
target costs and dashed lines represent concatenation costs.

a level where it can stand in its own right. The quality issue
comes down to the fact that, given a parametric representation,
it is necessary to reconstruct the speech from these parameters.
The process of reconstruction is still not ideal. Although mod-
eling the spectral and prosodic features is relatively well de-
fined, models of residual/excitation have yet to be fully devel-
oped, even though composite models like STRAIGHT (Kawa-
hara et al., 1999) are proving to be useful (Irino et al., 2002;
Zen et al., 2007c).
The aim of this review is to give a general overview of tech-

niques in statistical parametric speech synthesis. Although
many research groups have contributed to progress in statisti-
cal parametric speech synthesis, the description given here is
somewhat biased toward implementation on the HMM-based
speech synthesis system (HTS)1 (Yoshimura et al., 1999; Zen
et al., 2007b) for the sake of logical coherence.
The rest of this review is organized as follows. First, a more

formal definition of unit-selection synthesis that allows easier
contrast with statistical parametric synthesis is described. Then,
the core architecture of statistical parametric speech synthesis
is more formally defined, specifically based on the implemen-
tation on HTS. The following sections discuss some of the ad-
vantages and drawbacks in a statistical parametric framework,
highlighting some possible directions to take in the future. Var-
ious refinements that are needed to achieve state-of-the-art per-
formance are also discussed. The final section discusses con-
clusions we drew with some general observations and a discus-
sion.

2. Unit-selection synthesis

The basic unit-selection premise is that we can synthesize
new naturally sounding utterances by selecting appropriate sub-
word units from a database of natural speech.

1Available for free download at the HTS website (Tokuda et al., 2008). This
includes recipes for building state-of-the-art speaker-dependent and speaker-
adaptive synthesizers using CMU ARCTIC databases (Kominek and Black,
2003), which illustrate a number of the approaches described in this review.

Target cost

Concatenation cost

Clustered
segments

Figure 2: Overview of clustering-based unit-selection scheme. Solid lines rep-
resent target costs and dashed lines represent concatenation costs.

There seem to be two basic techniques in unit-selection syn-
thesis, even though they are theoretically not very different.
Hunt and Black presented a selection model (Hunt and Black,
1996), described in Fig. 1, which actually existed previously in
ATR ν-talk (Sagisaka et al., 1992). The basic notion is that of
a target cost, i.e., how well a candidate unit from the database
matches the required unit, and a concatenation cost, which de-
fines how well two selected units combine. The definition of
target cost between a candidate unit, ui, and a required unit, ti,
is

C(t)(ti, ui) =
p∑

j=1

w(t)
j C(t)

j (ti, ui), (1)

where j indexes over all features (phonetic and prosodic con-
texts are typically used). The concatenation cost is defined as

C(c)(ui−1, ui) =
q∑

k=1

w(c)
k C(c)

k (ui−1, ui), (2)

where k, in this case, may include spectral and acoustic fea-
tures. These two costs must then be optimized to find the string
of units, u1:n = {u1, . . . , un}, from the database that mini-
mizes the overall cost, C(t1:n, u1:n), as

û1:n = arg min
u1:n

{C(t1:n, u1:n)} , (3)

where

C(t1:n, u1:n) =
n∑

i=1

C(t)(ti, ui) +
n∑

i=2

C(c)(ui−1, ui). (4)

The second direction, described in Fig. 2, uses a cluster-
ing method that allows the target cost to effectively be pre-
calculated (Donovan and Woodland, 1995; Black and Taylor,
1997). Units of the same type are clustered into a decision tree
that asks questions about features available at the time of syn-
thesis (e.g., phonetic and prosodic contexts).

2

Unit selection synthesis

• Target cost is  
pre-calculated
using a clustering
method

Statistical Parametric Speech Synthesis

Parametric Speech Synthesis Framework

• Training
• Estimate acoustic model given speech utterances (O), word sequences (W)*

�̂ = argmax
�

p(O|W,�)

Speech 
Analysis

Text 
Analysis

Train 
Model

Parameter 
Generation

Speech 
Synthesis

Text 
Analysis

speech

text

O

W �̂

* Here W could refer to any textual features relevant to the input text

Parametric Speech Synthesis Framework

• Training
• Estimate acoustic model given speech utterances (O), word sequences (W)

�̂

• Synthesis
• Find the most probable ô from and a given word sequence to be synthesised, w

• Synthesize speech from ô

ô = argmax
o

p(o|w, �̂)

�̂ = argmax
�

p(O|W,�)
HMMs!

Speech 
Analysis

Text 
Analysis

Train 
Model

Parameter 
Generation

Speech 
Synthesis

Text 
Analysis

speech

text

O

W

ô

�̂

HMM-based speech synthesis

There has been, and will continue to be, a substantial amount
of work on looking at what features should be used, and how
to weigh them. Getting the algorithms, measures, and weights
right will be the key to obtaining consistently high-quality syn-
thesis. These cost functions are formed from a variety of heuris-
tic or ad hoc quality measures based on the features of the
acoustic signal and given texts. Target- and concatenation-cost
functions based on statistical models have recently been pro-
posed (Mizutani et al., 2002; Allauzen et al., 2004; Sakai and
Shu, 2005; Ling and Wang, 2006). Weights (w(t)

j and w(c)
k)

have to be found for each feature, and actual implementations
use a combination of trained and manually tuned weights. All
these techniques depend on an acoustic distance measure that
should be correlated with human perception.
Work on unit-selection synthesis has investigated the opti-

mal size of units to be selected. The longer the unit, the larger
the database must generally be to cover the required domain.
Experiments with different-sized units tend to demonstrate that
small units can be better as they offer more potential joining
points (Kishore and Black, 2003). However, continuity can
also be affected with more joining points. Various publications
have discussed the superiority of different-sized units, i.e., from
frame-sized (Hirai and Tenpaku, 2004; Ling and Wang, 2006),
HMM state-sized (Donovan and Woodland, 1995; Huang et al.,
1996), half-phones (Beutnagel et al., 1999), diphones (Black
and Taylor, 1997), to much larger and even non-uniform units
(Taylor and Black, 1999; Segi et al., 2004).2
In all, there are many parameters to choose from by varying

the size of the units, varying the size of the databases, and lim-
iting the synthesis domain. Black highlighted these different
directions in constructing the best unit-selection synthesizer for
the targeted application (Black, 2002).
The mantra of “more data” may seem like an easy direction

to follow, but with databases growing to tens of hours of data,
time-dependent voice-quality variations have become a serious
issue (Stylianou, 1999; Kawai and Tsuzaki, 2002; Shi et al.,
2002). Also, very large databases require substantial comput-
ing resources that limit unit-selection techniques in embedded
devices or where multiple voices and multiple languages are
required.
These apparent issues specific to unit-selection synthesis are

mentioned here because they have specific counterparts in sta-
tistical parametric synthesis.

3. Statistical parametric synthesis

3.1. Core architecture of typical system
In direct contrast to this selection of actual instances of

speech from a database, statistical parametric speech synthe-
sis might be most simply described as generating the average
of some sets of similarly sounding speech segments. This con-
trasts directly with the need in unit-selection synthesis to retain

2Note that a zero-cost join results from maintaining connectivity of units
drawn from a unit-selection database and that implicitly yields a non-uniform
unit-selection synthesizer.

Training of HMM

context-dependent HMMs
& duration models

Training part

Synthesis part

Labels

Spectral
parameters

Excitation
parameters

Parameter generation
from HMM

TEXT

Labels

Text analysis

SYNTHESIZED
SPEECH

Excitation
generation

Synthesis
filter

Spectral
parameters

Excitation
parameters

Speech signal

Spectral
parameter
extraction

Excitation
parameter
extraction

SPEECH
DATABASE

Figure 3: Block-diagram of HMM-based speech synthesis system (HTS).

natural unmodified speech units, but using parametric models
offers other benefits.
In a typical statistical parametric speech synthesis system,

we first extract parametric representations of speech includ-
ing spectral and excitation parameters from a speech database
and then model them by using a set of generative models (e.g.,
HMMs). A maximum likelihood (ML) criterion is usually used
to estimate the model parameters as

λ̂ = arg max
λ

{p(O | W, λ)} , (5)

where λ is a set of model parameters, O is a set of training
data, andW is a set of word sequences corresponding toO. We
then generate speech parameters, o, for a given word sequence
to be synthesized, w, from the set of estimated models, λ̂, to
maximize their output probabilities as

ô = arg max
o

{
p(o | w, λ̂)

}
. (6)

Finally, a speech waveform is reconstructed from the paramet-
ric representations of speech. Although any generative model
can be used, HMMs have been widely used. Statistical para-
metric speech synthesis with HMMs is particularly well known
as HMM-based speech synthesis (Yoshimura et al., 1999).
Figure 3 is a block diagram of the HMM-based speech syn-

thesis system. It consists of parts for training and synthesis.
The training part performs the maximum likelihood estimation
of Eq. (5) by using the EM algorithm (Dempster et al., 1977).
This process is very similar to that for speech recognition, the
main difference being that both spectrum (e.g., mel-cepstral co-
efficients (Fukada et al., 1992) and their dynamic features) and
excitation (e.g., log F0 and its dynamic features) parameters are
extracted from a database of natural speech and modeled by
a set of multi-stream (Young et al., 2006) context-dependent
HMMs. Another difference is that linguistic and prosodic con-
texts are taken into account in addition to phonetic ones. For
example, the contexts used in the HTS English recipes (Tokuda
et al., 2008) are

3

Speech parameter generation

Generate the most probable observation vectors given the HMM and w:

q̂ = argmax
q

p(q|w, �̂)

ô = argmax
o

p(o|q̂, �̂)

Determine the best state sequence and outputs sequentially:

Let’s explore this first

ô = argmax
o

p(o|w, �̂)

= argmax
o

X

8q
p(o, q|w, �̂)

⇡ argmax
o

max
q

p(o, q|w, �̂)

= argmax
o

max
q

p(o|q, �̂)p(q|w, �̂)
<latexit sha1_base64="lHhErvouZMX+5sUo7itrc2XQw/E=">AAACw3icdVFdixMxFM2MH7vWj6366EuwKBWWMrMK64tQFMHHFezuQlOGO2mmDU0maXJHt8zOn/RNf42ZbhHbrhdCDueec29yb26V9Jgkv6L4zt179w8OH3QePnr85Kj79Nm5N5XjYsSNMu4yBy+ULMUIJSpxaZ0AnStxkS8+tfmL78J5acpvuLJiomFWykJywEBl3d9sDlibhr7+QBm4GdNwlRlq++b6x/E6x1SoNoXmDWWss61ivtJZzQrjQCm6bFrb8fJ2IwNrnbnasrfX8v8mutvur/56uaO2/f0KWbeXDJJ10H2QbkCPbOIs6/5kU8MrLUrkCrwfp4nFSQ0OJVei6bDKCwt8ATMxDrAELfykXu+goa8CM6VhFOGUSNfsv44atPcrnQelBpz73VxL3pYbV1i8n9SytBWKkt80KipF0dB2oXQqneCoVgEAdzK8lfI5OOAY1t4JQ0h3v7wPzk8G6dvBydd3veHHzTgOyQvykvRJSk7JkHwhZ2REeDSMishENv4cL2IX4400jjae52Qr4uYPIL/afw==</latexit>

Determining state outputs
ô = argmax

o
p(o|q̂, �̂)

= argmax
o

N (o;µq̂,⌃q̂)

synthesis framework, Eq. (6) can be approximated as6

ô = arg max
o

{
p(o | w, λ̂)

}
(8)

= arg max
o

{
∑

q

p(o, q | w, λ̂)

}
(9)

≈ arg max
o

max
q

{
p(o, q | w, λ̂)

}
(10)

= arg max
o

max
q

{
P (q | w, λ̂) · p(o | q, λ̂)

}
(11)

≈ arg max
o

{
p(o | q̂, λ̂)

}
(12)

= arg max
o

{N (o ; µq̂,Σq̂)} , (13)

where o =
[
o⊤

1 , . . . ,o⊤
T

]⊤ is a state-output vector sequence
to be generated, q = {q1, . . . , qT } is a state sequence, and
µq =

[
µ⊤

q1
, . . . ,µ⊤

qT

]⊤ is the mean vector for q. Here,
Σq = diag [Σq1 , . . . ,ΣqT] is the covariance matrix for q and
T is the total number of frames in o. The state sequence, q̂, is
determined to maximize its state-duration probability as

q̂ = arg max
q

{
P (q | w, λ̂)

}
. (14)

Unfortunately, ô will be piece-wise stationary where the time
segment corresponding to each state simply adopts the mean
vector of the state. This would clearly be a poor fit to real
speech where the variations in speech parameters are much
smoother. To generate a realistic speech-parameter trajectory,
the speech parameter generation algorithm introduces relation-
ships between the static and dynamic features as constraints for
the maximization problem. If the state-output vector, ot, con-
sists of the M -dimensional static feature, ct, and its first-order
dynamic (delta) feature,∆ct, as

ot =
[
c⊤t , ∆c⊤t

]⊤
, (15)

and the dynamic feature is calculated as7

∆ct = ct − ct−1, (16)

the relationship between ot and ct can be arranged in matrix
form as

o W c⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
ct−1

∆ct−1

ct

∆ct

ct+1

∆ct+1

...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · ·
...

...
...

... · · ·
· · · 0 I 0 0 · · ·
· · · −I I 0 0 · · ·
· · · 0 0 I 0 · · ·
· · · 0 −I I 0 · · ·
· · · 0 0 0 I · · ·
· · · 0 0 −I I · · ·

· · ·
...

...
...

... · · ·

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
ct−2

ct−1

ct

ct+1

...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

6The Case 2 and 3 algorithms in (Tokuda et al., 2000) respectively maximize
Eqs. (10) and (8) under constraints between static and dynamic features.

7In the HTS English recipes (Tokuda et al., 2008), second-order (delta-delta)
dynamic features are also used. The dynamic features are calculated as∆ct =
0.5(ct+1 − ct−1) and∆2ct = ct−1 − 2ct + ct+1.

S
ta

tic
D

e
lta

Gaussian

Sentence
HMM

Merged
states

Clustered
states

ML trajectory

Figure 5: Overview of HMM-based speech synthesis scheme.

where c =
[
c⊤1 , . . . , c⊤T

]⊤ is a static feature-vector sequence
andW is a matrix that appends dynamic features to c. Here, I
and 0 correspond to the identity and zero matrices. As you can
see, the state-output vectors are thus a linear transform of the
static features. Therefore, maximizingN (o ; µq̂,Σq̂)with re-
spect to o is equivalent to that with respect to c:

ĉ = arg max
c

{N (Wc ; µq̂,Σq̂)} . (18)

By equating ∂ logN (Wc ; µq̂,Σq̂) /∂c to 0, we can obtain a
set of linear equations to determine ĉ as

W⊤Σ−1
q̂ Wĉ = W⊤Σ−1

q̂ µq̂. (19)

Because W⊤Σ−1
q̂ W has a positive-definite band-symmetric

structure, we can solve it very efficiently. The trajectory of
ĉ will no longer be piece-wise stationary since associated dy-
namic features also contribute to the likelihood and must there-
fore be consistent with HMM parameters. Figure 5 illustrates
the effect of dynamic feature constraints. As we can see, the
trajectory of ĉ becomes smooth rather than piece-wise.

3.2. Advantages
Most of the advantages of statistical parametric synthesis

against unit-selection synthesis are related to its flexibility due
to the statistical modeling process. The following describes de-
tails of these advantages.

3.2.1. Transforming voice characteristics, speaking styles, and
emotions

The main advantage of statistical parametric synthesis is its
flexibility in changing its voice characteristics, speaking styles,

5

What would look like? ô

Best state outputs
w/o dynamic features

Variance Mean

ô becomes step-wise mean vector sequence

Heiga Zen Statistical Parametric Speech Synthesis June 9th, 2014 27 of 79

Adding dynamic features to state outputs

State output vectors contain both static (ct) and dynamic (Δct)
features

synthesis framework, Eq. (6) can be approximated as6

ô = arg max
o

{
p(o | w, λ̂)

}
(8)

= arg max
o

{
∑

q

p(o, q | w, λ̂)

}
(9)

≈ arg max
o

max
q

{
p(o, q | w, λ̂)

}
(10)

= arg max
o

max
q

{
P (q | w, λ̂) · p(o | q, λ̂)

}
(11)

≈ arg max
o

{
p(o | q̂, λ̂)

}
(12)

= arg max
o

{N (o ; µq̂,Σq̂)} , (13)

where o =
[
o⊤

1 , . . . ,o⊤
T

]⊤ is a state-output vector sequence
to be generated, q = {q1, . . . , qT } is a state sequence, and
µq =

[
µ⊤

q1
, . . . ,µ⊤

qT

]⊤ is the mean vector for q. Here,
Σq = diag [Σq1 , . . . ,ΣqT] is the covariance matrix for q and
T is the total number of frames in o. The state sequence, q̂, is
determined to maximize its state-duration probability as

q̂ = arg max
q

{
P (q | w, λ̂)

}
. (14)

Unfortunately, ô will be piece-wise stationary where the time
segment corresponding to each state simply adopts the mean
vector of the state. This would clearly be a poor fit to real
speech where the variations in speech parameters are much
smoother. To generate a realistic speech-parameter trajectory,
the speech parameter generation algorithm introduces relation-
ships between the static and dynamic features as constraints for
the maximization problem. If the state-output vector, ot, con-
sists of the M -dimensional static feature, ct, and its first-order
dynamic (delta) feature,∆ct, as

ot =
[
c⊤t , ∆c⊤t

]⊤
, (15)

and the dynamic feature is calculated as7

∆ct = ct − ct−1, (16)

the relationship between ot and ct can be arranged in matrix
form as

o W c⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
ct−1

∆ct−1

ct

∆ct

ct+1

∆ct+1

...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · ·
...

...
...

... · · ·
· · · 0 I 0 0 · · ·
· · · −I I 0 0 · · ·
· · · 0 0 I 0 · · ·
· · · 0 −I I 0 · · ·
· · · 0 0 0 I · · ·
· · · 0 0 −I I · · ·

· · ·
...

...
...

... · · ·

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
ct−2

ct−1

ct

ct+1

...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

6The Case 2 and 3 algorithms in (Tokuda et al., 2000) respectively maximize
Eqs. (10) and (8) under constraints between static and dynamic features.

7In the HTS English recipes (Tokuda et al., 2008), second-order (delta-delta)
dynamic features are also used. The dynamic features are calculated as∆ct =
0.5(ct+1 − ct−1) and∆2ct = ct−1 − 2ct + ct+1.

S
ta

tic
D

e
lta

Gaussian

Sentence
HMM

Merged
states

Clustered
states

ML trajectory

Figure 5: Overview of HMM-based speech synthesis scheme.

where c =
[
c⊤1 , . . . , c⊤T

]⊤ is a static feature-vector sequence
andW is a matrix that appends dynamic features to c. Here, I
and 0 correspond to the identity and zero matrices. As you can
see, the state-output vectors are thus a linear transform of the
static features. Therefore, maximizingN (o ; µq̂,Σq̂)with re-
spect to o is equivalent to that with respect to c:

ĉ = arg max
c

{N (Wc ; µq̂,Σq̂)} . (18)

By equating ∂ logN (Wc ; µq̂,Σq̂) /∂c to 0, we can obtain a
set of linear equations to determine ĉ as

W⊤Σ−1
q̂ Wĉ = W⊤Σ−1

q̂ µq̂. (19)

Because W⊤Σ−1
q̂ W has a positive-definite band-symmetric

structure, we can solve it very efficiently. The trajectory of
ĉ will no longer be piece-wise stationary since associated dy-
namic features also contribute to the likelihood and must there-
fore be consistent with HMM parameters. Figure 5 illustrates
the effect of dynamic feature constraints. As we can see, the
trajectory of ĉ becomes smooth rather than piece-wise.

3.2. Advantages
Most of the advantages of statistical parametric synthesis

against unit-selection synthesis are related to its flexibility due
to the statistical modeling process. The following describes de-
tails of these advantages.

3.2.1. Transforming voice characteristics, speaking styles, and
emotions

The main advantage of statistical parametric synthesis is its
flexibility in changing its voice characteristics, speaking styles,

5

synthesis framework, Eq. (6) can be approximated as6

ô = arg max
o

{
p(o | w, λ̂)

}
(8)

= arg max
o

{
∑

q

p(o, q | w, λ̂)

}
(9)

≈ arg max
o

max
q

{
p(o, q | w, λ̂)

}
(10)

= arg max
o

max
q

{
P (q | w, λ̂) · p(o | q, λ̂)

}
(11)

≈ arg max
o

{
p(o | q̂, λ̂)

}
(12)

= arg max
o

{N (o ; µq̂,Σq̂)} , (13)

where o =
[
o⊤

1 , . . . ,o⊤
T

]⊤ is a state-output vector sequence
to be generated, q = {q1, . . . , qT } is a state sequence, and
µq =

[
µ⊤

q1
, . . . ,µ⊤

qT

]⊤ is the mean vector for q. Here,
Σq = diag [Σq1 , . . . ,ΣqT] is the covariance matrix for q and
T is the total number of frames in o. The state sequence, q̂, is
determined to maximize its state-duration probability as

q̂ = arg max
q

{
P (q | w, λ̂)

}
. (14)

Unfortunately, ô will be piece-wise stationary where the time
segment corresponding to each state simply adopts the mean
vector of the state. This would clearly be a poor fit to real
speech where the variations in speech parameters are much
smoother. To generate a realistic speech-parameter trajectory,
the speech parameter generation algorithm introduces relation-
ships between the static and dynamic features as constraints for
the maximization problem. If the state-output vector, ot, con-
sists of the M -dimensional static feature, ct, and its first-order
dynamic (delta) feature,∆ct, as

ot =
[
c⊤t , ∆c⊤t

]⊤
, (15)

and the dynamic feature is calculated as7

∆ct = ct − ct−1, (16)

the relationship between ot and ct can be arranged in matrix
form as

o W c⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
ct−1

∆ct−1

ct

∆ct

ct+1

∆ct+1

...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · ·
...

...
...

... · · ·
· · · 0 I 0 0 · · ·
· · · −I I 0 0 · · ·
· · · 0 0 I 0 · · ·
· · · 0 −I I 0 · · ·
· · · 0 0 0 I · · ·
· · · 0 0 −I I · · ·

· · ·
...

...
...

... · · ·

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
ct−2

ct−1

ct

ct+1

...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

6The Case 2 and 3 algorithms in (Tokuda et al., 2000) respectively maximize
Eqs. (10) and (8) under constraints between static and dynamic features.

7In the HTS English recipes (Tokuda et al., 2008), second-order (delta-delta)
dynamic features are also used. The dynamic features are calculated as∆ct =
0.5(ct+1 − ct−1) and∆2ct = ct−1 − 2ct + ct+1.

S
ta

tic
D

e
lta

Gaussian

Sentence
HMM

Merged
states

Clustered
states

ML trajectory

Figure 5: Overview of HMM-based speech synthesis scheme.

where c =
[
c⊤1 , . . . , c⊤T

]⊤ is a static feature-vector sequence
andW is a matrix that appends dynamic features to c. Here, I
and 0 correspond to the identity and zero matrices. As you can
see, the state-output vectors are thus a linear transform of the
static features. Therefore, maximizingN (o ; µq̂,Σq̂)with re-
spect to o is equivalent to that with respect to c:

ĉ = arg max
c

{N (Wc ; µq̂,Σq̂)} . (18)

By equating ∂ logN (Wc ; µq̂,Σq̂) /∂c to 0, we can obtain a
set of linear equations to determine ĉ as

W⊤Σ−1
q̂ Wĉ = W⊤Σ−1

q̂ µq̂. (19)

Because W⊤Σ−1
q̂ W has a positive-definite band-symmetric

structure, we can solve it very efficiently. The trajectory of
ĉ will no longer be piece-wise stationary since associated dy-
namic features also contribute to the likelihood and must there-
fore be consistent with HMM parameters. Figure 5 illustrates
the effect of dynamic feature constraints. As we can see, the
trajectory of ĉ becomes smooth rather than piece-wise.

3.2. Advantages
Most of the advantages of statistical parametric synthesis

against unit-selection synthesis are related to its flexibility due
to the statistical modeling process. The following describes de-
tails of these advantages.

3.2.1. Transforming voice characteristics, speaking styles, and
emotions

The main advantage of statistical parametric synthesis is its
flexibility in changing its voice characteristics, speaking styles,

5

where

o and c arranged in matrix form

synthesis framework, Eq. (6) can be approximated as6

ô = arg max
o

{
p(o | w, λ̂)

}
(8)

= arg max
o

{
∑

q

p(o, q | w, λ̂)

}
(9)

≈ arg max
o

max
q

{
p(o, q | w, λ̂)

}
(10)

= arg max
o

max
q

{
P (q | w, λ̂) · p(o | q, λ̂)

}
(11)

≈ arg max
o

{
p(o | q̂, λ̂)

}
(12)

= arg max
o

{N (o ; µq̂,Σq̂)} , (13)

where o =
[
o⊤

1 , . . . ,o⊤
T

]⊤ is a state-output vector sequence
to be generated, q = {q1, . . . , qT } is a state sequence, and
µq =

[
µ⊤

q1
, . . . ,µ⊤

qT

]⊤ is the mean vector for q. Here,
Σq = diag [Σq1 , . . . ,ΣqT] is the covariance matrix for q and
T is the total number of frames in o. The state sequence, q̂, is
determined to maximize its state-duration probability as

q̂ = arg max
q

{
P (q | w, λ̂)

}
. (14)

Unfortunately, ô will be piece-wise stationary where the time
segment corresponding to each state simply adopts the mean
vector of the state. This would clearly be a poor fit to real
speech where the variations in speech parameters are much
smoother. To generate a realistic speech-parameter trajectory,
the speech parameter generation algorithm introduces relation-
ships between the static and dynamic features as constraints for
the maximization problem. If the state-output vector, ot, con-
sists of the M -dimensional static feature, ct, and its first-order
dynamic (delta) feature,∆ct, as

ot =
[
c⊤t , ∆c⊤t

]⊤
, (15)

and the dynamic feature is calculated as7

∆ct = ct − ct−1, (16)

the relationship between ot and ct can be arranged in matrix
form as

o W c⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
ct−1

∆ct−1

ct

∆ct

ct+1

∆ct+1

...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · ·
...

...
...

... · · ·
· · · 0 I 0 0 · · ·
· · · −I I 0 0 · · ·
· · · 0 0 I 0 · · ·
· · · 0 −I I 0 · · ·
· · · 0 0 0 I · · ·
· · · 0 0 −I I · · ·

· · ·
...

...
...

... · · ·

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
ct−2

ct−1

ct

ct+1

...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

6The Case 2 and 3 algorithms in (Tokuda et al., 2000) respectively maximize
Eqs. (10) and (8) under constraints between static and dynamic features.

7In the HTS English recipes (Tokuda et al., 2008), second-order (delta-delta)
dynamic features are also used. The dynamic features are calculated as∆ct =
0.5(ct+1 − ct−1) and∆2ct = ct−1 − 2ct + ct+1.

S
ta

ti
c

D
e
lt
a

Gaussian

Sentence
HMM

Merged
states

Clustered
states

ML trajectory

Figure 5: Overview of HMM-based speech synthesis scheme.

where c =
[
c⊤1 , . . . , c⊤T

]⊤ is a static feature-vector sequence
andW is a matrix that appends dynamic features to c. Here, I
and 0 correspond to the identity and zero matrices. As you can
see, the state-output vectors are thus a linear transform of the
static features. Therefore, maximizingN (o ; µq̂,Σq̂)with re-
spect to o is equivalent to that with respect to c:

ĉ = arg max
c

{N (Wc ; µq̂,Σq̂)} . (18)

By equating ∂ logN (Wc ; µq̂,Σq̂) /∂c to 0, we can obtain a
set of linear equations to determine ĉ as

W⊤Σ−1
q̂ Wĉ = W⊤Σ−1

q̂ µq̂. (19)

Because W⊤Σ−1
q̂ W has a positive-definite band-symmetric

structure, we can solve it very efficiently. The trajectory of
ĉ will no longer be piece-wise stationary since associated dy-
namic features also contribute to the likelihood and must there-
fore be consistent with HMM parameters. Figure 5 illustrates
the effect of dynamic feature constraints. As we can see, the
trajectory of ĉ becomes smooth rather than piece-wise.

3.2. Advantages
Most of the advantages of statistical parametric synthesis

against unit-selection synthesis are related to its flexibility due
to the statistical modeling process. The following describes de-
tails of these advantages.

3.2.1. Transforming voice characteristics, speaking styles, and
emotions

The main advantage of statistical parametric synthesis is its
flexibility in changing its voice characteristics, speaking styles,

5

Speech parameter generation

• Introducing dynamic feature constraints:

• If the output distributions are single Gaussians:

• Then, by setting we get:

ô = argmax
o

p(o|q̂, �̂) where o = Wc

p(o|q̂, �̂) = N (o;µq̂,⌃q̂)

@ logN (o;µq̂,⌃q̂)/@c = 0

WT⌃�1
q̂ Wc = WT⌃�1

q̂ µq̂

Synthesis overviewsynthesis framework, Eq. (6) can be approximated as6

ô = arg max
o

{
p(o | w, λ̂)

}
(8)

= arg max
o

{
∑

q

p(o, q | w, λ̂)

}
(9)

≈ arg max
o

max
q

{
p(o, q | w, λ̂)

}
(10)

= arg max
o

max
q

{
P (q | w, λ̂) · p(o | q, λ̂)

}
(11)

≈ arg max
o

{
p(o | q̂, λ̂)

}
(12)

= arg max
o

{N (o ; µq̂,Σq̂)} , (13)

where o =
[
o⊤

1 , . . . ,o⊤
T

]⊤ is a state-output vector sequence
to be generated, q = {q1, . . . , qT } is a state sequence, and
µq =

[
µ⊤

q1
, . . . ,µ⊤

qT

]⊤ is the mean vector for q. Here,
Σq = diag [Σq1 , . . . ,ΣqT] is the covariance matrix for q and
T is the total number of frames in o. The state sequence, q̂, is
determined to maximize its state-duration probability as

q̂ = arg max
q

{
P (q | w, λ̂)

}
. (14)

Unfortunately, ô will be piece-wise stationary where the time
segment corresponding to each state simply adopts the mean
vector of the state. This would clearly be a poor fit to real
speech where the variations in speech parameters are much
smoother. To generate a realistic speech-parameter trajectory,
the speech parameter generation algorithm introduces relation-
ships between the static and dynamic features as constraints for
the maximization problem. If the state-output vector, ot, con-
sists of the M -dimensional static feature, ct, and its first-order
dynamic (delta) feature,∆ct, as

ot =
[
c⊤t , ∆c⊤t

]⊤
, (15)

and the dynamic feature is calculated as7

∆ct = ct − ct−1, (16)

the relationship between ot and ct can be arranged in matrix
form as

o W c⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
ct−1

∆ct−1

ct

∆ct

ct+1

∆ct+1

...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · ·
...

...
...

... · · ·
· · · 0 I 0 0 · · ·
· · · −I I 0 0 · · ·
· · · 0 0 I 0 · · ·
· · · 0 −I I 0 · · ·
· · · 0 0 0 I · · ·
· · · 0 0 −I I · · ·

· · ·
...

...
...

... · · ·

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
ct−2

ct−1

ct

ct+1

...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

6The Case 2 and 3 algorithms in (Tokuda et al., 2000) respectively maximize
Eqs. (10) and (8) under constraints between static and dynamic features.

7In the HTS English recipes (Tokuda et al., 2008), second-order (delta-delta)
dynamic features are also used. The dynamic features are calculated as∆ct =
0.5(ct+1 − ct−1) and∆2ct = ct−1 − 2ct + ct+1.

S
ta

tic
D

e
lt
a

Gaussian

Sentence
HMM

Merged
states

Clustered
states

ML trajectory

Figure 5: Overview of HMM-based speech synthesis scheme.

where c =
[
c⊤1 , . . . , c⊤T

]⊤ is a static feature-vector sequence
andW is a matrix that appends dynamic features to c. Here, I
and 0 correspond to the identity and zero matrices. As you can
see, the state-output vectors are thus a linear transform of the
static features. Therefore, maximizingN (o ; µq̂,Σq̂)with re-
spect to o is equivalent to that with respect to c:

ĉ = arg max
c

{N (Wc ; µq̂,Σq̂)} . (18)

By equating ∂ logN (Wc ; µq̂,Σq̂) /∂c to 0, we can obtain a
set of linear equations to determine ĉ as

W⊤Σ−1
q̂ Wĉ = W⊤Σ−1

q̂ µq̂. (19)

Because W⊤Σ−1
q̂ W has a positive-definite band-symmetric

structure, we can solve it very efficiently. The trajectory of
ĉ will no longer be piece-wise stationary since associated dy-
namic features also contribute to the likelihood and must there-
fore be consistent with HMM parameters. Figure 5 illustrates
the effect of dynamic feature constraints. As we can see, the
trajectory of ĉ becomes smooth rather than piece-wise.

3.2. Advantages
Most of the advantages of statistical parametric synthesis

against unit-selection synthesis are related to its flexibility due
to the statistical modeling process. The following describes de-
tails of these advantages.

3.2.1. Transforming voice characteristics, speaking styles, and
emotions

The main advantage of statistical parametric synthesis is its
flexibility in changing its voice characteristics, speaking styles,

5

Speech parameter generation

Generate the most probable observation vectors given the HMM and w:

q̂ = argmax
q

p(q|w, �̂)

ô = argmax
o

p(o|q̂, �̂)

Determine the best state sequence and outputs sequentially:

Let’s explore this next

ô = argmax
o

p(o|w, �̂)

= argmax
o

X

8q
p(o, q|w, �̂)

⇡ argmax
o

max
q

p(o, q|w, �̂)

= argmax
o

max
q

p(o|q, �̂)P (q|w, �̂)

Duration modelingZEN et al.: HIDDEN SEMI-MARKOV MODEL BASED SPEECH SYNTHESIS SYSTEM
3

Training of HMM

context-dependent HMMs

& duration models

Training part

Synthesis part

Label

Spectral

parameters

Excitation

parameters

Parameter generation

from HMM

TEXT

Label

Text analysis

SYNTHESIZED

SPEECH

Excitation

generation

Synthesis

filter

Spectral

parameters

Excitation

parameters

Speech signal

Spectral

parameter

extraction

Excitation

parameter

extraction

SPEECH

DATABASE

Fig. 2 An overview of a typical HMM-based speech synthesis system.

�T+1(i) =

8>><
>>:
1 i = N
0 otherwise

, (5)

�T (i) = aiN�T+1(N) (1 i N) , (6)
�t(i) = P (ot+1, . . . , oT | qt = i, �) (7)

=

NX

j=1
ai jb j(ot+1)�t+1(j)

t = T � 1, . . . , 1
1 i N

!
,

(8)

where qt = j denotes that being the j-th state at time t, a11 =
, . . . ,= aN1 = 0, aN2 =, . . . ,= aNN = 0, and we assume that
b1 (·) = bN (·) = 1. From Eqs. (4) and (8), P (o | �) is given
by

P (o | �) =
NX

i=1
P (o, qt = i | �) (9)

=

NX

i=1
↵t(i) · �t(i) (1 t T) . (10)

Generally, computational complexity of the above recur-
sions is on the order of O(N2T). However, if a simple left-
to-right structure illustrated in Fig 1 (b) is assumed, it re-
duces to O(NT).

3.2 Duration handling in HMM-based speech synthesis
system

Figure 2 illustrates an overview of a typical HMM-based
speech synthesis system [7]. It consists of training and syn-
thesis parts. In the training part, spectrum (e.g., mel-cepstral
coefficients and their dynamic features) and excitation (e.g.,
log F0, and its dynamic features) parameters are extracted
from a speech database and modeled by context-dependent
HMMs. Although sequences of mel-cepstral coefficients
can be modeled by continuous HMMs, sequences of log F0
cannot be modeled using continuous or discrete HMMs
without heuristic assumptions since each log F0 observation

 0.0

 0.1

 0.2

 0.3

 0.4

 1 2 3 4 5 6 7 8 9 10

State duration d (frame)

pk(d) = ad−1
kk (1 − akk)

akk = 0.6()

S
ta

te
 d

u
ra

ti
o
n
 p

ro
b
a
b
il
it
y

p
k
(d

)

Fig. 3 An example of state duration probability of an HMM (akk = 0.6).

can be viewed as consisting of a one-dimensional continu-
ous log F0 value (voiced regions) or a discrete symbol repre-
senting unvoiced (unvoiced regions). To model such kind of
observation sequences, HMMs based on multi-space proba-
bility distributions (MSD-HMMs) have been proposed [30].
An MSD-HMM includes both the discrete and continuous
HMMs as its special cases and it is possible to model the
sequences of log F0 without any heuristic assumptions.

In the synthesis part, first an arbitrarily given text to
be synthesized is converted to a context-dependent label se-
quence and then a sentence HMM � is constructed by con-
catenating the context-dependent HMMs according to the
label sequence. Secondly, state durations of the HMM � are
determined according to their probabilities

log P (d | �) =
NX

j=1
log p j(d j), (11)

where d = {d1, d2, . . . , dN} is a set of state durations, d j is the
state duration at the j-th state, N is the number of states in
the sentence HMM �, and p j(·) denotes the probability mass
function of the state duration at the j-th state. However, one
of the major limitations of the HMM is that it does not pro-
vide an adequate representation of the temporal structure of
human speech. This is because that in the HMM probability
mass functions of state durations are implicitly modeled by
state self-transition probabilities. It means that the probabil-
ity of d consecutive observations in the j-th state is given by
the probability of taking self-loop at the i-th state for d times
as

p j (d) = ad�1j j ·
⇣
1 � a j j

⌘
. (12)

The above equation show that probability mass functions
of state durations become geometric distribution. Figure 3
plots an example of a state duration probability of an HMM.
It can be seen from the figure that state duration probability
decreases exponentially with time. Accordingly, the state
durations so as to maximize Eq. (11) are determined as

• How are durations
modelled within an
HMM?

• Implicitly modelled by state
self-transition probabilities

• PMFs of state durations are
geometric distributions

pk(d) = ad�1
kk · (1� akk)

ZEN et al.: HIDDEN SEMI-MARKOV MODEL BASED SPEECH SYNTHESIS SYSTEM
3

Training of HMM

context-dependent HMMs

& duration models

Training part

Synthesis part

Label

Spectral

parameters

Excitation

parameters

Parameter generation

from HMM

TEXT

Label

Text analysis

SYNTHESIZED

SPEECH

Excitation

generation

Synthesis

filter

Spectral

parameters

Excitation

parameters

Speech signal

Spectral

parameter

extraction

Excitation

parameter

extraction

SPEECH

DATABASE

Fig. 2 An overview of a typical HMM-based speech synthesis system.

�T+1(i) =

8>><
>>:
1 i = N
0 otherwise

, (5)

�T (i) = aiN�T+1(N) (1 i N) , (6)
�t(i) = P (ot+1, . . . , oT | qt = i, �) (7)

=

NX

j=1
ai jb j(ot+1)�t+1(j)

t = T � 1, . . . , 1
1 i N

!
,

(8)

where qt = j denotes that being the j-th state at time t, a11 =
, . . . ,= aN1 = 0, aN2 =, . . . ,= aNN = 0, and we assume that
b1 (·) = bN (·) = 1. From Eqs. (4) and (8), P (o | �) is given
by

P (o | �) =
NX

i=1
P (o, qt = i | �) (9)

=

NX

i=1
↵t(i) · �t(i) (1 t T) . (10)

Generally, computational complexity of the above recur-
sions is on the order of O(N2T). However, if a simple left-
to-right structure illustrated in Fig 1 (b) is assumed, it re-
duces to O(NT).

3.2 Duration handling in HMM-based speech synthesis
system

Figure 2 illustrates an overview of a typical HMM-based
speech synthesis system [7]. It consists of training and syn-
thesis parts. In the training part, spectrum (e.g., mel-cepstral
coefficients and their dynamic features) and excitation (e.g.,
log F0, and its dynamic features) parameters are extracted
from a speech database and modeled by context-dependent
HMMs. Although sequences of mel-cepstral coefficients
can be modeled by continuous HMMs, sequences of log F0
cannot be modeled using continuous or discrete HMMs
without heuristic assumptions since each log F0 observation

 0.0

 0.1

 0.2

 0.3

 0.4

 1 2 3 4 5 6 7 8 9 10

State duration d (frame)

pk(d) = ad−1
kk (1 − akk)

akk = 0.6()

S
ta

te
 d

u
ra

ti
o

n
 p

ro
b

a
b

il
it
y

p
k
(d

)

Fig. 3 An example of state duration probability of an HMM (akk = 0.6).

can be viewed as consisting of a one-dimensional continu-
ous log F0 value (voiced regions) or a discrete symbol repre-
senting unvoiced (unvoiced regions). To model such kind of
observation sequences, HMMs based on multi-space proba-
bility distributions (MSD-HMMs) have been proposed [30].
An MSD-HMM includes both the discrete and continuous
HMMs as its special cases and it is possible to model the
sequences of log F0 without any heuristic assumptions.

In the synthesis part, first an arbitrarily given text to
be synthesized is converted to a context-dependent label se-
quence and then a sentence HMM � is constructed by con-
catenating the context-dependent HMMs according to the
label sequence. Secondly, state durations of the HMM � are
determined according to their probabilities

log P (d | �) =
NX

j=1
log p j(d j), (11)

where d = {d1, d2, . . . , dN} is a set of state durations, d j is the
state duration at the j-th state, N is the number of states in
the sentence HMM �, and p j(·) denotes the probability mass
function of the state duration at the j-th state. However, one
of the major limitations of the HMM is that it does not pro-
vide an adequate representation of the temporal structure of
human speech. This is because that in the HMM probability
mass functions of state durations are implicitly modeled by
state self-transition probabilities. It means that the probabil-
ity of d consecutive observations in the j-th state is given by
the probability of taking self-loop at the i-th state for d times
as

p j (d) = ad�1j j ·
⇣
1 � a j j

⌘
. (12)

The above equation show that probability mass functions
of state durations become geometric distribution. Figure 3
plots an example of a state duration probability of an HMM.
It can be seen from the figure that state duration probability
decreases exponentially with time. Accordingly, the state
durations so as to maximize Eq. (11) are determined as

• State durations are determined by maximising:

• What would this solution look like if the PMFs of state durations are
geometric distributions?

Explicit modeling of state durations
• Each state duration is explicitly modelled as a single

Gaussian. The mean and variance of duration
density of state i:

reestimated with the embedded training. Simultaneously, state
durations are calculated on the trellis which is obtained in the
embedded training stage, and modeled by Gaussian distributions.
Finally, context dependent duration models are clustered by using
the decision-tree based context clustering technique.

In the synthesis part, an arbitrarily given text to be synthesized
is converted to a context-based label sequence. Then a sentence
HMM is constructed by concatenating context dependent HMMs
according to the label sequence. State durations of the sentence
HMM are determined from the total length of speech T and the
state duration densities. According to the obtained state durations,
a sequence of mel-cepstral coefficients is generated from the sen-
tence HMM by using a speech parameter generation algorithm
[11], [12]. Finally, speech is synthesized from the generated mel-
cepstral coefficients by the MLSA (Mel Log Spectrum Approxi-
mation) filter [9],[13].

3. STATE DURATIONMODELING
In the HMM-based speech synthesis system described above, state
duration densities were modeled by single Gaussian distributions
estimated from histograms of state durations which were obtained
by the Viterbi segmentation of training data. In this procedure,
however, it is impossible to obtain variances of distributions for
phonemes which appear only once in the training data.

In this paper, to overcome this problem, Gaussian distributions of
state durations are calculated on the trellis which is made in the
embedded training stage. State durations of each phoneme HMM
are regarded as a multi-dimensional observation, and the set of
state durations of each phoneme HMM is modeled by a multi-
dimensional Gaussian distribution. Dimension of state duration
densities is equal to number of state of HMMs, and nth dimen-
sion of state duration densities is corresponding to nth state of
HMMs1.

In the following sections, we describe training and clustering of
state duration models, and determination of state duration in the
synthesis part.

3.1. Training of State Duration Models
There have been proposed techniques for training HMMs and
their state duration densities simultaneously, however, these tech-
niques is inefficient because it requires huge storage and compu-
tational load. From this point of view, we adopt another technique
for training state duration models.

State duration densities are estimated on the trellis which is ob-
tained in the embedded training stage. The mean ξ(i) and the
variance σ2(i) of duration density of state i are determined by

ξ(i) =

T
∑

t0=1

T
∑

t1=t0

χt0,t1(i)(t1 − t0 + 1)

T
∑

t0=1

T
∑

t1=t0

χt0,t1(i)

, (1)

σ2(i) =

T
∑

t0=1

T
∑

t1=t0

χt0,t1(i)(t1 − t0 + 1)2

T
∑

t0=1

T
∑

t1=t0

χt0,t1(i)

− ξ2(i), (2)

1We assume the left-to-right model with no skip.

respectively, where χt0,t1(i) is the probability of occupying state
i from time t0 to t1 and can be written as

χt0,t1(i) = (1 − γt0−1(i)) ·
t1
∏

t=t0

γt(i) · (1 − γt1+1(i)), (3)

where γt(i) is the occupation probability of state i at time t, and
we define γ−1(i) = γT+1(i) = 0.

3.2. Decision-Tree Based Context Clustering
There are many combinations of contextual factors which affect
duration such as phone identity factors, stress-related factors and
locational factors. When we construct the state duration models
taking account of many combinations of contextual factors, we
expect to be able to obtain duration models which can predict nat-
ural timing accurately. However, as contextual factors increase,
their combinations also increase exponentially. Therefore, model
parameters with sufficient accuracy can not be estimated with lim-
ited training data. Furthermore, it is impossible to prepare speech
database which includes all combinations of contextual factors;
unseen contexts can not be prepared.

To overcome this problem, duration models are clustered using
a decision-tree based context clustering technique. The decision
tree is a binary tree, and in its each node, a question which splits
contexts into two groups is prepared. All contexts can be found by
traversing the tree, starting from the root node then selecting the
next node depending upon the answer to a question about the cur-
rent context. Therefore, if once the decision tree is constructed,
unseen contexts can be prepared.

Our duration modeling technique using the decision tree is similar
to the technique using CART [2]. Though the technique using
CART can predict duration accurately, it can not control speaking
rate easily because a discrete value is assigned to a leaf of the
tree. In our approach, it is possible to control the speaking rate
by assigning a multi-dimensional Gaussian distribution to a leaf
of the tree.

3.3. Determination of State Duration
For a given speech length T , the goal is to obtain a state sequence
q = {q1, q2, · · · , qT } which maximize

log P (q|λ, T) =

K
∑

k=1

log pk(dk) (4)

under the constraint

T =

K
∑

k=1

dk, (5)

where pk(dk) is the probability of duration dk in state k, and K
is the number of states in HMM λ.

Since each duration density pk(dk) is modeled by a single Gaus-
sian distribution, state durations {dk}K

k=1 which maximize (4) are
given by

dk = ξ(k) + ρ · σ2(k) (6)

ρ =

(

T −
K
∑

k=1

ξ(k)

)/

K
∑

k=1

σ2(k) , (7)

where ξ(k) and σ2(k) are the mean and variance of the duration
density of state k, respectively.

reestimated with the embedded training. Simultaneously, state
durations are calculated on the trellis which is obtained in the
embedded training stage, and modeled by Gaussian distributions.
Finally, context dependent duration models are clustered by using
the decision-tree based context clustering technique.

In the synthesis part, an arbitrarily given text to be synthesized
is converted to a context-based label sequence. Then a sentence
HMM is constructed by concatenating context dependent HMMs
according to the label sequence. State durations of the sentence
HMM are determined from the total length of speech T and the
state duration densities. According to the obtained state durations,
a sequence of mel-cepstral coefficients is generated from the sen-
tence HMM by using a speech parameter generation algorithm
[11], [12]. Finally, speech is synthesized from the generated mel-
cepstral coefficients by the MLSA (Mel Log Spectrum Approxi-
mation) filter [9],[13].

3. STATE DURATIONMODELING
In the HMM-based speech synthesis system described above, state
duration densities were modeled by single Gaussian distributions
estimated from histograms of state durations which were obtained
by the Viterbi segmentation of training data. In this procedure,
however, it is impossible to obtain variances of distributions for
phonemes which appear only once in the training data.

In this paper, to overcome this problem, Gaussian distributions of
state durations are calculated on the trellis which is made in the
embedded training stage. State durations of each phoneme HMM
are regarded as a multi-dimensional observation, and the set of
state durations of each phoneme HMM is modeled by a multi-
dimensional Gaussian distribution. Dimension of state duration
densities is equal to number of state of HMMs, and nth dimen-
sion of state duration densities is corresponding to nth state of
HMMs1.

In the following sections, we describe training and clustering of
state duration models, and determination of state duration in the
synthesis part.

3.1. Training of State Duration Models
There have been proposed techniques for training HMMs and
their state duration densities simultaneously, however, these tech-
niques is inefficient because it requires huge storage and compu-
tational load. From this point of view, we adopt another technique
for training state duration models.

State duration densities are estimated on the trellis which is ob-
tained in the embedded training stage. The mean ξ(i) and the
variance σ2(i) of duration density of state i are determined by

ξ(i) =

T
∑

t0=1

T
∑

t1=t0

χt0,t1(i)(t1 − t0 + 1)

T
∑

t0=1

T
∑

t1=t0

χt0,t1(i)

, (1)

σ2(i) =

T
∑

t0=1

T
∑

t1=t0

χt0,t1(i)(t1 − t0 + 1)2

T
∑

t0=1

T
∑

t1=t0

χt0,t1(i)

− ξ2(i), (2)

1We assume the left-to-right model with no skip.

respectively, where χt0,t1(i) is the probability of occupying state
i from time t0 to t1 and can be written as

χt0,t1(i) = (1 − γt0−1(i)) ·
t1
∏

t=t0

γt(i) · (1 − γt1+1(i)), (3)

where γt(i) is the occupation probability of state i at time t, and
we define γ−1(i) = γT+1(i) = 0.

3.2. Decision-Tree Based Context Clustering
There are many combinations of contextual factors which affect
duration such as phone identity factors, stress-related factors and
locational factors. When we construct the state duration models
taking account of many combinations of contextual factors, we
expect to be able to obtain duration models which can predict nat-
ural timing accurately. However, as contextual factors increase,
their combinations also increase exponentially. Therefore, model
parameters with sufficient accuracy can not be estimated with lim-
ited training data. Furthermore, it is impossible to prepare speech
database which includes all combinations of contextual factors;
unseen contexts can not be prepared.

To overcome this problem, duration models are clustered using
a decision-tree based context clustering technique. The decision
tree is a binary tree, and in its each node, a question which splits
contexts into two groups is prepared. All contexts can be found by
traversing the tree, starting from the root node then selecting the
next node depending upon the answer to a question about the cur-
rent context. Therefore, if once the decision tree is constructed,
unseen contexts can be prepared.

Our duration modeling technique using the decision tree is similar
to the technique using CART [2]. Though the technique using
CART can predict duration accurately, it can not control speaking
rate easily because a discrete value is assigned to a leaf of the
tree. In our approach, it is possible to control the speaking rate
by assigning a multi-dimensional Gaussian distribution to a leaf
of the tree.

3.3. Determination of State Duration
For a given speech length T , the goal is to obtain a state sequence
q = {q1, q2, · · · , qT } which maximize

log P (q|λ, T) =

K
∑

k=1

log pk(dk) (4)

under the constraint

T =

K
∑

k=1

dk, (5)

where pk(dk) is the probability of duration dk in state k, and K
is the number of states in HMM λ.

Since each duration density pk(dk) is modeled by a single Gaus-
sian distribution, state durations {dk}K

k=1 which maximize (4) are
given by

dk = ξ(k) + ρ · σ2(k) (6)

ρ =

(

T −
K
∑

k=1

ξ(k)

)/

K
∑

k=1

σ2(k) , (7)

where ξ(k) and σ2(k) are the mean and variance of the duration
density of state k, respectively.

⇠(i) �2(i)

where

and γt(i) is the probability of being in state i at time t

Determining state durations

During synthesis, for a given speech length T, the goal is to
maximize:

logP (d|�, T) =
KX

k=1

log pk(dk)

under the constraint that T =
KX

k=1

dk

We saw that each duration density can be modelled as a single  
Gaussian

pk(dk)

N (·; ⇠k,�2
k)

State durations, , which maximise (1) are given by:dk, k = 1 . . .K

reestimated with the embedded training. Simultaneously, state
durations are calculated on the trellis which is obtained in the
embedded training stage, and modeled by Gaussian distributions.
Finally, context dependent duration models are clustered by using
the decision-tree based context clustering technique.

In the synthesis part, an arbitrarily given text to be synthesized
is converted to a context-based label sequence. Then a sentence
HMM is constructed by concatenating context dependent HMMs
according to the label sequence. State durations of the sentence
HMM are determined from the total length of speech T and the
state duration densities. According to the obtained state durations,
a sequence of mel-cepstral coefficients is generated from the sen-
tence HMM by using a speech parameter generation algorithm
[11], [12]. Finally, speech is synthesized from the generated mel-
cepstral coefficients by the MLSA (Mel Log Spectrum Approxi-
mation) filter [9],[13].

3. STATE DURATIONMODELING
In the HMM-based speech synthesis system described above, state
duration densities were modeled by single Gaussian distributions
estimated from histograms of state durations which were obtained
by the Viterbi segmentation of training data. In this procedure,
however, it is impossible to obtain variances of distributions for
phonemes which appear only once in the training data.

In this paper, to overcome this problem, Gaussian distributions of
state durations are calculated on the trellis which is made in the
embedded training stage. State durations of each phoneme HMM
are regarded as a multi-dimensional observation, and the set of
state durations of each phoneme HMM is modeled by a multi-
dimensional Gaussian distribution. Dimension of state duration
densities is equal to number of state of HMMs, and nth dimen-
sion of state duration densities is corresponding to nth state of
HMMs1.

In the following sections, we describe training and clustering of
state duration models, and determination of state duration in the
synthesis part.

3.1. Training of State Duration Models
There have been proposed techniques for training HMMs and
their state duration densities simultaneously, however, these tech-
niques is inefficient because it requires huge storage and compu-
tational load. From this point of view, we adopt another technique
for training state duration models.

State duration densities are estimated on the trellis which is ob-
tained in the embedded training stage. The mean ξ(i) and the
variance σ2(i) of duration density of state i are determined by

ξ(i) =

T
∑

t0=1

T
∑

t1=t0

χt0,t1(i)(t1 − t0 + 1)

T
∑

t0=1

T
∑

t1=t0

χt0,t1(i)

, (1)

σ2(i) =

T
∑

t0=1

T
∑

t1=t0

χt0,t1(i)(t1 − t0 + 1)2

T
∑

t0=1

T
∑

t1=t0

χt0,t1(i)

− ξ2(i), (2)

1We assume the left-to-right model with no skip.

respectively, where χt0,t1(i) is the probability of occupying state
i from time t0 to t1 and can be written as

χt0,t1(i) = (1 − γt0−1(i)) ·
t1
∏

t=t0

γt(i) · (1 − γt1+1(i)), (3)

where γt(i) is the occupation probability of state i at time t, and
we define γ−1(i) = γT+1(i) = 0.

3.2. Decision-Tree Based Context Clustering
There are many combinations of contextual factors which affect
duration such as phone identity factors, stress-related factors and
locational factors. When we construct the state duration models
taking account of many combinations of contextual factors, we
expect to be able to obtain duration models which can predict nat-
ural timing accurately. However, as contextual factors increase,
their combinations also increase exponentially. Therefore, model
parameters with sufficient accuracy can not be estimated with lim-
ited training data. Furthermore, it is impossible to prepare speech
database which includes all combinations of contextual factors;
unseen contexts can not be prepared.

To overcome this problem, duration models are clustered using
a decision-tree based context clustering technique. The decision
tree is a binary tree, and in its each node, a question which splits
contexts into two groups is prepared. All contexts can be found by
traversing the tree, starting from the root node then selecting the
next node depending upon the answer to a question about the cur-
rent context. Therefore, if once the decision tree is constructed,
unseen contexts can be prepared.

Our duration modeling technique using the decision tree is similar
to the technique using CART [2]. Though the technique using
CART can predict duration accurately, it can not control speaking
rate easily because a discrete value is assigned to a leaf of the
tree. In our approach, it is possible to control the speaking rate
by assigning a multi-dimensional Gaussian distribution to a leaf
of the tree.

3.3. Determination of State Duration
For a given speech length T , the goal is to obtain a state sequence
q = {q1, q2, · · · , qT } which maximize

log P (q|λ, T) =

K
∑

k=1

log pk(dk) (4)

under the constraint

T =

K
∑

k=1

dk, (5)

where pk(dk) is the probability of duration dk in state k, and K
is the number of states in HMM λ.

Since each duration density pk(dk) is modeled by a single Gaus-
sian distribution, state durations {dk}K

k=1 which maximize (4) are
given by

dk = ξ(k) + ρ · σ2(k) (6)

ρ =

(

T −
K
∑

k=1

ξ(k)

)/

K
∑

k=1

σ2(k) , (7)

where ξ(k) and σ2(k) are the mean and variance of the duration
density of state k, respectively.

Speaking 
rate

… (1)

Synthesis using duration models

DURATION MODELING FOR HMM-BASED SPEECH SYNTHESIS

Takayoshi Yoshimura†, Keiichi Tokuda†, Takashi Masuko††, Takao Kobayashi††and Tadashi Kitamura†

†Department of Computer Science
Nagoya Institute of Technology, Nagoya, 466-8555 JAPAN

††Interdisciplinary Graduate School of Science and Engineering
Tokyo Institute of Technology, Yokohama, 226-8502 JAPAN

ABSTRACT

This paper proposes a new approach to state duration modeling
for HMM-based speech synthesis. A set of state durations of each
phoneme HMM is modeled by a multi-dimensional Gaussian dis-
tribution, and duration models are clustered using a decision tree
based context clustering technique. In the synthesis stage, state
durations are determined by using the state duration models. In
this paper, we take account of contextual factors such as stress-
related factors and locational factors in addition to phone identity
factors. Experimental results show that we can synthesize good
quality speech with natural timing, and the speaking rate can be
varied easily.

1. INTRODUCTION
For any text-to-speech synthesis system, controlling timing of the
events in the speech signal is one of the difficult problems since
there are many contextual factors (e.g., phone identity factors,
stress-related factors, locational factors) that affect timing. Fur-
thermore some factors affecting duration interact with one an-
other. Recently, there have been proposed some approaches to
controlling timing using statistical models such as linear regres-
sion [1], tree regression [2], MSR [3] which extends both linear
and tree regressions, and sums-of-products model [4]. By using
these techniques, rhythm and tempo of speech were successfully
controlled with a small amount of free parameters.

On the other hand, we have proposed an HMM-based speech
synthesis system in which the sequence of spectra is modeled
by phoneme HMMs [5]. This synthesis system can synthesize
speech with various voice characteristics by using a speaker adap-
tation technique [6], [7] or a speaker interpolation technique [8].

In this paper, we propose a new approach to controlling rhythm
and tempo for the HMM-based speech synthesis system. In this
approach, rhythm and tempo are controlled by state duration den-
sities. State durations of each phoneme HMM is modeled by
a multi-dimensional Gaussian distribution. Duration models are
clustered using a decision tree based context clustering technique
[10]. In the synthesis stage, state durations which maximize the
state duration probability are determined from the state duration
models and the total length of speech.

Since state durations are modeled by continuous distributions, our
approach has the following advantages:

• The speaking rate of synthetic speech can be varied easily.
• There is no need for label boundaries when appropriate ini-
tial models are available since the state duration densities
are estimated in the embedded training stage of phoneme
HMMs.

TEXT

SYNTHETIC SPEECH

MLSA Filter Pitch

T or ρ

Context Dependent
Duration Models

Context Dependent
HMMs

Synthesis

d d

c c c ccccMel-Cepstrum

State Duration

HMM
Sentence

Densities
State Duration

T

1 2

1 2 3 4 5 6

Figure 1: Speech synthesis system.

• Speaker individuality of synthetic speech can be varied by
applying a speaker adaptation technique or a speaker inter-
polation technique to the HMMs and their state duration
models.

In the following, we summarize the HMM-based speech synthesis
system, and describe the technique for state duration modeling in
Sections 2 and 3, respectively. Experimental results and discus-
sions are also given in Section 4.

2. HMM-BASED SPEECH SYNTHESIS
SYSTEM

The synthesis part of the HMM-based text-to-speech synthesis
system is shown in Fig. 1.

HMMs and their duration models are context dependent models,
where contextual factors which affect both spectra and state dura-
tions are taken into account.

In the training part, first, mel-cepstral coefficients are obtained
from speech database using a mel-cepstral analysis technique [9],
and delta coefficients are also calculated. Context dependent HMMs
are trained using obtained coefficients. Using a decision-tree based
context clustering technique [10], states of the context dependent
HMMs are clustered, and the tied context dependent HMMs are

Image from Yoshimura et al., “Duration modelling for HMM-based speech synthesis”, ICSLP ‘98

HMM-based speech synthesis [4]

Training part

Synthesis part

Training HMMs

Context-dependent HMMs
& state duration models

Labels

Spectral
parameters

Excitation
parameters

TEXT

Labels

SYNTHESIZED
SPEECH

Speech signal

Excitation

Parameter generation
from HMMs

Excitation
generation

Synthesis
Filter

Text analysis

Spectral
parameter
extraction

SPEECH
DATABASE Excitation

parameter
extraction

Spectral
parameters

Excitation
parameters

Heiga Zen Statistical Parametric Speech Synthesis June 9th, 2014 8 of 79

Recap: HMM-based speech synthesis

DNN-based speech synthesis
2. DEEP NEURAL NETWORK

Here the depth of architecture refers to the number of levels of com-
position of non-linear operations in the function learned. It is known
that most conventional learning algorithms correspond to shallow ar-
chitectures (! 3 levels) [20]. For example, both the decision tree and
neural network with 1 hidden layer can be seen as having 2 levels.1
Boosting [25], tree intersections [19, 26, 27], or product of decision
tree-clustered experts [28] add one level to the base learner (i.e. 3
levels). A DNN, which is a neural network with multiple hidden
layers, is a typical implementation of a deep architecture. We can
have a deep architecture by adding multiple hidden layers to a neu-
ral network (adding one layer results in having one more level).

The properties of the DNN are contrasted with those of the de-
cision tree as follows;

" Decision trees are inefficient to express complicated functions
of input features, such as XOR, d -bit parity function, or mul-
tiplex problems [18]. To represent such cases, decision trees
will be prohibitively large. On the other hand, they can be
compactly represented by DNNs [20].

" Decision trees rely on a partition of the input space and using
a separate set of parameters for each region associated with a
terminal node. This results in reduction of the amount of the
data per region and poor generalization. Yu et al. showed that
“weak” input features such as word-level emphasis in reading
speech were thrown away while building decision trees [29].
DNNs provide better generalization as weights are trained
from all training data. They also offer incorporation of high-
dimensional, disparate features as inputs.

" Training a DNN by back-propagation usually requires a much
larger amount of computation than building decision trees. At
the prediction stage, DNNs require a matrix multiplication at
each layer but decision trees just need traversing trees from
their root to terminal nodes using a subset of input features.

" The decision trees induction can produce interpretable rules
while weights in a DNN are harder to interpret.

3. DNN-BASED SPEECH SYNTHESIS

Inspired by the human speech production system which is believed
to have layered hierarchical structures in transforming the informa-
tion from the linguistic level to the waveform level [30], this paper
applies a deep architecture to solve the speech synthesis problem.

Figure 1 illustrates a speech synthesis framework based on a
DNN. A given text to be synthesized is first converted to a sequence
of input features fxt

ng, where xt
n denotes the n-th input feature at

frame t . The input features include binary answers to questions
about linguistic contexts (e.g. is-current-phoneme-aa?) and numeric
values (e.g. the number of words in the phrase, the relative position
of the current frame in the current phoneme, and durations of the
current phoneme).

Then the input features are mapped to output features fyt
mg by

a trained DNN using forward propagation, where yt
m denotes the

m-th output feature at frame t . The output features include spec-
tral and excitation parameters and their time derivatives (dynamic
features) [31]. The weights of the DNN can be trained using pairs
of input and output features extracted from training data. In the

1 Partition of an input feature space by a decision tree can be represented
by a composition of OR and AND operation layers.

Input layer Output layerHidden layers

TEXT

SPEECH
Parameter
generation

...

...

...

Waveform
synthesis

In
p
u
t
fe

a
tu

re
s

in
c
lu

d
in

g
b
in

a
ry

 &
 n

u
m

e
ri
c

fe
a
tu

re
s
 a

t
fr

a
m

e
 1

In
p
u
t
fe

a
tu

re
s

in
cl

u
d
in

g
b
in

a
ry

 &
 n

u
m

e
ri
c

fe
a
tu

re
s

a
t
fr

a
m

e
 T

Text
analysis

Input feature
extraction

...

S
ta

tis
tics

 (m
e
a
n
 &

 v
a
r) o

f sp
e
e
ch

 p
a
ra

m
e
te

r ve
cto

r se
q
u
e
n
ce

x1

1

x1

2

x1

3

x1

4

xT

1

xT

2

xT

3

xT

4

h1

11

h1

12

h1

13

h1

14

hT

11

hT

12

hT

13

hT

14

y1

1

y1

2

y1

3

yT

1

yT

2

yT

3

h1

31

h1

32

h1

33

h1

34

hT

31

hT

32

hT

33

hT

34

...

h1

21

h1

22

h1

23

h1

24

hT

21

hT

22

hT

23

hT

24

Fig. 1. A speech synthesis framework based on a DNN.

same fashion as the HMM-based approach, it is possible to gener-
ate speech parameters; By setting the predicted output features from
the DNN as mean vectors and pre-computed variances of output fea-
tures from all training data as covariance matrices, the speech pa-
rameter generation algorithm [32] can generate smooth trajectories
of speech parameter features which satistify both the statistics of
static and dynamic features. Finally, a waveform synthesis module
outputs a synthesized waveform given the speech parameters.

Note that the text analysis, speech parameter generation, and
waveform synthesis modules of the DNN-based system can be
shared with the HMM-based one, i.e. only the mapping module
from context-dependent labels to statistics needs to be replaced.

4. EXPERIMENTS

4.1. Experimental conditions

Speech data in US English from a female professional speaker was
used for training speaker-dependent HMM-based and DNN-based
statistical parametric speech synthesizers. The training data con-
sisted of about 33 000 utterances. The speech analysis conditions
and model topologies were similar to those used for the Nitech-HTS
2005 [33] system. The speech data was downsampled from 48 kHz
to 16 kHz sampling, then 40 Mel-cepstral coefficients [34], loga-
rithmic fundamental frequency (log F0) values, and 5-band aperi-
odicities (0–1, 1–2, 2–4, 4–6, 6–8 kHz) [33] were extracted every
5 ms. Each observation vector consisted of 40 Mel-cepstral coeffi-
cients, log F0, and 5 band aperiodicities, and their delta and delta-
delta features (3 # (40 C 1 C 5) D 138). Five-state, left-to-right,
no-skip hidden semi-Markov models (HSMMs) [35] were used. To
model log F0 sequences consisting of voiced and unvoiced observa-

Image from Zen et al., “Statistical Parametric Speech Synthesis using DNNs”, 2014

DNN-based speech synthesis
2. DEEP NEURAL NETWORK

Here the depth of architecture refers to the number of levels of com-
position of non-linear operations in the function learned. It is known
that most conventional learning algorithms correspond to shallow ar-
chitectures (! 3 levels) [20]. For example, both the decision tree and
neural network with 1 hidden layer can be seen as having 2 levels.1
Boosting [25], tree intersections [19, 26, 27], or product of decision
tree-clustered experts [28] add one level to the base learner (i.e. 3
levels). A DNN, which is a neural network with multiple hidden
layers, is a typical implementation of a deep architecture. We can
have a deep architecture by adding multiple hidden layers to a neu-
ral network (adding one layer results in having one more level).

The properties of the DNN are contrasted with those of the de-
cision tree as follows;

" Decision trees are inefficient to express complicated functions
of input features, such as XOR, d -bit parity function, or mul-
tiplex problems [18]. To represent such cases, decision trees
will be prohibitively large. On the other hand, they can be
compactly represented by DNNs [20].

" Decision trees rely on a partition of the input space and using
a separate set of parameters for each region associated with a
terminal node. This results in reduction of the amount of the
data per region and poor generalization. Yu et al. showed that
“weak” input features such as word-level emphasis in reading
speech were thrown away while building decision trees [29].
DNNs provide better generalization as weights are trained
from all training data. They also offer incorporation of high-
dimensional, disparate features as inputs.

" Training a DNN by back-propagation usually requires a much
larger amount of computation than building decision trees. At
the prediction stage, DNNs require a matrix multiplication at
each layer but decision trees just need traversing trees from
their root to terminal nodes using a subset of input features.

" The decision trees induction can produce interpretable rules
while weights in a DNN are harder to interpret.

3. DNN-BASED SPEECH SYNTHESIS

Inspired by the human speech production system which is believed
to have layered hierarchical structures in transforming the informa-
tion from the linguistic level to the waveform level [30], this paper
applies a deep architecture to solve the speech synthesis problem.

Figure 1 illustrates a speech synthesis framework based on a
DNN. A given text to be synthesized is first converted to a sequence
of input features fxt

ng, where xt
n denotes the n-th input feature at

frame t . The input features include binary answers to questions
about linguistic contexts (e.g. is-current-phoneme-aa?) and numeric
values (e.g. the number of words in the phrase, the relative position
of the current frame in the current phoneme, and durations of the
current phoneme).

Then the input features are mapped to output features fyt
mg by

a trained DNN using forward propagation, where yt
m denotes the

m-th output feature at frame t . The output features include spec-
tral and excitation parameters and their time derivatives (dynamic
features) [31]. The weights of the DNN can be trained using pairs
of input and output features extracted from training data. In the

1 Partition of an input feature space by a decision tree can be represented
by a composition of OR and AND operation layers.

Input layer Output layerHidden layers

TEXT

SPEECH
Parameter
generation

...

...

...

Waveform
synthesis

In
p

u
t

fe
a

tu
re

s
in

c
lu

d
in

g
b

in
a

ry
 &

 n
u

m
e

ri
c

fe
a

tu
re

s
a

t
fr

a
m

e
 1

In
p

u
t

fe
a

tu
re

s
 in

cl
u

d
in

g
b

in
a

ry
 &

 n
u

m
e

ri
c

fe
a

tu
re

s
 a

t
fr

a
m

e
 T

Text
analysis

Input feature
extraction

...

S
ta

tistics (m
e

a
n

 &
 va

r) o
f sp

e
e

ch
 p

a
ra

m
e

te
r ve

c
to

r s
e

q
u

e
n

ce

x1

1

x1

2

x1

3

x1

4

xT

1

xT

2

xT

3

xT

4

h1

11

h1

12

h1

13

h1

14

hT

11

hT

12

hT

13

hT

14

y1

1

y1

2

y1

3

yT

1

yT

2

yT

3

h1

31

h1

32

h1

33

h1

34

hT

31

hT

32

hT

33

hT

34

...

h1

21

h1

22

h1

23

h1

24

hT

21

hT

22

hT

23

hT

24

Fig. 1. A speech synthesis framework based on a DNN.

same fashion as the HMM-based approach, it is possible to gener-
ate speech parameters; By setting the predicted output features from
the DNN as mean vectors and pre-computed variances of output fea-
tures from all training data as covariance matrices, the speech pa-
rameter generation algorithm [32] can generate smooth trajectories
of speech parameter features which satistify both the statistics of
static and dynamic features. Finally, a waveform synthesis module
outputs a synthesized waveform given the speech parameters.

Note that the text analysis, speech parameter generation, and
waveform synthesis modules of the DNN-based system can be
shared with the HMM-based one, i.e. only the mapping module
from context-dependent labels to statistics needs to be replaced.

4. EXPERIMENTS

4.1. Experimental conditions

Speech data in US English from a female professional speaker was
used for training speaker-dependent HMM-based and DNN-based
statistical parametric speech synthesizers. The training data con-
sisted of about 33 000 utterances. The speech analysis conditions
and model topologies were similar to those used for the Nitech-HTS
2005 [33] system. The speech data was downsampled from 48 kHz
to 16 kHz sampling, then 40 Mel-cepstral coefficients [34], loga-
rithmic fundamental frequency (log F0) values, and 5-band aperi-
odicities (0–1, 1–2, 2–4, 4–6, 6–8 kHz) [33] were extracted every
5 ms. Each observation vector consisted of 40 Mel-cepstral coeffi-
cients, log F0, and 5 band aperiodicities, and their delta and delta-
delta features (3 # (40 C 1 C 5) D 138). Five-state, left-to-right,
no-skip hidden semi-Markov models (HSMMs) [35] were used. To
model log F0 sequences consisting of voiced and unvoiced observa-

Image from Zen et al., “Statistical Parametric Speech Synthesis using DNNs”, 2014

• Input features about linguistic
contexts, numeric values (# of
words, duration of the phoneme,
etc.)

• Output features are spectral and
excitation parameters and their  
delta values

 0.12

 0.13

 1e+05 1e+06 1e+07

R
M

S
E

 i
n
 l
o
g
 F

0

Total number of parameters

4.6

4.8

 5.0

5.2

5.4

 1e+05 1e+06 1e+07

M
e
l-
c
e
p
s
tr

a
l
d
is

to
rt

io
n
 (

d
B

)

Total number of parameters

DNN (1024 units / layer) DNN (2048 units / layer)DNN (512 units / layer)DNN (256 units / layer) HMM

3.2

3.4

3.6

3.8

 4.0

4.2

4.4

4.6

 1e+05 1e+06 1e+07

V
o
ic

e
d
/U

n
v
o
ic

e
d
 E

rr
o
r

R
a
te

 (
%

)

Total number of parameters

α=1

α=16

α=4

1.20

1.22

1.24

1.26

1.28

1.30

1.32

1e+05 1e+06 1e+07

A
p
e
ri
o
d
ic

it
y

d
is

to
rt

io
n
 (

d
B

)

Total number of parameters

4

1

2

3 5 4

1

2

3

5 4

1

2 3

5
4

1

2

3 5

α=0.375

Fig. 3. Band aperioditicy distortions (dB), voiced/unvoiced error rates (%), root mean squared errors (RMSEs) in log F0, and Mel-cepstral
distortions (dB) of speech parameters predicted by the HMM-based and the DNN-based systems. Note that the numbers associated with the
points on the lines plotting the DNN-based systems denote the numbers of layers.

4.3. Subjective evaluation

To compare the performance of the DNN-based systems with the
HMM-based ones, a subjective preference listening test was con-
ducted. The total number of test sentences was 173. One subject
could evaluate a maximum of 30 pairs, they were randomly chosen
from the test sentences for each subject. Each pair was evaluated by
five subjects. The subjects used headphones. After listening to each
pair of samples, the subjects were asked to choose their preferred
one, whereas they could choose “neutral” if they did not have any
preference. In this experiment, the HMM-based and DNN-based
systems with similar numbers of parameters were compared. The
DNN-based systems had four hidden layers with different number
of units per layer (256, 512, or 1 024).

Table 1. Preference scores (%) between speech samples from the
HMM and DNN-based systems. The systems which achieved sig-
nificantly better preference at p < 0.01 level are in the bold font.

HMM DNN
(˛) (#layers ! #units) Neutral p value z value

15.8 (16) 38.5 (4 ! 256) 45.7 < 10!6 -9.9
16.1 (4) 27.2 (4 ! 512) 56.8 < 10!6 -5.1
12.7 (1) 36.6 (4 ! 1 024) 50.7 < 10!6 -11.5

Table 1 shows the experimental results. It can be seen from the
table that the DNN-based systems were preferred significantly to the
HMM-based ones in all three model sizes. The subjects reported that
the DNN-based systems were less muffled. We expect that better
prediction of Mel-cepstral coefficients by the DNN-based systems

contributed to the preference.

5. CONCLUSIONS

This paper examined the use of the DNNs to perform speech synthe-
sis. The DNN-based approach has a potential to address the limita-
tions in the conventional decision tree-clustered context-dependent
HMM-based approach, such as inefficiency in expressing complex
context dependencies, fragmenting the training data, and completely
ignoring linguistic input features which did not appear in the deci-
sion trees. The objective evaluation showed that the use of a deep
architecture improved the performance of the neural network-based
system for predicting spectral and excitation parameters. Further-
more, the DNN-based systems achieved better preference over the
the HMM-based systems with a similar numbers of parameters in the
subjective listening test. These experimental results showed the po-
tential of the DNN-based approach for statistical parametric speech
synthesis.

One of the advantages of the HMM-based system over the DNN-
based one is the reduced computational cost. At synthesis time, the
HMM-based systems traverse decision trees to find statistics at each
state. On the other hand, the DNN-based system in this paper per-
forms mapping from inputs to outputs which includes a number of
arithmetic operations at each frame.9 Future work includes the re-
duction of computations in the DNN-based systems, adding more in-
put features including weak features such as emphasis, and exploring
a better log F0 modeling scheme.

9Switching to state or phoneme is also possible by changing the encoding
scheme for time information.

• Listening test results

RNN-based speech synthesis

! = ("#,⋯ , "%) , for a given input vector sequence & =('#,⋯ , '%) , iterating the following equations from (=1 to): ℎ+ = ℋ(-./'+ + -//ℎ+0# + 1/) (1) "+ = -/2ℎ+ + 12 (2)
where - is the weight matrices, e.g. -./ is the weight matrix
between input and hidden vectors; 1 is the bias vectors, e.g. 1/
is the bias vector for hidden state vectors; and ℋ is the
nonlinear activation function for hidden nodes. ℋ is usually a sigmoid or hyperbolic tangent function in
the conventional RNNs, but the gradient vanishing problem
caused by these activation function prevents RNN from
modeling the long-span relations in sequential features. Long
short term memory (LSTM) network [11], shown in Fig. 1,
which manually build a memory cell inside, can overcome the
problems in conventional RNN and can model signals that
have a mixture of low and high frequency components. For
LSTM, ℋ is implemented with the following functions [12]:

 3+ = 4(-.5'+ + -/5ℎ+0# + -657+0# + 15) (3) 8+ = 49-.:'+ + -/:ℎ+0# + -6:7+0# + 1:; (4) c+ = 8+7+0# + 3+(<=ℎ(-.6'+ + ->?ℎ+0# + 1?) (5) @+ = 4(-.A'+ + -/Aℎ+0# + -6A7+ + 1A) (6) h+ = o+(<=ℎ(c+) (7)

where 4 is the sigmoid function; 3, 8, @ and 7 are input gate,
forget gate, output gate and cell memory, respectively.

it ft ot

ct

xt xt xt xt

ht

Input gate Forget gate Output gate

Cell

Fig.1. Long Short Term Memory

Bidirectional RNN [13] as shown in Fig. 2 can access both
the preceeding and succeeding contexts. It separates the
hidden layer into two parts, forward state sequence, ℎB⃗ , and
backward state sequence, ℎ⃖B. The iterative process is:

 ℎB⃗ + = ℋ9-./BB⃗ '+ + -/BB⃗ /BB⃗ ℎB⃗ +0# + 1/BB⃗ ; (8) ℎ⃖B+ = ℋ9-./⃖BB'+ + -/⃖BB/⃖BBℎ⃖B+E# + 1/⃖BB; (9) "+ = -/BB⃗ 2ℎB⃗ + + -/⃖BB2ℎ⃖B+ + 12 (10)

Deep bidirectional RNN can be established by stacking
multiple RNN hidden layers on top of each other. Each hidden
state sequence, ℎF, is replaced by the forward and backward, ℎB⃗ F and ℎ⃖BF, and the iterative process is:

ℎB⃗ +F = ℋ9-/BB⃗ GHI/BB⃗ GℎB⃗ +F0# + -/BB⃗ G/BB⃗ GℎB⃗ +0#F + 1/BB⃗F; (11) ℎ⃖B+F = ℋ9-/⃖BBGHI/⃖BBGℎ⃖B+F0# + -/⃖BBG/⃖BBGℎ⃖B+E#F + 1/⃖BBF; (12) "+ = -/BB⃗ J2ℎB⃗ +K + -/⃖BBJ2ℎ⃖B+K + 12 (13)

Deep bidirectional LSTM (DBLSTM) is the integration of
deep bidirectional RNN and LSTM. By taking the advantages
of DNN and LSTM, it can model the deep representation of
long-span features.

Backward Layer

Forward Layer

Input

Output

Fig.2. Bidirectional RNN

3. DBLSTM-RNN based TTS Synthesis
Speech production can be seen as a process to select spoken
words, formulate their phonetics and then finally articulate
output speech with the articulators. So it is a continuous
physical dynamic process. DBLSTM-RNN can simulate
human speech production by a layered hierarchical and wide
in time scale structure to transform linguistic text information
into its final speech output. In a TTS synthesis system, where
usually a whole sentence is given as input, there is no reason
not to access long-range context in both forward and backward
directions. We propose to use DBLSTM-RNN for TTS
synthesis. The schematic diagram of DBLSTM-RNN based
TTS synthesis is shown in Fig. 3.

Text
Analysis

Input Feature
Extraction

Input features

Output Features

Vocoder Waveform

Text

Fig.3. DBLSTM-RNN based TTS synthesis

In DBLSTM-RNN based TTS synthesis, rich contexts are
also used as input features, which contain the binary features
for categorical contexts, e.g. phone labels, POS labels of the
current word, and TOBI labels, and numerical features for the
numerical contexts, e.g., the number of words in a phrase or
the position of the current frame of the current phone. The
output features are acoustic features like spectral envelope and

2. Deep Bidirectional LSTM (DBLSTM)
Recurrent Neural Network

Recurrent Neural Network (RNN) computes hidden state
vector sequence L = (ℎ#,⋯ , ℎ%) and outputs vector sequence

1965

• Access long range context
in both forward backward
directions using biLSTMs

• Inference is expensive;  
inherently have large
latency

Image from Fan et al., “TTS synthesis with BLSTM-based RNNs”, 2014

