HMMs for Acoustic Modeling
(Part I)

L ecture 2




Recall: Statistical ASR

Let O be a sequence of acoustic features corresponding to a speech signal.
Thatis, O = {O,, ..., O;}, where O, € R refers to a d-dimensional

acoustic feature vector and 1'is the length of the sequence.

Let W denote a word sequence. An ASR decoder solves the foll. problem:

W#* = arg max Pr(W | O) Language
14 Model

= arg max Pr(O | W) Pr(W)

W
Acoustic
Model




Isolated word recognition
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What are Hidden Markov Models (HMMs)?

Following slides contain figures/material from “Hidden Markov Models”,
“Speech and Language Processing”, D. Jurafsky and J. H. Martin, 2019.
(https://web.stanford.edu/~jurafsky/slp3/A.pdf)



Markov Chains

7=10.1,0.7,0.2

O=q1q92...9n a set of N states

A=ayai...a,...a, a transition probability matrix A, each a;; represent-
ing the probability of moving from state i to state j, s.t.
Z?:I dij — 1 Vi

T=7T,T,.., TN an initial probability distribution over states. 7; 1s the
probability that the Markov chain will start in state i.
Some states j may have 7; = 0, meaning that they cannot
be initial states. Also, » )\ m; = 1




HMM Assumptions

P(1 | HOT) 2 P(1 | COLD) 5
PQ|HOT)| = | 4 P |coLD)| = | .4
P(3 | HOT) 4 m=[.8,.2] P(3 | COLD) 1

Markov Assumption: P(q;|q1...qi—1) = P(qi|qi—1)
Output Independence: P(o;|q:...qi,...,qT,01,...,0;i,...,07) = P(0i|q;)



Q=4q192---9N
A:an...aij...aNN

O—=010>...0T

B

bi(Ot)

T=7T,T0,.., 7Ty

Hidden Markov Model

a set of N states

a transition probability matrix A, each a;; representing the probability
of moving from state i to state j, s.t. 21};1 a;j=1 Vi

a sequence of T observations, each one drawn from a vocabulary V =
Vi,V2,..-5 VY

a sequence of observation likelihoods, also called emission probabili-

ties, each expressing the probability of an observation o, being generated
from a state i

an initial probability distribution over states. 7; 1s the probability that
the Markov chain will start 1n state ;. Some states j may have 7; = 0,
meaning that they cannot be initial states. Also, > ;. m; =1



Three problems for HMMs

Problem 2 (Decoding): Given an observation sequence O and an HMM A =
(A, B), discover the best hidden state sequence Q.

Problem 3 (Learning): Given an observation sequence O and the set of states
in the HMM, learn the HMM parameters A and B.

Computing Likelihood: Given an HMM A = (A, B) and an observa-
tion sequence O, determine the likelihood P(O|A).

“A tutorial on hidden Markov models and selected applications in speech recognition”, Rabiner, 1989



Forward Algorithm

N
o d : : : :
OCt(]) — P(01702---0t7% — JM) O‘t(f) — Z;at—l(l)aijbj(at)
| —

0,(2)=.32 o,(2)=.32".12 +.02".1 = .0404




Visualizing the forward recursion
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Forward Algorithm

1. Initialization:

2. Recursion:
N
o (j) =) 1(i)aijbj(o); 1<j<N1<t<T
=1

3. Termination:

P(OIA) = ar(i)

=1



Three problems for HMMs

Problem 1 (Likelihood): Given an HMM A = (A,B) and an observation se-
quence O, determme the hkehhood P(O|A).

Problem 3 (Learning): Given an observation sequence O and the set of states
in the HMM, learn the HMM parameters A and B.

Decoding: Given as input an HMM A = (A, B) and a sequence of ob-
servations O = 01,02, ...,or, find the most probable sequence of states
0 =4q19293...9r.



Viterbi Trellis

. N :
vi(J) = . maqx P(q1...g1—1,01,02...01,q; = j|A) vi(J) = Ul.ﬂ_alXVt—l(l) a;j bj(or)
1oeesdr—1 o
Viterbi Path
Probability v,(2)=.32 v,(2)= max(.32*.12, .02*.10) = .038
N S ()
v,(1) = max(.32*.20;.02*:25) = .064
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Viterbi recursion

1. Initialization:

Vl(j) — ﬂjb]‘(Ol) 1< <N

bti(j) = 0 1<j<N
2. Recursion
v(j) = I%xvt_l(i)aijbj(ot); I <j<N1<t<T
bt,(j) = argmaxvi_i(i)ai;bi(0); 1<j<N,1<t<T

i=1
3. Termination:

N
max vr ()
l—

N :
argmax vy (i)

=1

The best score: Px

The start of backtrace: ¢grx



Viterbi backtrace




Gaussian Observation Model

e So far, we considered HMMs with discrete outputs
e |n acoustic models, HMMs output real valued vectors
 Hence, observation probabilities are defined using probability density functions

* A widely used model: Gaussian distribution

N(m‘M,UZ) = \/21 ~¢ 707 (@=h)”
o

« HMM emission/observation probabilities b(x) = A (x| p;, 0].2) where y; is

the mean associated with state j and 0].2 IS Its variance

» For multivariate Gaussians, b/(x) = /(X | i, 2;) where 2, is the
covariance matrix associated with state |



Gaussian Mixture Model

* A single Gaussian observation model assumes that
the observed acoustic feature vectors are unimodal



Unimodal

1.0 I I I I I I I I I I I I I I I I | I I | I I
08| /\ {=0, 02=1.0, =
1 U=0, 0°=50, == |
- U=-2, 0?=0.5, === -
—~ 06
oY b
S 04
0.2
0.0
1 | 1 1 | 1 | 1 | 1 1 | 1 1 | 1 1 | 1 1 | 1 1 | 1 1 | 1
5 -4 -3 -2 0 1 2 3 4 5




Gaussian Mixture Model

* A single Gaussian observation model assumes that
the observed acoustic feature vectors are unimodal

 More generally, we use a “mixture of Gaussians” to
model multiple modes in the data



Mixture Models




Gaussian Mixture Model

* A single Gaussian observation model assumes that
the observed acoustic feature vectors are unimodal

 More generally, we use a “mixture of Gaussians” to
model multiple modes in the data

+ Instead of b(x) = N (X|p;, ) in the single Gaussian

case, bj(X) now becomes:
M

bi(x) = ) CimN(X|pjm, Zjm)
m=1

where c;, Is the mixing probability for Gaussian component m of state ;
M

Zijzl, ijZO

m=1



