
Instructor: Preethi Jyothi

HMMs for Acoustic Modeling
(Part I)

Lecture 2

CS 753

Recall: Statistical ASR

Let � be a sequence of acoustic features corresponding to a speech signal.
That is, � , where � refers to a d-dimensional
acoustic feature vector and � is the length of the sequence.

O
O = {O1, …, OT} Oi ∈ ℝd

T

W* = arg max
W

Pr(W |O)

= arg max
W

Pr(O |W) Pr(W)

Acoustic
Model

Language
Model

Let � denote a word sequence. An ASR decoder solves the foll. problem:W

Isolated word recognitionSt-1 St St+1

Pht-1 Pht Pht+1

Trt-1 Trt

Ot-1 Ot Ot+1

1 2 3

O1 O2 O3 O4 OT....

0 4

b1() b2() b3()

a01 a12 a23 a34

a11 a22 a33

Figure 2.1: Standard topology used to represent a phone HMM.

sub-word units Q corresponding to the word sequence W and the language model

P (W) provides a prior probability for W .

Acoustic model: The most commonly used acoustic models in ASR systems to-

day are Hidden Markov Models (HMMs). Please refer to Rabiner (1989) for a com-

prehensive tutorial of HMMs and their applicability to ASR in the 1980’s (with

ideas that are largely applicable to systems today). HMMs are used to build prob-

abilistic models for linear sequence labeling problems. Since speech is represented

in the form of a sequence of acoustic vectors O, it lends itself to be naturally mod-

eled using HMMs.

The HMM is defined by specifying transition probabilities (aj

i
) and observation

(or emission) probability distributions (bj(Oi)) (along with the number of hidden

states in the HMM). An HMM makes a transition from state i to state j with a

probability of aj

i
. On reaching a state j, the observation vector at that state (Oj)

20

up
St-1 St St+1

Pht-1 Pht Pht+1

Trt-1 Trt

Ot-1 Ot Ot+1

1 2 3

O1 O2 O3 O4 OT....

0 4

b1() b2() b3()

a01 a12 a23 a34

a11 a22 a33

Figure 2.1: Standard topology used to represent a phone HMM.

sub-word units Q corresponding to the word sequence W and the language model

P (W) provides a prior probability for W .

Acoustic model: The most commonly used acoustic models in ASR systems to-

day are Hidden Markov Models (HMMs). Please refer to Rabiner (1989) for a com-

prehensive tutorial of HMMs and their applicability to ASR in the 1980’s (with

ideas that are largely applicable to systems today). HMMs are used to build prob-

abilistic models for linear sequence labeling problems. Since speech is represented

in the form of a sequence of acoustic vectors O, it lends itself to be naturally mod-

eled using HMMs.

The HMM is defined by specifying transition probabilities (aj

i
) and observation

(or emission) probability distributions (bj(Oi)) (along with the number of hidden

states in the HMM). An HMM makes a transition from state i to state j with a

probability of aj

i
. On reaching a state j, the observation vector at that state (Oj)

20

down

St-1 St St+1

Pht-1 Pht Pht+1

Trt-1 Trt

Ot-1 Ot Ot+1

1 2 3

O1 O2 O3 O4 OT....

0 4

b1() b2() b3()

a01 a12 a23 a34

a11 a22 a33

Figure 2.1: Standard topology used to represent a phone HMM.

sub-word units Q corresponding to the word sequence W and the language model

P (W) provides a prior probability for W .

Acoustic model: The most commonly used acoustic models in ASR systems to-

day are Hidden Markov Models (HMMs). Please refer to Rabiner (1989) for a com-

prehensive tutorial of HMMs and their applicability to ASR in the 1980’s (with

ideas that are largely applicable to systems today). HMMs are used to build prob-

abilistic models for linear sequence labeling problems. Since speech is represented

in the form of a sequence of acoustic vectors O, it lends itself to be naturally mod-

eled using HMMs.

The HMM is defined by specifying transition probabilities (aj

i
) and observation

(or emission) probability distributions (bj(Oi)) (along with the number of hidden

states in the HMM). An HMM makes a transition from state i to state j with a

probability of aj

i
. On reaching a state j, the observation vector at that state (Oj)

20

left
St-1 St St+1

Pht-1 Pht Pht+1

Trt-1 Trt

Ot-1 Ot Ot+1

1 2 3

O1 O2 O3 O4 OT....

0 4

b1() b2() b3()

a01 a12 a23 a34

a11 a22 a33

Figure 2.1: Standard topology used to represent a phone HMM.

sub-word units Q corresponding to the word sequence W and the language model

P (W) provides a prior probability for W .

Acoustic model: The most commonly used acoustic models in ASR systems to-

day are Hidden Markov Models (HMMs). Please refer to Rabiner (1989) for a com-

prehensive tutorial of HMMs and their applicability to ASR in the 1980’s (with

ideas that are largely applicable to systems today). HMMs are used to build prob-

abilistic models for linear sequence labeling problems. Since speech is represented

in the form of a sequence of acoustic vectors O, it lends itself to be naturally mod-

eled using HMMs.

The HMM is defined by specifying transition probabilities (aj

i
) and observation

(or emission) probability distributions (bj(Oi)) (along with the number of hidden

states in the HMM). An HMM makes a transition from state i to state j with a

probability of aj

i
. On reaching a state j, the observation vector at that state (Oj)

20

right

acoustic  
features 
O

Pr(O |"up")

Pr(O |"down")

Pr(O |"left")

Pr(O |"right")

Compute �arg max
w

Pr(O |w)

Following slides contain figures/material from “Hidden Markov Models”,  
“Speech and Language Processing”, D. Jurafsky and J. H. Martin, 2019. 
(https://web.stanford.edu/~jurafsky/slp3/A.pdf)

What are Hidden Markov Models (HMMs)?

Markov Chains

2 APPENDIX A • HIDDEN MARKOV MODELS

state must sum to 1. Figure A.1b shows a Markov chain for assigning a probabil-
ity to a sequence of words w1...wn. This Markov chain should be familiar; in fact,
it represents a bigram language model, with each edge expressing the probability
p(wi|w j)! Given the two models in Fig. A.1, we can assign a probability to any
sequence from our vocabulary.

Formally, a Markov chain is specified by the following components:
Q = q1q2 . . .qN a set of N states
A = a11a12 . . .an1 . . .ann a transition probability matrix A, each ai j represent-

ing the probability of moving from state i to state j, s.t.Pn
j=1 ai j = 1 8i

p = p1,p2, ...,pN an initial probability distribution over states. pi is the
probability that the Markov chain will start in state i.
Some states j may have p j = 0, meaning that they cannot
be initial states. Also,

Pn
i=1 pi = 1

Before you go on, use the sample probabilities in Fig. A.1a (with p = [.1, .7.,2])
to compute the probability of each of the following sequences:

(A.2) hot hot hot hot
(A.3) cold hot cold hot

What does the difference in these probabilities tell you about a real-world weather
fact encoded in Fig. A.1a?

A.2 The Hidden Markov Model

A Markov chain is useful when we need to compute a probability for a sequence
of observable events. In many cases, however, the events we are interested in are
hidden: we don’t observe them directly. For example we don’t normally observehidden
part-of-speech tags in a text. Rather, we see words, and must infer the tags from the
word sequence. We call the tags hidden because they are not observed.

A hidden Markov model (HMM) allows us to talk about both observed eventsHidden
Markov model

(like words that we see in the input) and hidden events (like part-of-speech tags) that
we think of as causal factors in our probabilistic model. An HMM is specified by
the following components:

Q = q1q2 . . .qN a set of N states
A = a11 . . .ai j . . .aNN a transition probability matrix A, each ai j representing the probability

of moving from state i to state j, s.t.
PN

j=1 ai j = 1 8i
O = o1o2 . . .oT a sequence of T observations, each one drawn from a vocabulary V =

v1,v2, ...,vV

B = bi(ot) a sequence of observation likelihoods, also called emission probabili-
ties, each expressing the probability of an observation ot being generated
from a state i

p = p1,p2, ...,pN an initial probability distribution over states. pi is the probability that
the Markov chain will start in state i. Some states j may have p j = 0,
meaning that they cannot be initial states. Also,

Pn
i=1 pi = 1

Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright c� 2018. All

rights reserved. Draft of September 11, 2018.

CHAPTER

A Hidden Markov Models

Chapter 8 introduced the Hidden Markov Model and applied it to part of speech
tagging. Part of speech tagging is a fully-supervised learning task, because we have
a corpus of words labeled with the correct part-of-speech tag. But many applications
don’t have labeled data. So in this chapter, we introduce the full set of algorithms for
HMMs, including the key unsupervised learning algorithm for HMM, the Forward-
Backward algorithm. We’ll repeat some of the text from Chapter 8 for readers who
want the whole story laid out in a single chapter.

A.1 Markov Chains

The HMM is based on augmenting the Markov chain. A Markov chain is a modelMarkov chain
that tells us something about the probabilities of sequences of random variables,
states, each of which can take on values from some set. These sets can be words, or
tags, or symbols representing anything, like the weather. A Markov chain makes a
very strong assumption that if we want to predict the future in the sequence, all that
matters is the current state. The states before the current state have no impact on the
future except via the current state. It’s as if to predict tomorrow’s weather you could
examine today’s weather but you weren’t allowed to look at yesterday’s weather.

WARM3HOT1

COLD2

.8

.6

.1 .1

.3

.6

.1
.1

.3

charminguniformly

are

.1

.4 .5

.5
.5 .2

.6 .2

(a) (b)
Figure A.1 A Markov chain for weather (a) and one for words (b), showing states and
transitions. A start distribution p is required; setting p = [0.1, 0.7, 0.2] for (a) would mean a
probability 0.7 of starting in state 2 (cold), probability 0.1 of starting in state 1 (hot), etc.

More formally, consider a sequence of state variables q1,q2, ...,qi. A Markov
model embodies the Markov assumption on the probabilities of this sequence: thatMarkov

assumption
when predicting the future, the past doesn’t matter, only the present.

Markov Assumption: P(qi = a|q1...qi�1) = P(qi = a|qi�1) (A.1)

Figure A.1a shows a Markov chain for assigning a probability to a sequence of
weather events, for which the vocabulary consists of HOT, COLD, and WARM. The
states are represented as nodes in the graph, and the transitions, with their probabil-
ities, as edges. The transitions are probabilities: the values of arcs leaving a given

Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright c� 2018. All

rights reserved. Draft of September 11, 2018.

CHAPTER

A Hidden Markov Models

Chapter 8 introduced the Hidden Markov Model and applied it to part of speech
tagging. Part of speech tagging is a fully-supervised learning task, because we have
a corpus of words labeled with the correct part-of-speech tag. But many applications
don’t have labeled data. So in this chapter, we introduce the full set of algorithms for
HMMs, including the key unsupervised learning algorithm for HMM, the Forward-
Backward algorithm. We’ll repeat some of the text from Chapter 8 for readers who
want the whole story laid out in a single chapter.

A.1 Markov Chains

The HMM is based on augmenting the Markov chain. A Markov chain is a modelMarkov chain
that tells us something about the probabilities of sequences of random variables,
states, each of which can take on values from some set. These sets can be words, or
tags, or symbols representing anything, like the weather. A Markov chain makes a
very strong assumption that if we want to predict the future in the sequence, all that
matters is the current state. The states before the current state have no impact on the
future except via the current state. It’s as if to predict tomorrow’s weather you could
examine today’s weather but you weren’t allowed to look at yesterday’s weather.

WARM3HOT1

COLD2

.8

.6

.1 .1

.3

.6

.1
.1

.3

charminguniformly

are

.1

.4 .5

.5
.5 .2

.6 .2

(a) (b)
Figure A.1 A Markov chain for weather (a) and one for words (b), showing states and
transitions. A start distribution p is required; setting p = [0.1, 0.7, 0.2] for (a) would mean a
probability 0.7 of starting in state 2 (cold), probability 0.1 of starting in state 1 (hot), etc.

More formally, consider a sequence of state variables q1,q2, ...,qi. A Markov
model embodies the Markov assumption on the probabilities of this sequence: thatMarkov

assumption
when predicting the future, the past doesn’t matter, only the present.

Markov Assumption: P(qi = a|q1...qi�1) = P(qi = a|qi�1) (A.1)

Figure A.1a shows a Markov chain for assigning a probability to a sequence of
weather events, for which the vocabulary consists of HOT, COLD, and WARM. The
states are represented as nodes in the graph, and the transitions, with their probabil-
ities, as edges. The transitions are probabilities: the values of arcs leaving a given

HMM Assumptions

9.2 • THE HIDDEN MARKOV MODEL 5

used for HMMs doesn’t rely on a start or end state, instead representing the distri-
bution over initial and accepting states explicitly. We don’t use the p notation in this
textbook, but you may see it in the literature1:

p = p1,p2, ...,pN an initial probability distribution over states. pi is the
probability that the Markov chain will start in state i. Some
states j may have p j = 0, meaning that they cannot be initial
states. Also,

Pn
i=1 pi = 1

QA = {qx,qy...} a set QA ⇢ Q of legal accepting states

A first-order hidden Markov model instantiates two simplifying assumptions.
First, as with a first-order Markov chain, the probability of a particular state depends
only on the previous state:

Markov Assumption: P(qi|q1...qi�1) = P(qi|qi�1) (9.6)

Second, the probability of an output observation oi depends only on the state that
produced the observation qi and not on any other states or any other observations:

Output Independence: P(oi|q1 . . .qi, . . . ,qT ,o1, . . . ,oi, . . . ,oT) = P(oi|qi) (9.7)

Figure 9.3 shows a sample HMM for the ice cream task. The two hidden states
(H and C) correspond to hot and cold weather, and the observations (drawn from the
alphabet O = {1,2,3}) correspond to the number of ice creams eaten by Jason on a
given day.

start0

COLD2HOT1

B2
P(1 | COLD) .5
P(2 | COLD) = .4
P(3 | COLD) .1

.2

.8

.5.6

.4

.3

P(1 | HOT) .2
P(2 | HOT) = .4
P(3 | HOT) .4

B1

end3

.1

.1

Figure 9.3 A hidden Markov model for relating numbers of ice creams eaten by Jason (the
observations) to the weather (H or C, the hidden variables).

Notice that in the HMM in Fig. 9.3, there is a (non-zero) probability of transition-
ing between any two states. Such an HMM is called a fully connected or ergodic
HMM. Sometimes, however, we have HMMs in which many of the transitions be-Ergodic HMM

tween states have zero probability. For example, in left-to-right (also called Bakis)Bakis network
HMMs, the state transitions proceed from left to right, as shown in Fig. 9.4. In a
Bakis HMM, no transitions go from a higher-numbered state to a lower-numbered
state (or, more accurately, any transitions from a higher-numbered state to a lower-
numbered state have zero probability). Bakis HMMs are generally used to model
temporal processes like speech; we show more of them in Chapter 29.

1 It is also possible to have HMMs without final states or explicit accepting states. Such HMMs define a
set of probability distributions, one distribution per observation sequence length, just as language models
do when they don’t have explicit end symbols. This isn’t a problem since for most tasks in speech and
language processing the lengths of the observations are fixed.

9.2 • THE HIDDEN MARKOV MODEL 5

used for HMMs doesn’t rely on a start or end state, instead representing the distri-
bution over initial and accepting states explicitly. We don’t use the p notation in this
textbook, but you may see it in the literature1:

p = p1,p2, ...,pN an initial probability distribution over states. pi is the
probability that the Markov chain will start in state i. Some
states j may have p j = 0, meaning that they cannot be initial
states. Also,

Pn
i=1 pi = 1

QA = {qx,qy...} a set QA ⇢ Q of legal accepting states

A first-order hidden Markov model instantiates two simplifying assumptions.
First, as with a first-order Markov chain, the probability of a particular state depends
only on the previous state:

Markov Assumption: P(qi|q1...qi�1) = P(qi|qi�1) (9.6)

Second, the probability of an output observation oi depends only on the state that
produced the observation qi and not on any other states or any other observations:

Output Independence: P(oi|q1 . . .qi, . . . ,qT ,o1, . . . ,oi, . . . ,oT) = P(oi|qi) (9.7)

Figure 9.3 shows a sample HMM for the ice cream task. The two hidden states
(H and C) correspond to hot and cold weather, and the observations (drawn from the
alphabet O = {1,2,3}) correspond to the number of ice creams eaten by Jason on a
given day.

start0

COLD2HOT1

B2
P(1 | COLD) .5
P(2 | COLD) = .4
P(3 | COLD) .1

.2

.8

.5.6

.4

.3

P(1 | HOT) .2
P(2 | HOT) = .4
P(3 | HOT) .4

B1

end3

.1

.1

Figure 9.3 A hidden Markov model for relating numbers of ice creams eaten by Jason (the
observations) to the weather (H or C, the hidden variables).

Notice that in the HMM in Fig. 9.3, there is a (non-zero) probability of transition-
ing between any two states. Such an HMM is called a fully connected or ergodic
HMM. Sometimes, however, we have HMMs in which many of the transitions be-Ergodic HMM

tween states have zero probability. For example, in left-to-right (also called Bakis)Bakis network
HMMs, the state transitions proceed from left to right, as shown in Fig. 9.4. In a
Bakis HMM, no transitions go from a higher-numbered state to a lower-numbered
state (or, more accurately, any transitions from a higher-numbered state to a lower-
numbered state have zero probability). Bakis HMMs are generally used to model
temporal processes like speech; we show more of them in Chapter 29.

1 It is also possible to have HMMs without final states or explicit accepting states. Such HMMs define a
set of probability distributions, one distribution per observation sequence length, just as language models
do when they don’t have explicit end symbols. This isn’t a problem since for most tasks in speech and
language processing the lengths of the observations are fixed.

A.2 • THE HIDDEN MARKOV MODEL 3

A first-order hidden Markov model instantiates two simplifying assumptions.
First, as with a first-order Markov chain, the probability of a particular state depends
only on the previous state:

Markov Assumption: P(qi|q1...qi�1) = P(qi|qi�1) (A.4)
Second, the probability of an output observation oi depends only on the state that

produced the observation qi and not on any other states or any other observations:

Output Independence: P(oi|q1 . . .qi, . . . ,qT ,o1, . . . ,oi, . . . ,oT) = P(oi|qi) (A.5)

To exemplify these models, we’ll use a task invented by Jason Eisner (2002).
Imagine that you are a climatologist in the year 2799 studying the history of global
warming. You cannot find any records of the weather in Baltimore, Maryland, for
the summer of 2020, but you do find Jason Eisner’s diary, which lists how many ice
creams Jason ate every day that summer. Our goal is to use these observations to
estimate the temperature every day. We’ll simplify this weather task by assuming
there are only two kinds of days: cold (C) and hot (H). So the Eisner task is as
follows:

Given a sequence of observations O (each an integer representing the
number of ice creams eaten on a given day) find the ‘hidden’ sequence
Q of weather states (H or C) which caused Jason to eat the ice cream.

Figure A.2 shows a sample HMM for the ice cream task. The two hidden states
(H and C) correspond to hot and cold weather, and the observations (drawn from the
alphabet O = {1,2,3}) correspond to the number of ice creams eaten by Jason on a
given day.

π = [.8,.2]

COLD2HOT1

B2
P(1 | COLD) .5
P(2 | COLD) = .4
P(3 | COLD) .1

.5.6

.5

.4

P(1 | HOT) .2
P(2 | HOT) = .4
P(3 | HOT) .4

B1

Figure A.2 A hidden Markov model for relating numbers of ice creams eaten by Jason (the
observations) to the weather (H or C, the hidden variables).

An influential tutorial by Rabiner (1989), based on tutorials by Jack Ferguson in
the 1960s, introduced the idea that hidden Markov models should be characterized
by three fundamental problems:

Problem 1 (Likelihood): Given an HMM l = (A,B) and an observation se-
quence O, determine the likelihood P(O|l).

Problem 2 (Decoding): Given an observation sequence O and an HMM l =
(A,B), discover the best hidden state sequence Q.

Problem 3 (Learning): Given an observation sequence O and the set of states
in the HMM, learn the HMM parameters A and B.

We already saw an example of Problem 2 in Chapter 8. In the next two sections
we introduce the Forward and Forward-Backward algorithms to solve Problems 1
and 3 and give more information on Problem 2

Hidden Markov Model

2 APPENDIX A • HIDDEN MARKOV MODELS

state must sum to 1. Figure A.1b shows a Markov chain for assigning a probabil-
ity to a sequence of words w1...wn. This Markov chain should be familiar; in fact,
it represents a bigram language model, with each edge expressing the probability
p(wi|w j)! Given the two models in Fig. A.1, we can assign a probability to any
sequence from our vocabulary.

Formally, a Markov chain is specified by the following components:
Q = q1q2 . . .qN a set of N states
A = a11a12 . . .an1 . . .ann a transition probability matrix A, each ai j represent-

ing the probability of moving from state i to state j, s.t.Pn
j=1 ai j = 1 8i

p = p1,p2, ...,pN an initial probability distribution over states. pi is the
probability that the Markov chain will start in state i.
Some states j may have p j = 0, meaning that they cannot
be initial states. Also,

Pn
i=1 pi = 1

Before you go on, use the sample probabilities in Fig. A.1a (with p = [.1, .7.,2])
to compute the probability of each of the following sequences:

(A.2) hot hot hot hot
(A.3) cold hot cold hot

What does the difference in these probabilities tell you about a real-world weather
fact encoded in Fig. A.1a?

A.2 The Hidden Markov Model

A Markov chain is useful when we need to compute a probability for a sequence
of observable events. In many cases, however, the events we are interested in are
hidden: we don’t observe them directly. For example we don’t normally observehidden
part-of-speech tags in a text. Rather, we see words, and must infer the tags from the
word sequence. We call the tags hidden because they are not observed.

A hidden Markov model (HMM) allows us to talk about both observed eventsHidden
Markov model

(like words that we see in the input) and hidden events (like part-of-speech tags) that
we think of as causal factors in our probabilistic model. An HMM is specified by
the following components:

Q = q1q2 . . .qN a set of N states
A = a11 . . .ai j . . .aNN a transition probability matrix A, each ai j representing the probability

of moving from state i to state j, s.t.
PN

j=1 ai j = 1 8i
O = o1o2 . . .oT a sequence of T observations, each one drawn from a vocabulary V =

v1,v2, ...,vV

B = bi(ot) a sequence of observation likelihoods, also called emission probabili-
ties, each expressing the probability of an observation ot being generated
from a state i

p = p1,p2, ...,pN an initial probability distribution over states. pi is the probability that
the Markov chain will start in state i. Some states j may have p j = 0,
meaning that they cannot be initial states. Also,

Pn
i=1 pi = 1

Three problems for HMMs

6 CHAPTER 9 • HIDDEN MARKOV MODELS

22 443311

33

22

44

11

Figure 9.4 Two 4-state hidden Markov models; a left-to-right (Bakis) HMM on the left and
a fully connected (ergodic) HMM on the right. In the Bakis model, all transitions not shown
have zero probability.

Now that we have seen the structure of an HMM, we turn to algorithms for
computing things with them. An influential tutorial by Rabiner (1989), based on
tutorials by Jack Ferguson in the 1960s, introduced the idea that hidden Markov
models should be characterized by three fundamental problems:

Problem 1 (Likelihood): Given an HMM l = (A,B) and an observation se-
quence O, determine the likelihood P(O|l).

Problem 2 (Decoding): Given an observation sequence O and an HMM l =
(A,B), discover the best hidden state sequence Q.

Problem 3 (Learning): Given an observation sequence O and the set of states
in the HMM, learn the HMM parameters A and B.

We already saw an example of Problem 2 in Chapter 10. In the next three sec-
tions we introduce all three problems more formally.

9.3 Likelihood Computation: The Forward Algorithm

Our first problem is to compute the likelihood of a particular observation sequence.
For example, given the HMM in Fig. 9.3, what is the probability of the sequence 3
1 3? More formally:

Computing Likelihood: Given an HMM l = (A,B) and an observa-
tion sequence O, determine the likelihood P(O|l).

For a Markov chain, where the surface observations are the same as the hidden
events, we could compute the probability of 3 1 3 just by following the states labeled
3 1 3 and multiplying the probabilities along the arcs. For a hidden Markov model,
things are not so simple. We want to determine the probability of an ice-cream
observation sequence like 3 1 3, but we don’t know what the hidden state sequence
is!

Let’s start with a slightly simpler situation. Suppose we already knew the weather
and wanted to predict how much ice cream Jason would eat. This is a useful part
of many HMM tasks. For a given hidden state sequence (e.g., hot hot cold), we can
easily compute the output likelihood of 3 1 3.

Let’s see how. First, recall that for hidden Markov models, each hidden state
produces only a single observation. Thus, the sequence of hidden states and the

6 CHAPTER 9 • HIDDEN MARKOV MODELS

22 443311

33

22

44

11

Figure 9.4 Two 4-state hidden Markov models; a left-to-right (Bakis) HMM on the left and
a fully connected (ergodic) HMM on the right. In the Bakis model, all transitions not shown
have zero probability.

Now that we have seen the structure of an HMM, we turn to algorithms for
computing things with them. An influential tutorial by Rabiner (1989), based on
tutorials by Jack Ferguson in the 1960s, introduced the idea that hidden Markov
models should be characterized by three fundamental problems:

Problem 1 (Likelihood): Given an HMM l = (A,B) and an observation se-
quence O, determine the likelihood P(O|l).

Problem 2 (Decoding): Given an observation sequence O and an HMM l =
(A,B), discover the best hidden state sequence Q.

Problem 3 (Learning): Given an observation sequence O and the set of states
in the HMM, learn the HMM parameters A and B.

We already saw an example of Problem 2 in Chapter 10. In the next three sec-
tions we introduce all three problems more formally.

9.3 Likelihood Computation: The Forward Algorithm

Our first problem is to compute the likelihood of a particular observation sequence.
For example, given the HMM in Fig. 9.3, what is the probability of the sequence 3
1 3? More formally:

Computing Likelihood: Given an HMM l = (A,B) and an observa-
tion sequence O, determine the likelihood P(O|l).

For a Markov chain, where the surface observations are the same as the hidden
events, we could compute the probability of 3 1 3 just by following the states labeled
3 1 3 and multiplying the probabilities along the arcs. For a hidden Markov model,
things are not so simple. We want to determine the probability of an ice-cream
observation sequence like 3 1 3, but we don’t know what the hidden state sequence
is!

Let’s start with a slightly simpler situation. Suppose we already knew the weather
and wanted to predict how much ice cream Jason would eat. This is a useful part
of many HMM tasks. For a given hidden state sequence (e.g., hot hot cold), we can
easily compute the output likelihood of 3 1 3.

Let’s see how. First, recall that for hidden Markov models, each hidden state
produces only a single observation. Thus, the sequence of hidden states and the

“A tutorial on hidden Markov models and selected applications in speech recognition”, Rabiner, 1989

Forward Algorithm

8 CHAPTER 9 • HIDDEN MARKOV MODELS

coldhot

3

.4

hot
.6

1 3

.3

.2 .1

Figure 9.6 The computation of the joint probability of the ice-cream events 3 1 3 and the
hidden state sequence hot hot cold.

For our particular case, we would sum over the eight 3-event sequences cold cold
cold, cold cold hot, that is,

P(3 1 3) = P(3 1 3,cold cold cold)+P(3 1 3,cold cold hot)+P(3 1 3,hot hot cold)+ ...

For an HMM with N hidden states and an observation sequence of T observa-
tions, there are NT possible hidden sequences. For real tasks, where N and T are
both large, NT is a very large number, so we cannot compute the total observation
likelihood by computing a separate observation likelihood for each hidden state se-
quence and then summing them.

Instead of using such an extremely exponential algorithm, we use an efficient
O(N2T) algorithm called the forward algorithm. The forward algorithm is a kindForward

algorithm
of dynamic programming algorithm, that is, an algorithm that uses a table to store
intermediate values as it builds up the probability of the observation sequence. The
forward algorithm computes the observation probability by summing over the prob-
abilities of all possible hidden state paths that could generate the observation se-
quence, but it does so efficiently by implicitly folding each of these paths into a
single forward trellis.

Figure 9.7 shows an example of the forward trellis for computing the likelihood
of 3 1 3 given the hidden state sequence hot hot cold.

Each cell of the forward algorithm trellis at(j) represents the probability of be-
ing in state j after seeing the first t observations, given the automaton l . The value
of each cell at(j) is computed by summing over the probabilities of every path that
could lead us to this cell. Formally, each cell expresses the following probability:

at(j) = P(o1,o2 . . .ot ,qt = j|l) (9.13)

Here, qt = j means “the tth state in the sequence of states is state j”. We compute
this probability at(j) by summing over the extensions of all the paths that lead to
the current cell. For a given state q j at time t, the value at(j) is computed as

at(j) =
NX

i=1

at�1(i)ai jb j(ot) (9.14)

The three factors that are multiplied in Eq. 9.14 in extending the previous paths
to compute the forward probability at time t are

at�1(i) the previous forward path probability from the previous time step
ai j the transition probability from previous state qi to current state q j

b j(ot) the state observation likelihood of the observation symbol ot given
the current state j

8 CHAPTER 9 • HIDDEN MARKOV MODELS

coldhot

3

.4

hot
.6

1 3

.3

.2 .1

Figure 9.6 The computation of the joint probability of the ice-cream events 3 1 3 and the
hidden state sequence hot hot cold.

For our particular case, we would sum over the eight 3-event sequences cold cold
cold, cold cold hot, that is,

P(3 1 3) = P(3 1 3,cold cold cold)+P(3 1 3,cold cold hot)+P(3 1 3,hot hot cold)+ ...

For an HMM with N hidden states and an observation sequence of T observa-
tions, there are NT possible hidden sequences. For real tasks, where N and T are
both large, NT is a very large number, so we cannot compute the total observation
likelihood by computing a separate observation likelihood for each hidden state se-
quence and then summing them.

Instead of using such an extremely exponential algorithm, we use an efficient
O(N2T) algorithm called the forward algorithm. The forward algorithm is a kindForward

algorithm
of dynamic programming algorithm, that is, an algorithm that uses a table to store
intermediate values as it builds up the probability of the observation sequence. The
forward algorithm computes the observation probability by summing over the prob-
abilities of all possible hidden state paths that could generate the observation se-
quence, but it does so efficiently by implicitly folding each of these paths into a
single forward trellis.

Figure 9.7 shows an example of the forward trellis for computing the likelihood
of 3 1 3 given the hidden state sequence hot hot cold.

Each cell of the forward algorithm trellis at(j) represents the probability of be-
ing in state j after seeing the first t observations, given the automaton l . The value
of each cell at(j) is computed by summing over the probabilities of every path that
could lead us to this cell. Formally, each cell expresses the following probability:

at(j) = P(o1,o2 . . .ot ,qt = j|l) (9.13)

Here, qt = j means “the tth state in the sequence of states is state j”. We compute
this probability at(j) by summing over the extensions of all the paths that lead to
the current cell. For a given state q j at time t, the value at(j) is computed as

at(j) =
NX

i=1

at�1(i)ai jb j(ot) (9.14)

The three factors that are multiplied in Eq. 9.14 in extending the previous paths
to compute the forward probability at time t are

at�1(i) the previous forward path probability from the previous time step
ai j the transition probability from previous state qi to current state q j

b j(ot) the state observation likelihood of the observation symbol ot given
the current state j

6 APPENDIX A • HIDDEN MARKOV MODELS

π

H

C

H

C

H

C

P(C|sta
rt)

* P
(3|C)

.2 * .
1

P(H|H) * P(1|H)
.6 * .2

P(C|C) * P(1|C)
.5 * .5

P(C|H) * P(1|C)
.4 * .5

P(H|C) * P
(1|H)

.5 * .2

P(
H|

sta
rt)

*P
(3

|H
)

.8
* .

4

α1(2)=.32

α1(1) = .02

α2(2)= .32*.12 + .02*.1 = .0404

α2(1) = .32*.2 + .02*.25 = .069

t

C

Hq2

q1

o1

3
o2 o3

1 3

Figure A.5 The forward trellis for computing the total observation likelihood for the ice-cream events 3 1 3.
Hidden states are in circles, observations in squares. The figure shows the computation of at(j) for two states at
two time steps. The computation in each cell follows Eq. A.12: at(j) =

PN
i=1 at�1(i)ai jb j(ot). The resulting

probability expressed in each cell is Eq. A.11: at(j) = P(o1,o2 . . .ot ,qt = j|l).

Each cell of the forward algorithm trellis at(j) represents the probability of be-
ing in state j after seeing the first t observations, given the automaton l . The value
of each cell at(j) is computed by summing over the probabilities of every path that
could lead us to this cell. Formally, each cell expresses the following probability:

at(j) = P(o1,o2 . . .ot ,qt = j|l) (A.11)

Here, qt = j means “the tth state in the sequence of states is state j”. We compute
this probability at(j) by summing over the extensions of all the paths that lead to
the current cell. For a given state q j at time t, the value at(j) is computed as

at(j) =
NX

i=1

at�1(i)ai jb j(ot) (A.12)

The three factors that are multiplied in Eq. A.12 in extending the previous paths
to compute the forward probability at time t are

at�1(i) the previous forward path probability from the previous time step
ai j the transition probability from previous state qi to current state q j

b j(ot) the state observation likelihood of the observation symbol ot given
the current state j

Consider the computation in Fig. A.5 of a2(2), the forward probability of being
at time step 2 in state 2 having generated the partial observation 3 1. We compute by
extending the a probabilities from time step 1, via two paths, each extension con-
sisting of the three factors above: a1(1)⇥P(H|C)⇥P(1|H) and a1(2)⇥P(H|H)⇥
P(1|H).

Figure A.6 shows another visualization of this induction step for computing the
value in one new cell of the trellis.

We give two formal definitions of the forward algorithm: the pseudocode in
Fig. A.7 and a statement of the definitional recursion here.

Forward
Probability

Visualizing the forward recursion
10 CHAPTER 9 • HIDDEN MARKOV MODELS

ot-1 ot

a1j

a2j

aNj

a3j

bj(ot)

αt(j)= Σi αt-1(i) aij bj(ot)

q1

q2

q3

qN

q1

qj

q2

q1

q2

ot+1ot-2

q1

q2

q3 q3

qN qN

αt-1(N)

αt-1(3)

αt-1(2)

αt-1(1)

αt-2(N)

αt-2(3)

αt-2(2)

αt-2(1)

Figure 9.8 Visualizing the computation of a single element at(i) in the trellis by summing
all the previous values at�1, weighted by their transition probabilities a, and multiplying by
the observation probability bi(ot+1). For many applications of HMMs, many of the transition
probabilities are 0, so not all previous states will contribute to the forward probability of the
current state. Hidden states are in circles, observations in squares. Shaded nodes are included
in the probability computation for at(i). Start and end states are not shown.

function FORWARD(observations of len T, state-graph of len N) returns forward-prob

create a probability matrix forward[N+2,T]
for each state s from 1 to N do ; initialization step

forward[s,1] a0,s ⇤ bs(o1)
for each time step t from 2 to T do ; recursion step

for each state s from 1 to N do

forward[s, t]
NX

s0=1

forward[s0, t�1] ⇤ as0,s ⇤ bs(ot)

forward[qF ,T]
NX

s=1

forward[s,T] ⇤ as,qF ; termination step

return forward[qF ,T]

Figure 9.9 The forward algorithm. We’ve used the notation forward[s, t] to represent
at(s).

9.4 Decoding: The Viterbi Algorithm

For any model, such as an HMM, that contains hidden variables, the task of deter-
mining which sequence of variables is the underlying source of some sequence of
observations is called the decoding task. In the ice-cream domain, given a sequenceDecoding

of ice-cream observations 3 1 3 and an HMM, the task of the decoder is to find theDecoder
best hidden weather sequence (H H H). More formally,

Decoding: Given as input an HMM l = (A,B) and a sequence of ob-
servations O = o1,o2, ...,oT , find the most probable sequence of states
Q = q1q2q3 . . .qT .

Forward Algorithm

A.3 • LIKELIHOOD COMPUTATION: THE FORWARD ALGORITHM 7

ot-1 ot

a1j

a2j

aNj

a3j

bj(ot)

αt(j)= Σi αt-1(i) aij bj(ot)

q1

q2

q3

qN

q1

qj

q2

q1

q2

ot+1ot-2

q1

q2

q3 q3

qN qN

αt-1(N)

αt-1(3)

αt-1(2)

αt-1(1)

αt-2(N)

αt-2(3)

αt-2(2)

αt-2(1)

Figure A.6 Visualizing the computation of a single element at(i) in the trellis by summing
all the previous values at�1, weighted by their transition probabilities a, and multiplying by
the observation probability bi(ot+1). For many applications of HMMs, many of the transition
probabilities are 0, so not all previous states will contribute to the forward probability of the
current state. Hidden states are in circles, observations in squares. Shaded nodes are included
in the probability computation for at(i).

function FORWARD(observations of len T, state-graph of len N) returns forward-prob

create a probability matrix forward[N,T]
for each state s from 1 to N do ; initialization step

forward[s,1] ps ⇤ bs(o1)
for each time step t from 2 to T do ; recursion step

for each state s from 1 to N do

forward[s, t]
NX

s0=1

forward[s0, t�1] ⇤ as0,s ⇤ bs(ot)

forwardprob
NX

s=1

forward[s,T] ; termination step

return forwardprob

Figure A.7 The forward algorithm, where forward[s, t] represents at(s).

1. Initialization:

a1(j) = p jb j(o1) 1 j N

2. Recursion:

at(j) =
NX

i=1

at�1(i)ai jb j(ot); 1 j N,1 < t T

3. Termination:

P(O|l) =
NX

i=1

aT (i)

Three problems for HMMs

6 CHAPTER 9 • HIDDEN MARKOV MODELS

22 443311

33

22

44

11

Figure 9.4 Two 4-state hidden Markov models; a left-to-right (Bakis) HMM on the left and
a fully connected (ergodic) HMM on the right. In the Bakis model, all transitions not shown
have zero probability.

Now that we have seen the structure of an HMM, we turn to algorithms for
computing things with them. An influential tutorial by Rabiner (1989), based on
tutorials by Jack Ferguson in the 1960s, introduced the idea that hidden Markov
models should be characterized by three fundamental problems:

Problem 1 (Likelihood): Given an HMM l = (A,B) and an observation se-
quence O, determine the likelihood P(O|l).

Problem 2 (Decoding): Given an observation sequence O and an HMM l =
(A,B), discover the best hidden state sequence Q.

Problem 3 (Learning): Given an observation sequence O and the set of states
in the HMM, learn the HMM parameters A and B.

We already saw an example of Problem 2 in Chapter 10. In the next three sec-
tions we introduce all three problems more formally.

9.3 Likelihood Computation: The Forward Algorithm

Our first problem is to compute the likelihood of a particular observation sequence.
For example, given the HMM in Fig. 9.3, what is the probability of the sequence 3
1 3? More formally:

Computing Likelihood: Given an HMM l = (A,B) and an observa-
tion sequence O, determine the likelihood P(O|l).

For a Markov chain, where the surface observations are the same as the hidden
events, we could compute the probability of 3 1 3 just by following the states labeled
3 1 3 and multiplying the probabilities along the arcs. For a hidden Markov model,
things are not so simple. We want to determine the probability of an ice-cream
observation sequence like 3 1 3, but we don’t know what the hidden state sequence
is!

Let’s start with a slightly simpler situation. Suppose we already knew the weather
and wanted to predict how much ice cream Jason would eat. This is a useful part
of many HMM tasks. For a given hidden state sequence (e.g., hot hot cold), we can
easily compute the output likelihood of 3 1 3.

Let’s see how. First, recall that for hidden Markov models, each hidden state
produces only a single observation. Thus, the sequence of hidden states and the

10 CHAPTER 9 • HIDDEN MARKOV MODELS

ot-1 ot

a1j

a2j

aNj

a3j

bj(ot)

αt(j)= Σi αt-1(i) aij bj(ot)

q1

q2

q3

qN

q1

qj

q2

q1

q2

ot+1ot-2

q1

q2

q3 q3

qN qN

αt-1(N)

αt-1(3)

αt-1(2)

αt-1(1)

αt-2(N)

αt-2(3)

αt-2(2)

αt-2(1)

Figure 9.8 Visualizing the computation of a single element at(i) in the trellis by summing
all the previous values at�1, weighted by their transition probabilities a, and multiplying by
the observation probability bi(ot+1). For many applications of HMMs, many of the transition
probabilities are 0, so not all previous states will contribute to the forward probability of the
current state. Hidden states are in circles, observations in squares. Shaded nodes are included
in the probability computation for at(i). Start and end states are not shown.

function FORWARD(observations of len T, state-graph of len N) returns forward-prob

create a probability matrix forward[N+2,T]
for each state s from 1 to N do ; initialization step

forward[s,1] a0,s ⇤ bs(o1)
for each time step t from 2 to T do ; recursion step

for each state s from 1 to N do

forward[s, t]
NX

s0=1

forward[s0, t�1] ⇤ as0,s ⇤ bs(ot)

forward[qF ,T]
NX

s=1

forward[s,T] ⇤ as,qF ; termination step

return forward[qF ,T]

Figure 9.9 The forward algorithm. We’ve used the notation forward[s, t] to represent
at(s).

9.4 Decoding: The Viterbi Algorithm

For any model, such as an HMM, that contains hidden variables, the task of deter-
mining which sequence of variables is the underlying source of some sequence of
observations is called the decoding task. In the ice-cream domain, given a sequenceDecoding

of ice-cream observations 3 1 3 and an HMM, the task of the decoder is to find theDecoder
best hidden weather sequence (H H H). More formally,

Decoding: Given as input an HMM l = (A,B) and a sequence of ob-
servations O = o1,o2, ...,oT , find the most probable sequence of states
Q = q1q2q3 . . .qT .

Viterbi Trellis

12 CHAPTER 9 • HIDDEN MARKOV MODELS

Note that we represent the most probable path by taking the maximum over all
possible previous state sequences max

q0,q1,...,qt�1
. Like other dynamic programming al-

gorithms, Viterbi fills each cell recursively. Given that we had already computed the
probability of being in every state at time t�1, we compute the Viterbi probability
by taking the most probable of the extensions of the paths that lead to the current
cell. For a given state q j at time t, the value vt(j) is computed as

vt(j) =
N

max
i=1

vt�1(i) ai j b j(ot) (9.19)

The three factors that are multiplied in Eq. 9.19 for extending the previous paths
to compute the Viterbi probability at time t are

vt�1(i) the previous Viterbi path probability from the previous time step
ai j the transition probability from previous state qi to current state q j

b j(ot) the state observation likelihood of the observation symbol ot given
the current state j

function VITERBI(observations of len T, state-graph of len N) returns best-path

create a path probability matrix viterbi[N+2,T]
for each state s from 1 to N do ; initialization step

viterbi[s,1] a0,s ⇤ bs(o1)
backpointer[s,1] 0

for each time step t from 2 to T do ; recursion step
for each state s from 1 to N do

viterbi[s,t] N
max

s0=1
viterbi[s0, t�1] ⇤ as0,s ⇤ bs(ot)

backpointer[s,t] N
argmax

s0=1

viterbi[s0, t�1] ⇤ as0,s

viterbi[qF ,T] N
max

s=1
viterbi[s,T] ⇤ as,qF ; termination step

backpointer[qF ,T] N
argmax

s=1

viterbi[s,T] ⇤ as,qF ; termination step

return the backtrace path by following backpointers to states back in
time from backpointer[qF ,T]

Figure 9.11 Viterbi algorithm for finding optimal sequence of hidden states. Given an
observation sequence and an HMM l = (A,B), the algorithm returns the state path through
the HMM that assigns maximum likelihood to the observation sequence. Note that states 0
and qF are non-emitting.

Figure 9.11 shows pseudocode for the Viterbi algorithm. Note that the Viterbi
algorithm is identical to the forward algorithm except that it takes the max over the
previous path probabilities whereas the forward algorithm takes the sum. Note also
that the Viterbi algorithm has one component that the forward algorithm doesn’t
have: backpointers. The reason is that while the forward algorithm needs to pro-
duce an observation likelihood, the Viterbi algorithm must produce a probability and
also the most likely state sequence. We compute this best state sequence by keeping
track of the path of hidden states that led to each state, as suggested in Fig. 9.12, and
then at the end backtracing the best path to the beginning (the Viterbi backtrace).Viterbi

backtrace

8 APPENDIX A • HIDDEN MARKOV MODELS

A.4 Decoding: The Viterbi Algorithm

For any model, such as an HMM, that contains hidden variables, the task of deter-
mining which sequence of variables is the underlying source of some sequence of
observations is called the decoding task. In the ice-cream domain, given a sequenceDecoding

of ice-cream observations 3 1 3 and an HMM, the task of the decoder is to find theDecoder
best hidden weather sequence (H H H). More formally,

Decoding: Given as input an HMM l = (A,B) and a sequence of ob-
servations O = o1,o2, ...,oT , find the most probable sequence of states
Q = q1q2q3 . . .qT .

We might propose to find the best sequence as follows: For each possible hid-
den state sequence (HHH, HHC, HCH, etc.), we could run the forward algorithm
and compute the likelihood of the observation sequence given that hidden state se-
quence. Then we could choose the hidden state sequence with the maximum obser-
vation likelihood. It should be clear from the previous section that we cannot do this
because there are an exponentially large number of state sequences.

Instead, the most common decoding algorithms for HMMs is the Viterbi algo-
rithm. Like the forward algorithm, Viterbi is a kind of dynamic programmingViterbi

algorithm
that makes uses of a dynamic programming trellis. Viterbi also strongly resembles
another dynamic programming variant, the minimum edit distance algorithm of
Chapter 2.

π

H

C

H

C

H

C

P(C|sta
rt)

* P
(3|C)

.2 * .
1

P(H|H) * P(1|H)
.6 * .2

P(C|C) * P(1|C)
.5 * .5

P(C|H) * P(1|C)
.4 * .5

P(H|C) * P
(1|H)

.5 * .2

P(
H|

sta
rt)

*P
(3

|H
)

.8
* .

4

v1(2)=.32

v1(1) = .02

v2(2)= max(.32*.12, .02*.10) = .038

v2(1) = max(.32*.20, .02*.25) = .064

t

C

Hq2

q1

o1 o2 o3

3 1 3

Figure A.8 The Viterbi trellis for computing the best path through the hidden state space for the ice-cream
eating events 3 1 3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal
transitions. The figure shows the computation of vt(j) for two states at two time steps. The computation in each
cell follows Eq. A.14: vt(j) = max1iN�1 vt�1(i) ai j b j(ot). The resulting probability expressed in each cell
is Eq. A.13: vt(j) = P(q0,q1, . . . ,qt�1,o1,o2, . . . ,ot ,qt = j|l).

Figure A.8 shows an example of the Viterbi trellis for computing the best hidden
state sequence for the observation sequence 3 1 3. The idea is to process the ob-
servation sequence left to right, filling out the trellis. Each cell of the trellis, vt(j),
represents the probability that the HMM is in state j after seeing the first t obser-
vations and passing through the most probable state sequence q1, ...,qt�1, given the

A.4 • DECODING: THE VITERBI ALGORITHM 9

automaton l . The value of each cell vt(j) is computed by recursively taking the
most probable path that could lead us to this cell. Formally, each cell expresses the
probability

vt(j) = max
q1,...,qt�1

P(q1...qt�1,o1,o2 . . .ot ,qt = j|l) (A.13)

Note that we represent the most probable path by taking the maximum over all
possible previous state sequences max

q1,...,qt�1
. Like other dynamic programming algo-

rithms, Viterbi fills each cell recursively. Given that we had already computed the
probability of being in every state at time t�1, we compute the Viterbi probability
by taking the most probable of the extensions of the paths that lead to the current
cell. For a given state q j at time t, the value vt(j) is computed as

vt(j) =
N

max
i=1

vt�1(i) ai j b j(ot) (A.14)

The three factors that are multiplied in Eq. A.14 for extending the previous paths to
compute the Viterbi probability at time t are

vt�1(i) the previous Viterbi path probability from the previous time step
ai j the transition probability from previous state qi to current state q j

b j(ot) the state observation likelihood of the observation symbol ot given
the current state j

function VITERBI(observations of len T,state-graph of len N) returns best-path, path-prob

create a path probability matrix viterbi[N,T]
for each state s from 1 to N do ; initialization step

viterbi[s,1] ps ⇤ bs(o1)
backpointer[s,1] 0

for each time step t from 2 to T do ; recursion step
for each state s from 1 to N do

viterbi[s,t] N
max

s0=1
viterbi[s0, t�1] ⇤ as0,s ⇤ bs(ot)

backpointer[s,t] N
argmax

s0=1

viterbi[s0, t�1] ⇤ as0,s ⇤ bs(ot)

bestpathprob N
max

s=1
viterbi[s,T] ; termination step

bestpathpointer N
argmax

s=1
viterbi[s,T] ; termination step

bestpath the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob

Figure A.9 Viterbi algorithm for finding optimal sequence of hidden states. Given an observation sequence
and an HMM l =(A,B), the algorithm returns the state path through the HMM that assigns maximum likelihood
to the observation sequence.

Figure A.9 shows pseudocode for the Viterbi algorithm. Note that the Viterbi
algorithm is identical to the forward algorithm except that it takes the max over the
previous path probabilities whereas the forward algorithm takes the sum. Note also
that the Viterbi algorithm has one component that the forward algorithm doesn’t

Viterbi Path
Probability

Viterbi recursion

10 APPENDIX A • HIDDEN MARKOV MODELS

have: backpointers. The reason is that while the forward algorithm needs to pro-
duce an observation likelihood, the Viterbi algorithm must produce a probability and
also the most likely state sequence. We compute this best state sequence by keeping
track of the path of hidden states that led to each state, as suggested in Fig. A.10, and
then at the end backtracing the best path to the beginning (the Viterbi backtrace).Viterbi

backtrace

π

H

C

H

C

H

C

P(C|sta
rt)

* P
(3|C)

.2 * .
1

P(H|H) * P(1|H)
.6 * .2

P(C|C) * P(1|C)
.5 * .5

P(C|H) * P(1|C)
.4 * .5

P(H|C) * P
(1|H)

.5 * .2

P(
H|

sta
rt)

*P
(3

|H
)

.8
* .

4

v1(2)=.32

v1(1) = .02

v2(2)= max(.32*.12, .02*.10) = .038

v2(1) = max(.32*.20, .02*.25) = .064

t

C

Hq2

q1

o1 o2 o3

3 1 3

Figure A.10 The Viterbi backtrace. As we extend each path to a new state account for the next observation,
we keep a backpointer (shown with broken lines) to the best path that led us to this state.

Finally, we can give a formal definition of the Viterbi recursion as follows:

1. Initialization:

v1(j) = p jb j(o1) 1 j N
bt1(j) = 0 1 j N

2. Recursion

vt(j) =
N

max
i=1

vt�1(i)ai j b j(ot); 1 j N,1 < t T

btt(j) =
N

argmax
i=1

vt�1(i)ai j b j(ot); 1 j N,1 < t T

3. Termination:

The best score: P⇤ =
N

max
i=1

vT (i)

The start of backtrace: qT⇤ =
N

argmax
i=1

vT (i)

A.5 HMM Training: The Forward-Backward Algorithm

We turn to the third problem for HMMs: learning the parameters of an HMM, that
is, the A and B matrices. Formally,

Learning: Given an observation sequence O and the set of possible
states in the HMM, learn the HMM parameters A and B.

Viterbi backtrace

10 APPENDIX A • HIDDEN MARKOV MODELS

have: backpointers. The reason is that while the forward algorithm needs to pro-
duce an observation likelihood, the Viterbi algorithm must produce a probability and
also the most likely state sequence. We compute this best state sequence by keeping
track of the path of hidden states that led to each state, as suggested in Fig. A.10, and
then at the end backtracing the best path to the beginning (the Viterbi backtrace).Viterbi

backtrace

π

H

C

H

C

H

C

P(C|sta
rt)

* P
(3|C)

.2 * .
1

P(H|H) * P(1|H)
.6 * .2

P(C|C) * P(1|C)
.5 * .5

P(C|H) * P(1|C)
.4 * .5

P(H|C) * P
(1|H)

.5 * .2

P(
H|

sta
rt)

*P
(3

|H
)

.8
* .

4

v1(2)=.32

v1(1) = .02

v2(2)= max(.32*.12, .02*.10) = .038

v2(1) = max(.32*.20, .02*.25) = .064

t

C

Hq2

q1

o1 o2 o3

3 1 3

Figure A.10 The Viterbi backtrace. As we extend each path to a new state account for the next observation,
we keep a backpointer (shown with broken lines) to the best path that led us to this state.

Finally, we can give a formal definition of the Viterbi recursion as follows:

1. Initialization:

v1(j) = p jb j(o1) 1 j N
bt1(j) = 0 1 j N

2. Recursion

vt(j) =
N

max
i=1

vt�1(i)ai j b j(ot); 1 j N,1 < t T

btt(j) =
N

argmax
i=1

vt�1(i)ai j b j(ot); 1 j N,1 < t T

3. Termination:

The best score: P⇤ =
N

max
i=1

vT (i)

The start of backtrace: qT⇤ =
N

argmax
i=1

vT (i)

A.5 HMM Training: The Forward-Backward Algorithm

We turn to the third problem for HMMs: learning the parameters of an HMM, that
is, the A and B matrices. Formally,

Learning: Given an observation sequence O and the set of possible
states in the HMM, learn the HMM parameters A and B.

Gaussian Observation Model
• So far, we considered HMMs with discrete outputs

• In acoustic models, HMMs output real valued vectors

• Hence, observation probabilities are defined using probability density functions

• A widely used model: Gaussian distribution

N (x|µ,�2) =
1p
2⇡�2

e�
1

2�2 (x�µ)2

• HMM emission/observation probabilities � where � is
the mean associated with state � and � is its variance

bj(x) = 𝒩(x |μj, σ2
j) μj

j σ2
j

• For multivariate Gaussians, � where � is the
covariance matrix associated with state j

bj(x) = 𝒩(x |μj, Σj) Σj

Gaussian Mixture Model
• A single Gaussian observation model assumes that

the observed acoustic feature vectors are unimodal

Unimodal
23/01/2017 https://upload.wikimedia.org/wikipedia/commons/7/74/Normal_Distribution_PDF.svg

https://upload.wikimedia.org/wikipedia/commons/7/74/Normal_Distribution_PDF.svg 1/1

φ μ
,σ

2
(

0.8

0.6

0.4

0.2

0.0

−5 −3 1 3 5
x

1.0

−1 0 2 4−2−4

x)

0,μ=
0,μ=
0,μ=
−2,μ=

2 0.2,σ =
2 1.0,σ =
2 5.0,σ =
2 0.5,σ =

23/01/2017 Gnuplot

https://upload.wikimedia.org/wikipedia/commons/3/3e/Gaussian_2d.svg 1/1

-3
-2

-1
0

1
2

3

-3
-2

-1
0

1
2

30
0.2
0.4
0.6
0.8
1

Gaussian Mixture Model
• A single Gaussian observation model assumes that

the observed acoustic feature vectors are unimodal

• More generally, we use a “mixture of Gaussians” to
model multiple modes in the data

Mixture Models

Gaussian Mixture Model

• More generally, we use a “mixture of Gaussians” to
model multiple modes in the data

• Instead of � in the single Gaussian
case, � now becomes: 

bj(x) = 𝒩(x |μj, Σj)
bj(x)

where cjm is the mixing probability for Gaussian component m of state j
MX

m=1

cjm = 1, cjm � 0

bj(x) =
MX

m=1

cjmN (x|µjm,⌃jm)
<latexit sha1_base64="ZpmSZEggz1V14OmOhiizYlXlrOw=">AAACRnicbVBNS8QwEJ2uX+v6terRS3ARFGRpVdCLIHrxoqzoqrCtJc2mazRpS5KKS+2v8+LZmz/BiwdFvJrWPfg1EPJ47w0z84KEM6Vt+8mqDA2PjI5Vx2sTk1PTM/XZuVMVp5LQNol5LM8DrChnEW1rpjk9TyTFIuD0LLjeK/SzGyoVi6MT3U+oJ3AvYiEjWBvKr3uBf7XsCqwvgzC7zVfQNnJVKvxMbDv5xQEifnYlclQ6CObZYf7NfecGMe+qvjCfK9LSuuoes57AJV7x6w27aZeF/gJnABowqJZff3S7MUkFjTThWKmOYyfay7DUjHCa19xU0QSTa9yjHQMjLKjysjKGHC0ZpovCWJoXaVSy3zsyLFSxrHEWJ6jfWkH+p3VSHW55GYuSVNOIfA0KU450jIpMUZdJSjTvG4CJZGZXRC6xxESb5GsmBOf3yX/B6VrTWW+uHW00dnYHcVRhARZhGRzYhB3Yhxa0gcA9PMMrvFkP1ov1bn18WSvWoGceflQFPgGPU7MV</latexit>

• A single Gaussian observation model assumes that
the observed acoustic feature vectors are unimodal

