HMMs for Acoustic Modeling (Part I) Lecture 2

Instructor: Preethi Jyothi

Recall: Statistical ASR

That is, $\mathbf{O} = \{O_1, \dots, O_T\}$, where $O_i \in \mathbb{R}^d$ refers to a d-dimensional acoustic feature vector and T is the length of the sequence.

- Let **O** be a sequence of acoustic features corresponding to a speech signal.
- Let W denote a word sequence. An ASR decoder solves the foll. problem:

Isolated w

ord recognition		
	$Pr(\mathbf{O} \mid "up")$	
<section-header></section-header>	$ \operatorname{Pr}(\mathbf{O} \mid "down")$ $ \operatorname{Compute} \arg \max_{w} \operatorname{Pr}(\mathbf{O} \mid w)$ $ \operatorname{Pr}(\mathbf{O} \mid "left")$	
	$ \Pr(\mathbf{O} "right")$	

What are Hidden Markov Models (HMMs)?

Following slides contain figures/material from "Hidden Markov Models", "Speech and Language Processing", D. Jurafsky and J. H. Martin, 2019. (https://web.stanford.edu/~jurafsky/slp3/A.pdf)

$\pi = \pi_1, \pi_2, ..., \pi_N$

 $\sum_{j=1}^{n} a_{ij} = 1 \quad \forall i$

$\pi = [0.1, 0.7, 0.2]$

ing the probabili

an initial probability distrib

probability that the Markov Some states *j* may have $\pi_j =$ be initial states. Also, $\sum_{i=1}^{n} z_{i}$

__ / I

Output I

Markov Assumption: $P(q_i|q_1...q_{i-1}) = P(q_i|q_{i-1})$

\ __ / I \

Hidden Markov Model

 $Q = q_1 q_2 \dots q_N$ $A = a_{11} \dots a_{ij} \dots a_{NN}$ $O = o_1 o_2 \dots o_T$ $B = b_i(o_t)$ $\pi = \pi_1, \pi_2, \ldots, \pi_N$

a set of N states $v_1, v_2, ..., v_V$

from a state *i*

- a transition probability matrix A, each a_{ij} representing the probability of moving from state *i* to state *j*, s.t. $\sum_{i=1}^{N} a_{ij} = 1 \quad \forall i$ a sequence of T observations, each one drawn from a vocabulary V =
- a sequence of observation likelihoods, also called emission probabilities, each expressing the probability of an observation o_t being generated
- an **initial probability distribution** over states. π_i is the probability that the Markov chain will start in state *i*. Some states *j* may have $\pi_i = 0$, meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

Problem 1 (Likelihood):	Given an
	quence (
Problem 2 (Decoding):	Given an
	(<i>A</i> , <i>B</i>), d
Problem 3 (Learning):	Given an
	in the HI

tion sequence *O*, determine the likelihood $P(O|\lambda)$.

In HMM $\lambda = (A, B)$ and an observation se-*O*, determine the likelihood $P(O|\lambda)$. n observation sequence *O* and an HMM $\lambda =$ liscover the best hidden state sequence Q. n observation sequence O and the set of states MM, learn the HMM parameters A and B.

Computing Likelihood: Given an HMM $\lambda = (A, B)$ and an observa-

Forward Algorithm

Forward $\mathbf{A}_t(j) = P(o_1, o_2 \dots o_t, q_t = j)$ Probability

$$\alpha_t(j) = \sum_{i=1}^N \alpha_{t-1}(i)a_{ij}b_j(o_t)$$

 $\alpha_2(2) = .32^*.12 + .02^*.1 = .0404$

Visualizing the forward recursion

Forward Algorithm

1. Initialization:

2. Recursion:

$$\alpha_t(j) = \sum_{i=1}^N \alpha_{t-1}(i)$$

3. Termination:

P(

$\alpha_1(j) = \pi_j b_j(o_1) \quad 1 \le j \le N$

$(i)a_{ij}b_j(o_t); \ 1 \le j \le N, 1 < t \le T$

$$O(\lambda) = \sum_{i=1}^{N} \alpha_T(i)$$

Problem 1 (Likelihood):	Given an
	quence (
Problem 2 (Decoding):	Given ar
	(A,B), d
Problem 3 (Learning):	Given an
	in the HI

Decoding: Given as input an HMM $\lambda = (A, B)$ and a sequence of observations $O = o_1, o_2, ..., o_T$, find the most probable sequence of states $Q = q_1 q_2 q_3 ... q_T$.

In HMM $\lambda = (A, B)$ and an observation se-O, determine the likelihood $P(O|\lambda)$. In observation sequence O and an HMM $\lambda =$ discover the best hidden state sequence Q. In observation sequence O and the set of states MM, learn the HMM parameters A and B.

Viterbi Trellis

1. Initialization:

2. Recursion

$$v_t(j) = \max_{i=1}^N v_{t-1}(i)$$
$$bt_t(j) = \arg_{i=1}^N v_{t-1}(i)$$

3. Termination:

The bes

The start of back

$v_1(j) = \pi_j b_j(o_1) \qquad 1 \le j \le N$ $bt_1(j) = 0 \qquad \qquad 1 \le j \le N$

$a_{ij}b_j(o_t); \quad 1 \le j \le N, 1 < t \le T$ $a_{ij}b_j(o_t); \quad 1 \le j \le N, 1 < t \le T$

st score:
$$P* = \max_{i=1}^{N} v_T(i)$$

ktrace: $q_T* = \operatorname*{argmax}_{i=1}^{N} v_T(i)$

Viterbi backtrace

Gaussian Observation Model

- So far, we considered HMMs with discrete outputs
- In acoustic models, HMMs output real valued vectors
- Hence, observation probabilities are defined using probability density functions A widely used model: Gaussian distribution

$$\mathcal{N}(x|\mu,\sigma^2)$$

- the mean associated with state j and σ_j^2 is its variance
- For multivariate Gaussians, $b_i(\mathbf{x})$ covariance matrix associated with state j

$$=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

• HMM emission/observation probabilities $b_i(x) = \mathcal{N}(x \mid \mu_i, \sigma_i^2)$ where μ_i is

=
$$\mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$$
 where $\boldsymbol{\Sigma}_j$ is the

Gaussian Mixture Model

 A single Gaussian observation model assumes that the observed acoustic feature vectors are unimodal

Unimodal

Gaussian Mixture Model

- A single Gaussian observation model assumes that the observed acoustic feature vectors are unimodal
- More generally, we use a "mixture of Gaussians" to model multiple modes in the data

Mixture Models

Gaussian Mixture Model

- A single Gaussian observation model assumes that the observed acoustic feature vectors are unimodal
- More generally, we use a "mixture of Gaussians" to model multiple modes in the data
- Instead of $b_i(\mathbf{x}) = \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$ in the single Gaussian case, $b_j(\mathbf{x})$ now becomes: $b_j(\mathbf{x}) = \sum c$ m=1

$$\sum_{m=1}^{M} c_{jm} = 1, \ c_{jm} \ge 0$$

$$c_{jm} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{jm}, \Sigma_{jm})$$

where *c_{jm}* is the mixing probability for Gaussian component *m* of state *j*