
Instructor: Preethi Jyothi

Convolutional Neural Networks in Speech

Lecture 20

CS 753

Convolutional Neural Networks (CNNs)

• Fully connected (dense) layers have no awareness of spatial information

• Key concept behind convolutional layers is that of kernels or filters

• Filters slide across an input space to detect spatial patterns (translation
invariance) in local regions (locality)

Fully Connected Layers

Fei-Fei Li & Justin Johnson & Serena Yeung April 16, 2019Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 16, 201928

3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

activationinput

1
10

Image from:http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture05.pdf

Convolution Layer

Fei-Fei Li & Justin Johnson & Serena Yeung April 16, 2019Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 16, 201931

32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Image from:http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture05.pdf

Convolution Layer

Fei-Fei Li & Justin Johnson & Serena Yeung April 16, 2019Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 16, 201934

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

1

28

28

Image from:http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture05.pdf

Convolution Layer

Fei-Fei Li & Justin Johnson & Serena Yeung April 16, 2019Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 16, 201935

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

1

28

28

consider a second, green filter

Image from:http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture05.pdf

Convolution Layer

Fei-Fei Li & Justin Johnson & Serena Yeung April 16, 2019Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 16, 201936

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!
Image from:http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture05.pdf

Convolutional Neural Network

Fei-Fei Li & Justin Johnson & Serena Yeung April 16, 2019Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 16, 201938

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

….

10

24

24

Image from:http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture05.pdf

What do these layers learn?

Fei-Fei Li & Justin Johnson & Serena Yeung April 16, 2019Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 16, 201939

Preview [Zeiler and Fergus 2013] Visualization of VGG-16 by Lane McIntosh. VGG-16

architecture from [Simonyan and Zisserman 2014].

Image from: Simonyan and Zisserman, 2014

Convolutional Neural Networks (CNNs)

All animations are from: https://github.com/vdumoulin/conv_arithmetic

https://github.com/vdumoulin/conv_arithmetic

Convolutional Neural Networks (CNNs)

All animations are from: https://github.com/vdumoulin/conv_arithmetic

https://github.com/vdumoulin/conv_arithmetic

Convolutional Neural Networks (CNNs)

All animations are from: https://github.com/vdumoulin/conv_arithmetic

https://github.com/vdumoulin/conv_arithmetic

Convolutional Neural Networks (CNNs)

All animations are from: https://github.com/vdumoulin/conv_arithmetic

https://github.com/vdumoulin/conv_arithmetic

Convolutional Neural Networks (CNNs)

All animations are from: https://github.com/vdumoulin/conv_arithmetic

https://github.com/vdumoulin/conv_arithmetic

Convolution Layers: Summary

Summary from: http://cs231n.github.io/convolutional-networks/

Pooling Layer

Image from: http://cs231n.github.io/convolutional-networks/

Pooling Layer

Summary from: http://cs231n.github.io/convolutional-networks/

CNNs for Speech

Speech features to be fed to a CNN1536 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 10, OCTOBER 2014

Fig. 1. Two different ways can be used to organize speech input features to a CNN. The above example assumes 40MFSC features plus first and second derivatives
with a context window of 15 frames for each speech frame.

There exist several different alternatives to organizing these

MFSC features into maps for the CNN. First, as shown in

Fig. 1(b), they can be arranged as three 2-D feature maps,

each of which represents MFSC features (static, delta and

delta-delta) distributed along both frequency (using the fre-

quency band index) and time (using the frame number within

each context window). In this case, a two-dimensional con-

volution is performed (explained below) to normalize both

frequency and temporal variations simultaneously. Alterna-

tively, we may only consider normalizing frequency variations.

In this case, the same MFSC features are organized as a number

of one-dimensional (1-D) feature maps (along the frequency

band index), as shown in Fig. 1(c). For example, if the context

window contains 15 frames and 40 filter banks are used for each
frame, we will construct 45 (i.e., 15 times 3) 1-D feature maps,

with each map having 40 dimensions, as shown in Fig. 1(c).

As a result, a one-dimensional convolution will be applied

along the frequency axis. In this paper, we will only focus on

this latter arrangement found in Fig. 1(c), a one-dimensional

convolution along frequency.

Once the input feature maps are formed, the convolution and

pooling layers apply their respective operations to generate the

activations of the units in those layers, in sequence, as shown in

Fig. 2. Similar to those of the input layer, the units of the con-

volution and pooling layers can also be organized into maps. In

CNN terminology, a pair of convolution and pooling layers in

Fig. 2 in succession is usually referred to as one CNN “layer.”

A deep CNN thus consists of two or more of these pairs in suc-

cession. To avoid confusion, we will refer to convolution and

pooling layers as convolution and pooling plies, respectively.

B. Convolution Ply

As shown in Fig. 2, every input feature map (assume is the

total number), , is connected to many feature

maps (assume in the total number), , in

the convolution ply based on a number of local weight matrices

(in total), . The mapping

can be represented as the well-known convolution operation in

Fig. 2. An illustration of one CNN “layer” consisting of a pair of a convolution
ply and a pooling ply in succession, where mapping from either the input layer
or a pooling ply to a convolution ply is based on eq. (9) and mapping from a
convolution ply to a pooling ply is based on eq. (10).

signal processing. Assuming input feature maps are all one di-

mensional, each unit of one feature map in the convolution ply

can be computed as:

(8)

where is the -th unit of the -th input feature map ,

is the -th unit of the -th feature map in the convolution

ply, is the th element of the weight vector, , which

connects the th input feature map to the th feature map of the

convolution ply. is called the filter size, which determines
the number of frequency bands in each input feature map that

each unit in the convolution ply receives as input. Because of

the locality that arises from our choice of MFSC features, these

feature maps are confined to a limited frequency range of the
speech signal. Equation (8) can be written in a more concise

matrix form using the convolution operator as:

(9)

where represents the -th input feature map and rep-

resents each local weight matrix, flipped to adhere to the con-
volution operation’s definition. Both and are vectors

if one dimensional feature maps are used, and are matrices if

Image from Abdel-Hamid et al., “Convolutional Neural Networks for Speech Recognition”, TASLP 2014

1536 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 10, OCTOBER 2014

Fig. 1. Two different ways can be used to organize speech input features to a CNN. The above example assumes 40MFSC features plus first and second derivatives
with a context window of 15 frames for each speech frame.

There exist several different alternatives to organizing these

MFSC features into maps for the CNN. First, as shown in

Fig. 1(b), they can be arranged as three 2-D feature maps,

each of which represents MFSC features (static, delta and

delta-delta) distributed along both frequency (using the fre-

quency band index) and time (using the frame number within

each context window). In this case, a two-dimensional con-

volution is performed (explained below) to normalize both

frequency and temporal variations simultaneously. Alterna-

tively, we may only consider normalizing frequency variations.

In this case, the same MFSC features are organized as a number

of one-dimensional (1-D) feature maps (along the frequency

band index), as shown in Fig. 1(c). For example, if the context

window contains 15 frames and 40 filter banks are used for each
frame, we will construct 45 (i.e., 15 times 3) 1-D feature maps,

with each map having 40 dimensions, as shown in Fig. 1(c).

As a result, a one-dimensional convolution will be applied

along the frequency axis. In this paper, we will only focus on

this latter arrangement found in Fig. 1(c), a one-dimensional

convolution along frequency.

Once the input feature maps are formed, the convolution and

pooling layers apply their respective operations to generate the

activations of the units in those layers, in sequence, as shown in

Fig. 2. Similar to those of the input layer, the units of the con-

volution and pooling layers can also be organized into maps. In

CNN terminology, a pair of convolution and pooling layers in

Fig. 2 in succession is usually referred to as one CNN “layer.”

A deep CNN thus consists of two or more of these pairs in suc-

cession. To avoid confusion, we will refer to convolution and

pooling layers as convolution and pooling plies, respectively.

B. Convolution Ply

As shown in Fig. 2, every input feature map (assume is the

total number), , is connected to many feature

maps (assume in the total number), , in

the convolution ply based on a number of local weight matrices

(in total), . The mapping

can be represented as the well-known convolution operation in

Fig. 2. An illustration of one CNN “layer” consisting of a pair of a convolution
ply and a pooling ply in succession, where mapping from either the input layer
or a pooling ply to a convolution ply is based on eq. (9) and mapping from a
convolution ply to a pooling ply is based on eq. (10).

signal processing. Assuming input feature maps are all one di-

mensional, each unit of one feature map in the convolution ply

can be computed as:

(8)

where is the -th unit of the -th input feature map ,

is the -th unit of the -th feature map in the convolution

ply, is the th element of the weight vector, , which

connects the th input feature map to the th feature map of the

convolution ply. is called the filter size, which determines
the number of frequency bands in each input feature map that

each unit in the convolution ply receives as input. Because of

the locality that arises from our choice of MFSC features, these

feature maps are confined to a limited frequency range of the
speech signal. Equation (8) can be written in a more concise

matrix form using the convolution operator as:

(9)

where represents the -th input feature map and rep-

resents each local weight matrix, flipped to adhere to the con-
volution operation’s definition. Both and are vectors

if one dimensional feature maps are used, and are matrices if

Illustrating a CNN layer

Image from Abdel-Hamid et al., “Convolutional Neural Networks for Speech Recognition”, TASLP 2014

1536 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 10, OCTOBER 2014

Fig. 1. Two different ways can be used to organize speech input features to a CNN. The above example assumes 40MFSC features plus first and second derivatives
with a context window of 15 frames for each speech frame.

There exist several different alternatives to organizing these

MFSC features into maps for the CNN. First, as shown in

Fig. 1(b), they can be arranged as three 2-D feature maps,

each of which represents MFSC features (static, delta and

delta-delta) distributed along both frequency (using the fre-

quency band index) and time (using the frame number within

each context window). In this case, a two-dimensional con-

volution is performed (explained below) to normalize both

frequency and temporal variations simultaneously. Alterna-

tively, we may only consider normalizing frequency variations.

In this case, the same MFSC features are organized as a number

of one-dimensional (1-D) feature maps (along the frequency

band index), as shown in Fig. 1(c). For example, if the context

window contains 15 frames and 40 filter banks are used for each
frame, we will construct 45 (i.e., 15 times 3) 1-D feature maps,

with each map having 40 dimensions, as shown in Fig. 1(c).

As a result, a one-dimensional convolution will be applied

along the frequency axis. In this paper, we will only focus on

this latter arrangement found in Fig. 1(c), a one-dimensional

convolution along frequency.

Once the input feature maps are formed, the convolution and

pooling layers apply their respective operations to generate the

activations of the units in those layers, in sequence, as shown in

Fig. 2. Similar to those of the input layer, the units of the con-

volution and pooling layers can also be organized into maps. In

CNN terminology, a pair of convolution and pooling layers in

Fig. 2 in succession is usually referred to as one CNN “layer.”

A deep CNN thus consists of two or more of these pairs in suc-

cession. To avoid confusion, we will refer to convolution and

pooling layers as convolution and pooling plies, respectively.

B. Convolution Ply

As shown in Fig. 2, every input feature map (assume is the

total number), , is connected to many feature

maps (assume in the total number), , in

the convolution ply based on a number of local weight matrices

(in total), . The mapping

can be represented as the well-known convolution operation in

Fig. 2. An illustration of one CNN “layer” consisting of a pair of a convolution
ply and a pooling ply in succession, where mapping from either the input layer
or a pooling ply to a convolution ply is based on eq. (9) and mapping from a
convolution ply to a pooling ply is based on eq. (10).

signal processing. Assuming input feature maps are all one di-

mensional, each unit of one feature map in the convolution ply

can be computed as:

(8)

where is the -th unit of the -th input feature map ,

is the -th unit of the -th feature map in the convolution

ply, is the th element of the weight vector, , which

connects the th input feature map to the th feature map of the

convolution ply. is called the filter size, which determines
the number of frequency bands in each input feature map that

each unit in the convolution ply receives as input. Because of

the locality that arises from our choice of MFSC features, these

feature maps are confined to a limited frequency range of the
speech signal. Equation (8) can be written in a more concise

matrix form using the convolution operator as:

(9)

where represents the -th input feature map and rep-

resents each local weight matrix, flipped to adhere to the con-
volution operation’s definition. Both and are vectors

if one dimensional feature maps are used, and are matrices if

Convolution Layer

ABDEL-HAMID et al.: CONVOLUTIONAL NEURAL NETWORKS FOR SPEECH RECOGNITION 1537

two dimensional feature maps are used (where 2-D convolution

is applied to the above equation), as described in the previous

section. Note that, in this presentation, the number of feature

maps in the convolution ply directly determines the number of

local weight matrices that are used in the above convolutional

mapping. In practice, we will constrain many of these weight

matrices to be identical. It is also important to remember that

the windows through which we view the input and apply one of

these weight matrices will generally overlap. The convolution

operation itself produces lower-dimensional data—each dimen-

sion decreases by filter size minus one—but we can pad the

input with dummy values (both dummy time frames and dummy

frequency bands) to preserve the size of the feature maps. As a

result, there could in principle be as many locations in the fea-

ture map of the convolution ply as there are in the input.

A convolution ply differs from a standard, fully connected

hidden layer in two important aspects, however. First, each con-

volutional unit receives input only from a local area of the input.

This means that each unit represents some features of a local re-

gion of the input. Second, the units of the convolution ply can

themselves be organized into a number of feature maps, where

all units in the same feature map share the same weights but re-

ceive input from different locations of the lower layer.

C. Pooling Ply

As shown in Fig. 2, a pooling operation is applied to the

convolution ply to generate its corresponding pooling ply. The

pooling ply is also organized into feature maps, and it has the

same number of feature maps as the number of feature maps

in its convolution ply, but each map is smaller. The purpose of

the pooling ply is to reduce the resolution of feature maps. This

means that the units of this ply will serve as generalizations over

the features of the lower convolution ply, and, because these

generalizations will again be spatially localized in frequency,

they will also be invariant to small variations in location. This

reduction is achieved by applying a pooling function to several

units in a local region of a size determined by a parameter called

pooling size. It is usually a simple function such asmaximization
or averaging. The pooling function is applied to each convolu-
tion featuremap independently.When themax-pooling function

is used, the pooling ply is defined as:

(10)

where is the pooling size, and , the shift size, determines the
overlap of adjacent pooling windows. Similarly, if the average

function is used, the output is calculated as:

(11)

where is a scaling factor that can be learned. In image recogni-

tion applications, under the constraint that , i.e., in which

the pooling windows do not overlap and have no spaces between

them, it has been claimed that max-pooling performs better than

average-pooling [44]. In this work we will adjust and in-

dependently. Moreover, a non-linear activation function can be

applied to the above to generate the final output. Fig. 3

Fig. 3. An illustration of the regular CNN that uses so-called full weight

sharing. Here, a 1-D convolution is applied along frequency bands.

shows a pooling ply with a pooling size of three. Each pooling

unit receives input from three convolution ply units in the same

feature map. If , then the pooling ply would be one-third

of the size of the convolution ply.

D. Learning Weights in the CNN
All weights in the convolution ply can be learned using the

same error back-propagation algorithm but some special modifi-
cations are needed to take care of sparse connections and weight

sharing. In order to illustrate the learning algorithm for CNN

layers, let us first represent the convolution operation in eq. (9)
in the same mathematical form as the fully connected ANN

layer so that the same learning algorithm in Section II can be

similarly applied.

When one-dimensional feature maps are used, the convolu-

tion operations in eq. (9) can be represented as a simple matrix

multiplication by introducing a large sparse weight matrix as

shown in Fig. 4, which is formed by replicating a basic weight

matrix as in Fig. 4(a). The basic matrix is constructed

from all of the local weight matrices, , as follows:

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

(12)

where is organized as rows, where again denotes

filter size, each band contains rows for input feature maps,

and has columns representing the weights of feature

maps in the convolution ply.

Meanwhile, the input and the convolution feature maps are

also vectorized as row vectors and . One single row vector

is created from all of the input feature maps

as follows:

(13)

Pooling Layer

Convolution operations involve a large sparse matrix

Image from Abdel-Hamid et al., “Convolutional Neural Networks for Speech Recognition”, TASLP 2014

1538 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 10, OCTOBER 2014

Fig. 4. All convolution operations in each convolution ply can be equivalently represented as one large matrix multiplication involving a sparse weight matrix,
where both local connectivity and weight sharing can be represented in the structure of this sparse weight matrix. This figure assumes a filter size of 5, 45 input
feature maps and 80 feature maps in the convolution ply. Sub-figure b shows an additional vector consisting of energy bands.

where is a row vector containing the values of the th fre-

quency band along all feature maps, and is the number of

frequency bands in the input layer. Therefore, the convolution

ply outputs computed in eq. (9) can be equivalently expressed

as a weight vector:

(14)

This equation has the same mathematical form as a regular fully

connected hidden layer as in eq. (2). Therefore, the convolution

ply weights can be updated using the back-propagation algo-

rithm as in eq. (5). The update for is similarly calculated as:

(15)

The treatment of shared weights in the convolution ply is

slightly different from the fully-connected DNN case where

there is no weight sharing. The difference is that for the shared

weights here, we sum them in their updates according to:

(16)

where and are the number of feature maps in the input layer

and convolution ply, respectively. Moreover, the above error

vector is either computed in the same way as in eq. (6) or

back-propagated to the lower layer using the sparse matrix, ,

as in eq. (7). Similarly, the biases can be handled by adding one

row to the matrix to hold the bias values replicated among

all convolution ply bands and adding one element with a value

of one to the vector .

Since the pooling ply has no weights, no learning is needed

here. However, the error signals should be back-propagated to

lower plies through the pooling function. In the case of max-

pooling, the error signal is passed backwards only to the most

active (largest) unit among each group of pooled units. That

is, the error signal reaching the lower convolution ply can be

computed as:

(17)

where is the delta function and it has the value of 1 if is

0 and zero otherwise, and is the index of the unit with the

maximum value among the pooled units and is defined as:

(18)

E. Pretraining CNN Layers
RBM-based pretraining improves DNN performance es-

pecially when the training set is small. Pretraining initializes

DNN weights to a proper range that leads to better optimization

and regularization. For convolutional structure, a convolutional

RBM (CRBM) has been proposed in [45]. Similar to RBMs, the

training of the CRBM aims to maximize the likelihood function

of the full training data according to an approximate contrastive

divergence (CD) algorithm. In CRBMs, the convolution ply

activations are stochastic. CRBMs define a multinomial dis-
tribution over each pool of hidden units in a convolution ply.

Hence, at most one unit in each pooled set of units can be active.

This requires either having no overlap between pooled units

(i.e.,) or attaching different convolution units to each

pooling unit as in the limited weight sharing described below

in Sec. IV. Refer to [45] for more details on CRBM-based

pretraining.

F. Treatment of Energy Features
In ASR, log-energy is usually calculated per frame and

appended to other spectral features. In a CNN, it is not suitable

to treat energy the same way as other filter bank energies
since it is the sum of the energy in all frequency bands and so

does not depend on frequency. Instead, the log-energy features

CNN Architecture used in a hybrid ASR system ABDEL-HAMID et al.: CONVOLUTIONAL NEURAL NETWORKS FOR SPEECH RECOGNITION 1537

two dimensional feature maps are used (where 2-D convolution

is applied to the above equation), as described in the previous

section. Note that, in this presentation, the number of feature

maps in the convolution ply directly determines the number of

local weight matrices that are used in the above convolutional

mapping. In practice, we will constrain many of these weight

matrices to be identical. It is also important to remember that

the windows through which we view the input and apply one of

these weight matrices will generally overlap. The convolution

operation itself produces lower-dimensional data—each dimen-

sion decreases by filter size minus one—but we can pad the

input with dummy values (both dummy time frames and dummy

frequency bands) to preserve the size of the feature maps. As a

result, there could in principle be as many locations in the fea-

ture map of the convolution ply as there are in the input.

A convolution ply differs from a standard, fully connected

hidden layer in two important aspects, however. First, each con-

volutional unit receives input only from a local area of the input.

This means that each unit represents some features of a local re-

gion of the input. Second, the units of the convolution ply can

themselves be organized into a number of feature maps, where

all units in the same feature map share the same weights but re-

ceive input from different locations of the lower layer.

C. Pooling Ply

As shown in Fig. 2, a pooling operation is applied to the

convolution ply to generate its corresponding pooling ply. The

pooling ply is also organized into feature maps, and it has the

same number of feature maps as the number of feature maps

in its convolution ply, but each map is smaller. The purpose of

the pooling ply is to reduce the resolution of feature maps. This

means that the units of this ply will serve as generalizations over

the features of the lower convolution ply, and, because these

generalizations will again be spatially localized in frequency,

they will also be invariant to small variations in location. This

reduction is achieved by applying a pooling function to several

units in a local region of a size determined by a parameter called

pooling size. It is usually a simple function such asmaximization
or averaging. The pooling function is applied to each convolu-
tion featuremap independently.When themax-pooling function

is used, the pooling ply is defined as:

(10)

where is the pooling size, and , the shift size, determines the
overlap of adjacent pooling windows. Similarly, if the average

function is used, the output is calculated as:

(11)

where is a scaling factor that can be learned. In image recogni-

tion applications, under the constraint that , i.e., in which

the pooling windows do not overlap and have no spaces between

them, it has been claimed that max-pooling performs better than

average-pooling [44]. In this work we will adjust and in-

dependently. Moreover, a non-linear activation function can be

applied to the above to generate the final output. Fig. 3

Fig. 3. An illustration of the regular CNN that uses so-called full weight

sharing. Here, a 1-D convolution is applied along frequency bands.

shows a pooling ply with a pooling size of three. Each pooling

unit receives input from three convolution ply units in the same

feature map. If , then the pooling ply would be one-third

of the size of the convolution ply.

D. Learning Weights in the CNN
All weights in the convolution ply can be learned using the

same error back-propagation algorithm but some special modifi-
cations are needed to take care of sparse connections and weight

sharing. In order to illustrate the learning algorithm for CNN

layers, let us first represent the convolution operation in eq. (9)
in the same mathematical form as the fully connected ANN

layer so that the same learning algorithm in Section II can be

similarly applied.

When one-dimensional feature maps are used, the convolu-

tion operations in eq. (9) can be represented as a simple matrix

multiplication by introducing a large sparse weight matrix as

shown in Fig. 4, which is formed by replicating a basic weight

matrix as in Fig. 4(a). The basic matrix is constructed

from all of the local weight matrices, , as follows:

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

(12)

where is organized as rows, where again denotes

filter size, each band contains rows for input feature maps,

and has columns representing the weights of feature

maps in the convolution ply.

Meanwhile, the input and the convolution feature maps are

also vectorized as row vectors and . One single row vector

is created from all of the input feature maps

as follows:

(13)

Image from Abdel-Hamid et al., “Convolutional Neural Networks for Speech Recognition”, TASLP 2014

ABDEL-HAMID et al.: CONVOLUTIONAL NEURAL NETWORKS FOR SPEECH RECOGNITION 1543

TABLE III
PERFORMANCE ON TIMIT OF DIFFERENT CNN CONFIGURATIONS, COMPARED WITH DNNS, ALONG WITH THE SIZE OF THE MODEL IN TOTAL NUMBER
OF PARAMETERS, AND THE SPEED IN TOTAL NUMBER OF MULTIPLY-AND-ACCUMULATE OPERATIONS. AVERAGE PERS WERE COMPUTED OVER 3 RUNS
WITH DIFFERENT RANDOM SEEDS AND SHOWN IN THE 3RD COLUMN, WHILE THE MINIMUM AND MAXIMUM PERS ARE SHOWN IN THE 4TH COLUMN. THE
SECOND COLUMN SHOWS THE NETWORK STRUCTURE AND THE CONFIGURATION OF THE HIDDEN LAYERS ARE SHOWN WITHIN BRACES. THE NUMBER
OF NODES OF A FULLY CONNECTED LAYER IS GIVEN DIRECTLY. FOR CNN LAYERS THE CNN LAYER PARAMETERS ARE GIVEN FOR FWS OR LWS IN

BRACKETS WHERE: ‘M’ IS THE NUMBER OF FEATURE MAPS, ‘P’ IS THE POOLING SIZE, ‘S’ IS THE SHIFT SIZE, AND ‘F’ IS THE FILTER SIZE

TABLE IV
PERFORMANCE ON THE VS LARGE VOCABULARY DATA SET IN PERCENT
WER WITH AND WITHOUT PRETRAINING (PT). THE EXPERIMENTAL

SETTING IS THE SAME AS TABLE I

layers while the CNN had one pair of convolution and pooling
plies in addition to two hidden fully connected layers. The CNN
layer used limited weight sharing and had 84 feature maps per
section. It had a filter size of 8, a pooling size of 6, and a shift
size of 2. Moreover, the context window had 11 frames. Frame
energy features were not used in these experiments.
Table IV shows that the CNN improves word error rate

(WER) performance over the DNN regardless of whether
pretraining is used. Similar to the TIMIT results, the CNN
improves performance by about an 8% relative error reduc-
tion over the DNN in the VS task without pretraining. With
pretraining, the relative word error rate reduction is about
6%. Moreover, the results show that pretraining the CNN can
improve its performance, although the effect of pretraining for
the CNN is not as strong as that for the DNN.

VI. CONCLUSIONS

In this paper, we have described how to apply CNNs to
speech recognition in a novel way, such that the CNN’s struc-
ture directly accommodates some types of speech variability.
We showed a performance improvement relative to standard
DNNs with similar numbers of weight parameters using this
approach (about 6-10% relative error reduction), in contrast to
the more equivocal results of convolving along the time axis,
as earlier applications of CNNs to speech had attempted [33],
[34], [35]. Our hybrid CNN-HMM approach delegates temporal
variability to the HMM, while convolving along the frequency
axis creates a degree of invariance to small frequency shifts,
which normally occur in actual speech signals due to speaker
differences.
In addition, we have proposed a new, limited weight sharing

scheme that can handle speech features in a better way than the
full weight sharing that is standard in previous CNN architec-
tures such as those used in image processing. Limited weight
sharing leads to a much smaller number of units in the pooling

ply, resulting in a smaller model size and lower computational
complexity than the full weight sharing scheme.
We observed improved performance on two ASR tasks:

TIMIT phone recognition and a large-vocabulary voice search
task, across a variety of CNN parameter and design settings. We
determined that the use of energy information is very beneficial
for the CNN in terms of recognition accuracy. Further, the ASR
performance was found to be sensitive to the pooling size, but
insensitive to the overlap between pooling units, a discovery
that will lead to better efficiency in storage and computation.
Finally, pretraining of CNNs based on convolutional RBMs
was found to yield better performance in the large-vocabulary
voice search experiment, but not in the phone recognition
experiment. This discrepancy is yet to be examined thoroughly
in our future work.

REFERENCES
[1] H. Jiang, “Discriminative training for automatic speech recognition: A

survey,” Comput. Speech, Lang., vol. 24, no. 4, pp. 589–608, 2010.
[2] X. He, L. Deng, and W. Chou, “Discriminative learning in sequen-

tial pattern recognition—A unifying review for optimization-oriented
speech recognition,” IEEE Signal Process. Mag., vol. 25, no. 5, pp.
14–36, Sep. 2008.

[3] L. Deng and X. Li, “Machine learning paradigms for speech recogni-
tion: An overview,” IEEE Trans. Audio, Speech, Lang. Process., vol.
21, no. 5, pp. 1060–1089, May 2013.

[4] G. E. Dahl, M. Ranzato, A.Mohamed, and G. E. Hinton, “Phone recog-
nition with the mean-covariance restricted Boltzmann machine,” Adv.
Neural Inf. Process. Syst., no. 23, 2010.

[5] A. Mohamed, T. Sainath, G. Dahl, B. Ramabhadran, G. Hinton, and
M. Picheny, “Deep belief networks using discriminative features for
phone recognition,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), May 2011, pp. 5060–5063.

[6] D. Yu, L. Deng, and G. Dahl, “Roles of pre-training and fine-tuning
in context-dependent DBN-HMMs for real-world speech recognition,”
in Proc. NIPS Workshop Deep Learn. Unsupervised Feature Learn.,
2010.

[7] G. Dahl, D. Yu, L. Deng, and A. Acero, “Large vocabulary contin-
uous speech recognition with context-dependent DBN-HMMs,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2011, pp.
4688–4691.

[8] F. Seide, G. Li, X. Chen, and D. Yu, “Feature engineering in con-
text-dependent deep neural networks for conversational speech tran-
scription,” in Proc. IEEE Workshop Autom. Speech Recognition Un-
derstand. (ASRU), 2011, pp. 24–29.

[9] N. Morgan, “Deep and wide: Multiple layers in automatic speech
recognition,” IEEE Trans. Audio, Speech, Lang. Process., vol. 20, no.
1, pp. 7–13, Jan. 2012.

[10] A.Mohamed, G. Dahl, and G. Hinton, “Deep belief networks for phone
recognition,” in Proc. NIPS Workshop Deep Learn. Speech Recogni-
tion Related Applicat., 2009.

[11] A. Mohamed, D. Yu, and L. Deng, “Investigation of full-sequence
training of deep belief networks for speech recognition,” in Proc.
Interspeech, 2010, pp. 2846–2849.

Performance on TIMIT of different CNN architectures
(Comparison with DNNs)

More recent ASR system: Deep Speech 2

Image from Amodei et al., “Deep speech 2: End-to-end speech recognition in English and Mandarin”, ICML 2016

Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin

2. Related Work
This work is inspired by previous work in both deep learn-
ing and speech recognition. Feed-forward neural net-
work acoustic models were explored more than 20 years
ago (Bourlard & Morgan, 1993; Renals et al., 1994). Re-
current neural networks and networks with convolution
were also used in speech recognition around the same
time (Robinson et al., 1996; Waibel et al., 1989). More
recently DNNs have become a fixture in the ASR pipeline
with almost all state of the art speech work containing some
form of deep neural network (Mohamed et al., 2011; Hin-
ton et al., 2012; Dahl et al., 2011; N. Jaitly & Vanhoucke,
2012; Seide et al., 2011). Convolutional networks have also
been found beneficial for acoustic models (Abdel-Hamid
et al., 2012; Sainath et al., 2013). Recurrent neural net-
works are beginning to be deployed in state-of-the art rec-
ognizers (Graves et al., 2013; H. Sak et al., 2014) and
work well with convolutional layers for the feature extrac-
tion (Sainath et al., 2015).

End-to-end speech recognition is an active area of re-
search, showing compelling results when used to re-
score the outputs of a DNN-HMM (Graves & Jaitly,
2014a) and standalone (Hannun et al., 2014a). The RNN
encoder-decoder with attention performs well in predict-
ing phonemes (Chorowski et al., 2015) or graphemes (Bah-
danau et al., 2015; Chan et al., 2015). The CTC loss
function (Graves et al., 2006) coupled with an RNN to
model temporal information also performs well in end-
to-end speech recognition with character outputs (Graves
& Jaitly, 2014a; Hannun et al., 2014b;a; Maas et al.,
2015). The CTC-RNN model also works well in predicting
phonemes (Miao et al., 2015; Sak et al., 2015), though a
lexicon is still needed in this case.

Exploiting scale in deep learning has been central to the
success of the field thus far (Krizhevsky et al., 2012; Le
et al., 2012). Training on a single GPU resulted in substan-
tial performance gains (Raina et al., 2009), which were sub-
sequently scaled linearly to two (Krizhevsky et al., 2012)
or more GPUs (Coates et al., 2013). We take advantage of
work in increasing individual GPU efficiency for low-level
deep learning primitives (Chetlur et al.). We built on the
past work in using model-parallelism (Coates et al., 2013),
data-parallelism (Dean et al., 2012) or a combination of the
two (Szegedy et al., 2014; Hannun et al., 2014a) to create a
fast and highly scalable system for training deep RNNs in
speech recognition.

Data has also been central to the success of end-to-end
speech recognition, with over 7000 hours of labeled speech
used in (Hannun et al., 2014a). Data augmentation has
been highly effective in improving the performance of deep
learning in computer vision (LeCun et al., 2004; Sapp et al.,
2008; Coates et al., 2011) and speech recognition (Gales

CTC

Spectrogram

1D or 2D
Invariant

Convolution

Fully
Connected

Batch
Normalization

Lookahead
Convolution

Vanilla or GRU
 Uni or Bi
directional

RNN

Figure 1: Architecture of the deep RNN used in both En-
glish and Mandarin speech.

et al., 2009; Hannun et al., 2014a). Existing speech systems
can also be used to bootstrap new data collection. For ex-
ample, an existing speech engine can be used to align and
filter thousands of hours of audiobooks (Panayotov et al.,
2015). We draw inspiration from these past approaches in
bootstrapping larger datasets and data augmentation to in-
crease the effective amount of labeled data for our system.

3. Model Architecture
Figure 1 shows the wireframe of our architecture, and lays
out the swappable components which we explore in de-
tail in this paper. Our system (similar at its core to the
one in (Hannun et al., 2014a)), is a recurrent neural net-
work (RNN) with one or more convolutional input layers,
followed by multiple recurrent (uni or bidirectional) lay-
ers and one fully connected layer before a softmax layer.
The network is trained end-to-end using the CTC loss func-
tion (Graves et al., 2006), which allows us to directly pre-
dict the sequences of characters from input audio. 2

The inputs to the network are a sequence of log-
spectrograms of power normalized audio clips, calculated
on 20ms windows. The outputs are the alphabet of each
language. At each output time-step t, the RNN makes a
prediction, p(`t|x), where `t is either a character in the
alphabet or the blank symbol. In English we have `t 2
{a, b, c, . . . , z, space, apostrophe, blank}, where we have
added the space symbol to denote word boundaries. For
the Mandarin system the network outputs simplified Chi-

2Most of our experiments use bidirectional recurrent lay-
ers with clipped rectified-linear units (ReLU) �(x) =
min{max{x, 0}, 20} as the activation function.

Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin

Architecture Channels Filter dimension Stride Regular Dev Noisy Dev

1-layer 1D 1280 11 2 9.52 19.36
2-layer 1D 640, 640 5, 5 1, 2 9.67 19.21
3-layer 1D 512, 512, 512 5, 5, 5 1, 1, 2 9.20 20.22
1-layer 2D 32 41x11 2x2 8.94 16.22
2-layer 2D 32, 32 41x11, 21x11 2x2, 2x1 9.06 15.71
3-layer 2D 32, 32, 96 41x11, 21x11, 21x11 2x2, 2x1, 2x1 8.61 14.74

Table 2: Comparison of WER for different configurations of convolutional layers. In all cases, the convolutions are
followed by 7 recurrent layers and 1 fully connected layer. For 2D convolutions the first dimension is frequency and the
second dimension is time. Each model is trained with BatchNorm, SortaGrad, and has 35M parameters.

3.6. Adaptation to Mandarin

To port a traditional speech recognition pipeline to another
language typically requires a significant amount of new
language-specific development. For example, one often
needs to hand-engineer a pronunciation model (Shan et al.,
2010). We may also need to explicitly model language-
specific pronunciation features, such as tones in Man-
darin (Shan et al., 2010; Niu et al., 2013). Since our end-
to-end system directly predicts characters, these time con-
suming efforts are no longer needed. This has enabled us
to quickly create an end-to-end Mandarin speech recogni-
tion system (that outputs Chinese characters) using the ap-
proach described above with only a few changes.

The only architectural changes we make to our networks
are due to the characteristics of the Chinese character set.
The network outputs probabilities for about 6000 char-
acters, which includes the Roman alphabet, since hybrid
Chinese-English transcripts are common. We incur an out
of vocabulary error at evaluation time if a character is not
contained in this set. This is not a major concern, as our
test set has only 0.74% out of vocab characters.

We use a character level language model in Mandarin as
words are not usually segmented in text. In Section 6.2 we
show that our Mandarin speech models show roughly the
same improvements to architectural changes as our English
speech models, suggesting that modeling knowledge from
development in one language transfers well to others.

4. System Optimizations
Our networks have tens of millions of parameters, and a
training experiment involves tens of single-precision ex-
aFLOPs. Since our ability to evaluate hypotheses about
our data and models depends on training speed, we created
a highly optimized training system based on high perfor-
mance computing (HPC) infrastructure.3 Although many
frameworks exist for training deep networks on parallel

3Our software runs on dense compute nodes with 8 NVIDIA
Titan X GPUs per node with a theoretical peak throughput of 48
single-precision TFLOP/s.

machines, we have found that our ability to scale well is of-
ten bottlenecked by unoptimized routines that are taken for
granted. Therefore, we focus on careful optimization of the
most important routines used for training. Specifically, we
created customized All-Reduce code for OpenMPI to sum
gradients across GPUs on multiple nodes, developed a fast
implementation of CTC for GPUs, and use custom mem-
ory allocators. Taken together, these techniques enable us
to sustain overall 45% of theoretical peak performance on
each node.

Our training distributes work over multiple GPUs in a data-
parallel fashion with synchronous SGD, where each GPU
uses a local copy of the model to work on a portion of
the current minibatch and then exchanges computed gra-
dients with all other GPUs. We prefer synchronous SGD
because it is reproducible, which facilitates discovering
and fixing regressions. In this setup, however, the GPUs
must communicate quickly (using an "All-Reduce" opera-
tion) at each iteration in order to avoid wasting computa-
tional cycles. Prior work has used asynchronous updates to
mitigate this issue (Dean et al., 2012; Recht et al., 2011).
We instead focused on optimizing the All-Reduce opera-
tion itself, achieving a 4x-21x speedup using techniques
to reduce CPU-GPU communication for our specific work-
loads. Similarly, to enhance overall computation, we have
used highly-optimized kernels from Nervana Systems and
NVIDIA that are tuned for our deep learning applications.
We similarly discovered that custom memory allocation
routines were crucial to maximizing performance as they
reduce the number of synchronizations between GPU and
CPU.

We also found that the CTC cost computation accounted
for a significant fraction of running time. Since no public
well-optimized code for CTC existed, we developed a fast
GPU implementation that reduced overall training time by
10-20%.4

4Details of our CTC implementation will be made available
along with open source code.

Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin

Test set Ours Human

R
ea

d

WSJ eval’92 3.10 5.03
WSJ eval’93 4.42 8.08
LibriSpeech test-clean 5.15 5.83
LibriSpeech test-other 12.73 12.69

A
cc

en
te

d VoxForge American-Canadian 7.94 4.85
VoxForge Commonwealth 14.85 8.15
VoxForge European 18.44 12.76
VoxForge Indian 22.89 22.15

N
oi

sy CHiME eval real 21.59 11.84
CHiME eval sim 42.55 31.33

Table 4: Comparison of WER for our speech system and
crowd-sourced human level performance.

every audio clip, on average about 5 seconds long each.
We then take the better of the two transcriptions for the
final WER calculation. Most workers are based in the
United States, are allowed to listen to the audio clip mul-
tiple times and on average spend 27 seconds per transcrip-
tion. The hand-transcribed results are compared to the ex-
isting ground truth to produce a WER estimate. While the
existing ground truth transcriptions do have some label er-
ror, on most sets it is less than 1%.

6.1.1. BENCHMARK RESULTS

Read speech with high signal-to-noise ratio is arguably the
easiest task in large vocabulary continuous speech recog-
nition. We benchmark our system on two test sets from
the Wall Street Journal (WSJ) corpus of read news arti-
cles and the LibriSpeech corpus constructed from audio
books (Panayotov et al., 2015). Table 4 shows that our sys-
tem outperforms crowd-sourced human workers on 3 out
of 4 test sets.

We also tested our system for robustness to common ac-
cents using the VoxForge (http://www.voxforge.org)
dataset. The set contains speech read by speakers with
many different accents. We group these accents into four
categories: American-Canadian, Indian, Commonwealth5

and European6. We construct a test set from the VoxForge
data with 1024 examples from each accent group for a total
of 4096 examples. Human level performance is still no-
tably better than that of our system for all but the Indian
accent.

Finally, we tested our performance on noisy speech us-
ing the test sets from the recently completed third CHiME
challenge (Barker et al., 2015). This dataset has utterances

5“Commonwealth” includes British, Irish, South African,
Australian and New Zealand accents.

6“European” includes countries in Europe without English as
a first language.

from the WSJ test set collected in real noisy environments
and with artificially added noise. Using all 6 channels of
the CHiME audio can provide substantial performance im-
provements (Yoshioka et al., 2015). We use a single chan-
nel for all our models, since access to multi-channel audio
is not yet pervasive. The gap between our system and hu-
man level performance is larger when the data comes from
a real noisy environment instead of synthetically adding
noise to clean speech.

6.2. Mandarin

In Table 5 we compare several architectures trained on
Mandarin Chinese speech on a development set of 2000
utterances as well as a test set of 1882 examples of noisy
speech. This development set was also used to tune the de-
coding parameters. We see that the deepest model with 2D
convolution and BatchNorm outperforms the shallow RNN
by 48% relative.

Architecture Dev Test

5-layer, 1 RNN 7.13 15.41
5-layer, 3 RNN 6.49 11.85
5-layer, 3 RNN + BatchNorm 6.22 9.39
9-layer, 7 RNN + BatchNorm
+ frequency Convolution 5.81 7.93

Table 5: Comparison of the different RNN architectures.
The development and test sets are internal corpora. Each
model in the table has about 80 million parameters.

Test Human RNN

100 utterances / committee 4.0 3.7
250 utterances / individual 9.7 5.7

Table 6: We benchmark the best Mandarin system against
humans on two randomly selected test sets. The first set has
100 examples and is labelled by a committee of 5 Chinese
speakers. The second has 250 examples and is labelled by
a single human transcriber.

Table 6 shows that our best Mandarin Chinese speech sys-
tem transcribes short voice-query like utterances better than
a typical Mandarin Chinese speaker and a committee of 5
Chinese speakers working together.

7. Deployment
Bidirectional models are not well-designed for real time
transcription: since the RNN has several bidirectional lay-
ers, transcribing an utterance requires the entire utterance
to be presented to the RNN; and since we use a wide beam
search for decoding, beam search can be expensive.

To increase deployment scalability, while still providing

TTS: Wavenet

• Speech synthesis using an auto-regressive generative model
• Generates waveform sample-by-sample:16kHz sampling rate

Gif from https://deepmind.com/blog/wavenet-generative-model-raw-audio/

Causal Convolutions

• Fully convolutional
• Prediction at timestep t cannot depend on any future timesteps

Gif from https://deepmind.com/blog/wavenet-generative-model-raw-audio/

• In order to deal with long-range temporal dependencies needed for raw audio generation,
we develop new architectures based on dilated causal convolutions, which exhibit very
large receptive fields.

• We show that when conditioned on a speaker identity, a single model can be used to gener-
ate different voices.

• The same architecture shows strong results when tested on a small speech recognition
dataset, and is promising when used to generate other audio modalities such as music.

We believe that WaveNets provide a generic and flexible framework for tackling many applications
that rely on audio generation (e.g. TTS, music, speech enhancement, voice conversion, source sep-
aration).

2 WAVENET

In this paper we introduce a new generative model operating directly on the raw audio waveform.
The joint probability of a waveform x = {x1, . . . , xT } is factorised as a product of conditional
probabilities as follows:

p (x) =
TY

t=1

p (xt | x1, . . . , xt�1) (1)

Each audio sample xt is therefore conditioned on the samples at all previous timesteps.

Similarly to PixelCNNs (van den Oord et al., 2016a;b), the conditional probability distribution is
modelled by a stack of convolutional layers. There are no pooling layers in the network, and the
output of the model has the same time dimensionality as the input. The model outputs a categorical
distribution over the next value xt with a softmax layer and it is optimized to maximize the log-
likelihood of the data w.r.t. the parameters. Because log-likelihoods are tractable, we tune hyper-
parameters on a validation set and can easily measure if the model is overfitting or underfitting.

2.1 DILATED CAUSAL CONVOLUTIONS

Input

Hidden Layer

Hidden Layer

Hidden Layer

Output

Figure 2: Visualization of a stack of causal convolutional layers.

The main ingredient of WaveNet are causal convolutions. By using causal convolutions, we
make sure the model cannot violate the ordering in which we model the data: the prediction
p (xt+1 | x1, ..., xt) emitted by the model at timestep t cannot depend on any of the future timesteps
xt+1, xt+2, . . . , xT as shown in Fig. 2. For images, the equivalent of a causal convolution is a
masked convolution (van den Oord et al., 2016a) which can be implemented by constructing a mask
tensor and doing an elementwise multiplication of this mask with the convolution kernel before ap-
plying it. For 1-D data such as audio one can more easily implement this by shifting the output of a
normal convolution by a few timesteps.

At training time, the conditional predictions for all timesteps can be made in parallel because all
timesteps of ground truth x are known. When generating with the model, the predictions are se-
quential: after each sample is predicted, it is fed back into the network to predict the next sample.

2

Dilated Convolutions
• Wavenet uses “dilated convolutions”
• Enables the network to have very large receptive fields

Gif from https://deepmind.com/blog/wavenet-generative-model-raw-audio/
1https://techcrunch.com/2017/10/04/googles-wavenet-machine-learning-based-speech-synthesis-comes-to-assistant/

Convolutional Neural Networks (CNNs)

All animations are from: https://github.com/vdumoulin/conv_arithmetic

https://github.com/vdumoulin/conv_arithmetic

Conditional Wavenet
• Condition the model on input variables to generate audio with the

required characteristics
• Global (same representation used to influence all timesteps)
• Local (use a second timeseries for conditioning)

Gif from https://deepmind.com/blog/wavenet-generative-model-raw-audio/

Tacotron

Attention

Pre-net

CBHG

Character embeddings

Attention
RNN

Decoder
RNN

Pre-net

Attention
RNN

Decoder
RNN

Pre-net

Attention
RNN

Decoder
RNN

Pre-net

CBHG

Linear-scale
spectrogram

Seq2seq target
with r=3

Griffin-Lim reconstruction

Attention is applied
to all decoder steps

<GO> frame

Figure 1: Model architecture. The model takes characters as input and outputs the corresponding

raw spectrogram, which is then fed to the Griffin-Lim reconstruction algorithm to synthesize speech.

or machine translation (Wu et al., 2016), TTS outputs are continuous, and output sequences are
usually much longer than those of the input. These attributes cause prediction errors to accumulate
quickly. In this paper, we propose Tacotron, an end-to-end generative TTS model based on the
sequence-to-sequence (seq2seq) (Sutskever et al., 2014) with attention paradigm (Bahdanau et al.,
2014). Our model takes characters as input and outputs raw spectrogram, using several techniques
to improve the capability of a vanilla seq2seq model. Given <text, audio> pairs, Tacotron can
be trained completely from scratch with random initialization. It does not require phoneme-level
alignment, so it can easily scale to using large amounts of acoustic data with transcripts. With a
simple waveform synthesis technique, Tacotron produces a 3.82 mean opinion score (MOS) on an
US English eval set, outperforming a production parametric system in terms of naturalness1.

2 RELATED WORK

WaveNet (van den Oord et al., 2016) is a powerful generative model of audio. It works well for TTS,
but is slow due to its sample-level autoregressive nature. It also requires conditioning on linguistic
features from an existing TTS frontend, and thus is not end-to-end: it only replaces the vocoder and
acoustic model. Another recently-developed neural model is DeepVoice (Arik et al., 2017), which
replaces every component in a typical TTS pipeline by a corresponding neural network. However,
each component is independently trained, and it’s nontrivial to change the system to train in an
end-to-end fashion.

To our knowledge, Wang et al. (2016) is the earliest work touching end-to-end TTS using seq2seq
with attention. However, it requires a pre-trained hidden Markov model (HMM) aligner to help the
seq2seq model learn the alignment. It’s hard to tell how much alignment is learned by the seq2seq
per se. Second, a few tricks are used to get the model trained, which the authors note hurts prosody.
Third, it predicts vocoder parameters hence needs a vocoder. Furthermore, the model is trained on
phoneme inputs and the experimental results seem to be somewhat limited.

Char2Wav (Sotelo et al., 2017) is an independently-developed end-to-end model that can be trained
on characters. However, Char2Wav still predicts vocoder parameters before using a SampleRNN
neural vocoder (Mehri et al., 2016), whereas Tacotron directly predicts raw spectrogram. Also, their
seq2seq and SampleRNN models need to be separately pre-trained, but our model can be trained

1Sound demos can be found at https://google.github.io/tacotron

2

Image from Wang et al., “Tacotron: Towards end-to-end speech synthesis”, 2017. “https://arxiv.org/pdf/1703.10135.pdf

https://arxiv.org/pdf/1703.10135.pdf

Tacotron: CBHG Module

Image from Wang et al., “Tacotron: Towards end-to-end speech synthesis”, 2017. “https://arxiv.org/pdf/1703.10135.pdf

from scratch. Finally, we made several key modifications to the vanilla seq2seq paradigm. As
shown later, a vanilla seq2seq model does not work well for character-level inputs.

3 MODEL ARCHITECTURE

The backbone of Tacotron is a seq2seq model with attention (Bahdanau et al., 2014; Vinyals et al.,
2015). Figure 1 depicts the model, which includes an encoder, an attention-based decoder, and a
post-processing net. At a high-level, our model takes characters as input and produces spectrogram
frames, which are then converted to waveforms. We describe these components below.

Conv1D layers

Highway layers

Conv1D bank + stacking

Max-pool along time (stride=1)

Bidirectional RNN

Residual connection

Conv1D projections

Figure 2: The CBHG (1-D convolution bank + highway network + bidirectional GRU) module
adapted from Lee et al. (2016).

3.1 CBHG MODULE

We first describe a building block dubbed CBHG, illustrated in Figure 2. CBHG consists of a
bank of 1-D convolutional filters, followed by highway networks (Srivastava et al., 2015) and a
bidirectional gated recurrent unit (GRU) (Chung et al., 2014) recurrent neural net (RNN). CBHG
is a powerful module for extracting representations from sequences. The input sequence is first
convolved with K sets of 1-D convolutional filters, where the k-th set contains Ck filters of width
k (i.e. k = 1, 2, . . . ,K). These filters explicitly model local and contextual information (akin to
modeling unigrams, bigrams, up to K-grams). The convolution outputs are stacked together and
further max pooled along time to increase local invariances. Note that we use a stride of 1 to
preserve the original time resolution. We further pass the processed sequence to a few fixed-width
1-D convolutions, whose outputs are added with the original input sequence via residual connections
(He et al., 2016). Batch normalization (Ioffe & Szegedy, 2015) is used for all convolutional layers.
The convolution outputs are fed into a multi-layer highway network to extract high-level features.
Finally, we stack a bidirectional GRU RNN on top to extract sequential features from both forward
and backward context. CBHG is inspired from work in machine translation (Lee et al., 2016),
where the main differences from Lee et al. (2016) include using non-causal convolutions, batch
normalization, residual connections, and stride=1 max pooling. We found that these modifications
improved generalization.

3.2 ENCODER

The goal of the encoder is to extract robust sequential representations of text. The input to the
encoder is a character sequence, where each character is represented as a one-hot vector and em-

3

https://arxiv.org/pdf/1703.10135.pdf

Grapheme to phoneme (G2P) conversion

Grapheme to phoneme (G2P) conversion

• Produce a pronunciation (phoneme sequence) given a
written word (grapheme sequence)

• Learn G2P mappings from a pronunciation dictionary

• Useful for:

• ASR systems in languages with no pre-built lexicons

• Speech synthesis systems

• Deriving pronunciations for out-of-vocabulary (OOV) words

G2P conversion (I)

• One popular paradigm: Joint sequence models [BN12]

• Grapheme and phoneme sequences are first aligned
using EM-based algorithm

• Results in a sequence of graphones (joint G-P tokens)

• Ngram models trained on these graphone sequences

• WFST-based implementation of such a joint graphone
model [Phonetisaurus]

[BN12]:Bisani & Ney , “Joint sequence models for grapheme-to-phoneme conversion”,Specom 2012
[Phonetisaurus] J. Novak, Phonetisaurus Toolkit

G2P conversion (II)

• Neural network based methods are the new state-of-the-art
for G2P

• Bidirectional LSTM-based networks using a CTC output
layer [Rao15]. Comparable to Ngram models.

• Incorporate alignment information [Yao15]. Beats Ngram
models.

• No alignment. Encoder-decoder with attention. Beats the
above systems [Toshniwal16].

LSTM + CTC for G2P conversion [Rao15]

4.1.1. Zero-delay

In the simplest approach, without any output delay, the in-
put sequence is the series of graphemes and the output se-
quence as the series of phonemes. In the (common) case of
unequal number of graphemes and phonemes we pad the se-
quence with an empty marker, φ. For example, we have:
Input: {g, o, o, g, l, e}
Output: {g, u, g, @, l, φ}

4.1.2. Fixed-delay

In this mode, we pad the output phoneme sequence with a
fixed delay, this allows the LSTM to see several graphemes
before outputting any phoneme, and builds a contextual win-
dow to help predict the correct phoneme. As before, in the
case of unequal input and output size, we pad the sequence
with φ. For example, with a fixed delay of 2, we have:
Input: {g, o, o, g, l, e, φ}
Output: {φ, φ g, u, g, @, l}

4.1.3. Full-delay

In this approach, we allow the model to see the entire input
sequence before outputting any phoneme. The input sequence
is the series of graphemes followd by an end marker, ∆, and
the output sequence contains a delay equal to size of the input
followed by the series of phonemes. Again we pad unequal
input and output sequences with φ. For example;
Input: {g, o, o, g, l, e,∆, φ, φ, φ, φ}
Output: {φ, φ, φ, φ, φ, φ, g, u, g, @, l}

With the full delay setup we use an additional end marker
to indicate that all the input graphemes have been seen and
that the LSTM can start outputting phonemes. We discuss the
impact of these various configurations of output delay on the
G2P performance in Section 6.1.

4.2. Bidirectional models

While unidirectional models require artificial delays to build
a contextual window, bidirectional LSTMs (BLSTM) achieve
this naturally as they see the entire input before outputting
any phoneme. The BLSTM setup is nearly identical to the
unidirectional model, but has ”backward” LSTM layers (as
described in [14]) which process the input in the reverse di-
rection.

4.2.1. Deep Bidirectional LSTM

We found that deep-BLSTM (DBLSTM) with mutiple hid-
den layers perform slightly better than a BLSTM with a sin-
gle hidden layer. The optimal performance was achieved with
a architecture, shown in Figure 1, where a single input layer
was fully connected to two parallel layers of 512 units each;

Fig. 1. The best performing G2P neural network architecture
using a DBLSTM-CTC.

one unidirectional and one bidirectional. This first hidden
layer was fully connected to a single unidirectional layer of
128 units. The second hidden layer was connected to an out-
put layer. The model was initialized with random weights and
trained with a learning rate of 0.01.

4.2.2. Connectionist Temporal Classification

Along with the DBLSTM we use a connectionist temporal
classification [18] (CTC) output layer which interprets the
network outputs as a probability distribution over all possible
output label sequences, conditioned on the input data. The
CTC objective function directly maximizes the probabilities
of the correct labelings.

The CTC output layer has a softmax output layer with
41 units, one each for the 40 output phoneme labels and an
additional ”blank” unit. The probability of the CTC ”blank”
unit is interpretted as observing no label at the given time step.
This is similar to the use of ϵ described earlier in the joint-
sequence models, however, the key difference here is that this
is handled implicitly by the DBSLTM-CTC model instead of
having explicit alignments with join-sequence models.

4.3. Combination G2P Implementation

LSTMs and joint n-gram models are two very different ap-
proaches to G2P modeling since LSTMs model the G2P
task at the full sequence (word) level instead of the n-gram
(grapheme) level. These two models may generalize in dif-
ferent ways and a combination of both approaches may result
in a better overall model. We combine both models by

representing the output of the LSTM G2P as a finite state
transducer (FST) and then intersect it with the output of the
n-gram model which is also represented as a FST. We select
the single best path in the resulting FST which corresponds to
a single best pronunciation. (We did not find any significant
gains by using a scaling factor between the two models.)

5. EXPERIMENTS

In this paper, we report G2P performance on the publicly
available CMU pronunciation dictionary. We evaluate per-
formance using phoneme error rate (PER) and word error
rate (WER) metrics. PER is defined as the number of in-
sertions, deletions and substitutions divided by the number
of true phonemes, while WER is the number of words er-
rors divided by the total number of words. The CMU dataset
contains 106,837 words and of these we construct a devel-
opment set using 2,670 words to determine stopping criteria
while training, and a test set using 12,000 words. We use the
same training and testing split as found in [12, 7, 4] and thus
the results are directly comparable.

6. RESULTS AND DISCUSSION

6.1. Impact of Output Delay

Table 1 compares the performance of unidirectional models
with varying output delays. As expected, we find that when
using fixed delays increasing the size of the delays helps, and
that full delay outperforms any fixed delay. This confirms the
importance of exploiting future context for the G2P task.

Output Delay Phoneme Error Rate (%)
0 32.0
3 10.2
4 9.8
5 9.5
7 9.5

Full-delay 9.1

Table 1. Accuracy of ULSTM G2P with output delays.

6.2. Impact of CTC and Bi-directional Modeling

Table 2 compares LSTM models to various approaches pro-
posed in the literature. The numbers reported for the LSTM
are raw outputs, i.e. we do not decode the output with any
language model. In our experiments, we found that while uni-
directional models benefitted from decoding with a phoneme
language model (which we implemented as another LSTM
trained on the same training data), the BLSTM with CTC
outputs did not see any improvement with the additional
phoneme language model, likely because it already memo-
rizes and enforces contextual dependencies similar to those
imposed by an external langauge model.

Model Word Error Rate (%)
Galescu and Allen [4] 28.5

Chen [7] 24.7
Bisani and Ney [2] 24.5
Novak et al. [6] 24.4
Wu et al. [12] 23.4
5-gram FST 27.2
8-gram FST 26.5

Unidirectional LSTM with Full-delay 30.1
DBLSTM-CTC 128 Units 27.9
DBLSTM-CTC 512 Units 25.8

DBLSTM-CTC 512 + 5-gram FST 21.3

Table 2. Comparison of various G2P technologies.

The table shows that BLSTM architectures outperform
unidirectional LSTMs, and also that they compare favorably
to WFST based ngram models (25.8% WER vs 26.5%). Fur-
thermore, a combination of the two technologies as described
in 4.3 outperforms both models, and other approaches pro-
posed in the literature.

Table 3 compares the sizes of some of the models we
trained and also their execution time in terms of average num-
ber of milliseconds per word. It shows that BLSTM architec-
tures are quite competitive with ngram models: the 128-unit
BLSTM which performs at about the same level of accuracy
as the 5-gram model is 10 times smaller and twice as fast, and
the 512-unit model remains extremely compact if arguably a
little slow (no special attempt was made so far at optimizing
our LSTM code for speed, so this is less of a concern). This
makes LSTM G2Ps quite appealing for on-device implemen-
tations.

Model Model Size Model Speed
5-gram FST 30 MB 35 ms/word
8-gram FST 130 MB 30 ms/word

DBLSTM-CTC 128 Units 3 MB 12 ms/word
DBLSTM-CTC 512 Units 11 MB 64 ms/word

Table 3. Model size and speed for n-gram and LSTM G2P.

7. CONCLUSION

We suggested LSTM-based architectures to perform G2P
conversions. We approached the problem as a word-to-
pronunciation sequence transcription problem in contrast
to the traditional joint grapheme-to-phoneme modeling ap-
proach and thus do not require explicit grapheme-to-phoneme
alignment for training. We trained unidirectional models with
various output delays to capture some amount of future con-
text, and found that models with greater contextual informa-
tion perform better. We also trained deep BLSTM models

[Rao15] Grapheme-to-phoneme conversion using LSTM RNNs, ICASSP 2015

G2P conversion (II)

• Neural network based methods are the new state-of-the-art
for G2P

• Bidirectional LSTM-based networks using a CTC output
layer [Rao15]. Comparable to Ngram models.

• Incorporate alignment information [Yao15]. Beats Ngram
models.

• No alignment. Encoder-decoder with attention. Beats the
above systems [Toshniwal16].

Seq2seq models  
(with alignment information [Yao15])

Figure 1: An encoder-decoder LSTM with two layers. The en-
coder LSTM, to the left of the dotted line, reads a time-reversed
sequence “hsi T A C” and produces the last hidden layer acti-
vation to initialize the decoder LSTM. The decoder LSTM, to
the right of the dotted line, reads “hosi K AE T” as the past
phoneme prediction sequence and uses ”K AE T h/osi” as the
output sequence to generate. Notice that the input sequence for
encoder LSTM is time reversed, as in [5]. hsi denotes letter-side
sentence beginning. hosi and h/osi are the output-side sentence
begin and end symbols.

Following [21,22], Eq. (1) can be estimated using an expo-
nential (or maximum entropy) model in the form of

p(pt|x = (pt�1
t�k, l

t+k
t�k)) =

exp(
P

i �ifi(x, pt))P
q exp(

P
i �ifi(x, q))

(2)

where features fi(·) are usually 0 or 1 indicating the identities
of phones and letters in specific contexts.

Joint modeling has been proposed for grapheme-to-
phoneme conversion [20, 21, 23]. In these models, one has a
vocabulary of grapheme and phoneme pairs, which are called
graphones. The probability of a graphone sequence is

p(C = c1 · · · cT) =
TY

t=1

p(ct|c1 · · · ct�1), (3)

where each c is a graphone unit. The conditional probability
p(ct|c1 · · · ct�1) is estimated using an n-gram language model.

To date, these models have produced the best performance
on common benchmark datasets, and are used for comparison
with the architectures in the following sections.

3. Side-conditioned Generation Models
In this section, we explore the use of side-conditioned language
models for generation. This approach is appealing for its sim-
plicity, and especially because no explicit alignment informa-
tion is needed.

3.1. Encoder-decoder LSTM

In the context of general sequence to sequence learning, the
concept of encoder and decoder networks has recently been pro-
posed [3, 5, 19, 24, 25]. The main idea is mapping the entire in-
put sequence to a vector, and then using a recurrent neural net-
work (RNN) to generate the output sequence conditioned on the
encoding vector. Our implementation follows the method in [5],
which we denote as encoder-decoder LSTM. Figure 1 depicts a
model of this method. As in [5], we use an LSTM [19] as the
basic recurrent network unit because it has shown better perfor-
mance than simple RNNs on language understanding [26] and
acoustic modeling [27] tasks.

In this method, there are two sets of LSTMs: one is an en-
coder that reads the source-side input sequence and the other

Figure 2: The uni-directional LSTM reads letter sequence “hsi
C A T h/si” and past phoneme prediction “hosi hosi K AE
T”. It outputs phoneme sequence “hosi K AE T h/osi”. Note
that there are separate output-side begin and end-of-sentence
symbols, prefixed by ”o”.

is a decoder that functions as a language model and generates
the output. The encoder is used to represent the entire input se-
quence in the last-time hidden layer activities. These activities
are used as the initial activities of the decoder network. The
decoder is a language model that uses past phoneme sequence
�t�1
1 to predict the next phoneme �t, with its hidden state ini-

tialized as described. It stops predicting after outputting h/osi,
the output-side end-of-sentence symbol. Note that in our mod-
els, we use hsi and h/si as input-side begin-of-sentence and
end-of-sentence tokens, and hosi and h/osi for corresponding
output symbols.

To train these encoder and decoder networks, we used back-
propagation through time (BPTT) [28,29], with the error signal
originating in the decoder network.

We use a beam search decoder to generate phoneme se-
quence during the decoding phase. The hypothesis sequence
with the highest posterior probability is selected as the decod-
ing result.

4. Alignment Based Models
In this section, we relax the earlier constraint that the model
translates directly from the source-side letters to the target-side
phonemes without the benefit of an explicit alignment.

4.1. Uni-directional LSTM

A model of the uni-directional LSTM is in Figure 2. Given a
pair of source-side input and target-side output sequences and
an alignment A, the posterior probability of output sequence
given the input sequence is

p(�T
1 |A, lT1) =

TY

t=1

p(�t|�t�1
1 , lt1) (4)

where the current phoneme prediction �t depends both on its
past prediction �t�1 and the input letter sequence lt. Because of
the recurrence in the LSTM, prediction of the current phoneme
depends on the phoneme predictions and letter sequence from
the sentence beginning. Decoding uses the same beam search
decoder described in Sec. 3.

4.2. Bi-directional LSTM

The bi-directional recurrent neural network was proposed in
[30]. In this architecture, one RNN processes the input from

Figure 1: An encoder-decoder LSTM with two layers. The en-
coder LSTM, to the left of the dotted line, reads a time-reversed
sequence “hsi T A C” and produces the last hidden layer acti-
vation to initialize the decoder LSTM. The decoder LSTM, to
the right of the dotted line, reads “hosi K AE T” as the past
phoneme prediction sequence and uses ”K AE T h/osi” as the
output sequence to generate. Notice that the input sequence for
encoder LSTM is time reversed, as in [5]. hsi denotes letter-side
sentence beginning. hosi and h/osi are the output-side sentence
begin and end symbols.

Following [21,22], Eq. (1) can be estimated using an expo-
nential (or maximum entropy) model in the form of

p(pt|x = (pt�1
t�k, l

t+k
t�k)) =

exp(
P

i �ifi(x, pt))P
q exp(

P
i �ifi(x, q))

(2)

where features fi(·) are usually 0 or 1 indicating the identities
of phones and letters in specific contexts.

Joint modeling has been proposed for grapheme-to-
phoneme conversion [20, 21, 23]. In these models, one has a
vocabulary of grapheme and phoneme pairs, which are called
graphones. The probability of a graphone sequence is

p(C = c1 · · · cT) =
TY

t=1

p(ct|c1 · · · ct�1), (3)

where each c is a graphone unit. The conditional probability
p(ct|c1 · · · ct�1) is estimated using an n-gram language model.

To date, these models have produced the best performance
on common benchmark datasets, and are used for comparison
with the architectures in the following sections.

3. Side-conditioned Generation Models
In this section, we explore the use of side-conditioned language
models for generation. This approach is appealing for its sim-
plicity, and especially because no explicit alignment informa-
tion is needed.

3.1. Encoder-decoder LSTM

In the context of general sequence to sequence learning, the
concept of encoder and decoder networks has recently been pro-
posed [3, 5, 19, 24, 25]. The main idea is mapping the entire in-
put sequence to a vector, and then using a recurrent neural net-
work (RNN) to generate the output sequence conditioned on the
encoding vector. Our implementation follows the method in [5],
which we denote as encoder-decoder LSTM. Figure 1 depicts a
model of this method. As in [5], we use an LSTM [19] as the
basic recurrent network unit because it has shown better perfor-
mance than simple RNNs on language understanding [26] and
acoustic modeling [27] tasks.

In this method, there are two sets of LSTMs: one is an en-
coder that reads the source-side input sequence and the other

Figure 2: The uni-directional LSTM reads letter sequence “hsi
C A T h/si” and past phoneme prediction “hosi hosi K AE
T”. It outputs phoneme sequence “hosi K AE T h/osi”. Note
that there are separate output-side begin and end-of-sentence
symbols, prefixed by ”o”.

is a decoder that functions as a language model and generates
the output. The encoder is used to represent the entire input se-
quence in the last-time hidden layer activities. These activities
are used as the initial activities of the decoder network. The
decoder is a language model that uses past phoneme sequence
�t�1
1 to predict the next phoneme �t, with its hidden state ini-

tialized as described. It stops predicting after outputting h/osi,
the output-side end-of-sentence symbol. Note that in our mod-
els, we use hsi and h/si as input-side begin-of-sentence and
end-of-sentence tokens, and hosi and h/osi for corresponding
output symbols.

To train these encoder and decoder networks, we used back-
propagation through time (BPTT) [28,29], with the error signal
originating in the decoder network.

We use a beam search decoder to generate phoneme se-
quence during the decoding phase. The hypothesis sequence
with the highest posterior probability is selected as the decod-
ing result.

4. Alignment Based Models
In this section, we relax the earlier constraint that the model
translates directly from the source-side letters to the target-side
phonemes without the benefit of an explicit alignment.

4.1. Uni-directional LSTM

A model of the uni-directional LSTM is in Figure 2. Given a
pair of source-side input and target-side output sequences and
an alignment A, the posterior probability of output sequence
given the input sequence is

p(�T
1 |A, lT1) =

TY

t=1

p(�t|�t�1
1 , lt1) (4)

where the current phoneme prediction �t depends both on its
past prediction �t�1 and the input letter sequence lt. Because of
the recurrence in the LSTM, prediction of the current phoneme
depends on the phoneme predictions and letter sequence from
the sentence beginning. Decoding uses the same beam search
decoder described in Sec. 3.

4.2. Bi-directional LSTM

The bi-directional recurrent neural network was proposed in
[30]. In this architecture, one RNN processes the input from

Figure 3: The bi-directional LSTM reads letter sequence “hsi C
A T h/si” for the forward directional LSTM, the time-reversed
sequence “h/si T A C hsi” for the backward directional LSTM,
and past phoneme prediction “hosi hosi K AE T”. It outputs
phoneme sequence “hosi K AE T h/osi”.

left-to-right, while another processes it right-to-left. The out-
puts of the two sub-networks are then combined, for example
being fed into a third RNN. The idea has been used for speech
recognition [30] and more recently for language understand-
ing [31]. Bi-directional LSTMs have been applied to speech
recognition [19] and machine translation [6].

In the bi-directional model, the phoneme prediction de-
pends on the whole source-side letter sequence as follows

p(�T
1 |A, lT1) =

TY

t=1

p(�t|�t�1
1 lT1) (5)

Figure 3 illustrates this model. Focusing on the third set
of inputs, for example, letter lt = A is projected to a hidden
layer, together with the past phoneme prediction �t�1 = K.
The letter lt = A is also projected to a hidden layer in the
network that runs in the backward direction. The hidden layer
activation from the forward and backward networks is then used
as the input to a final network running in the forward direction.
The output of the topmost recurrent layer is used to predict the
current phoneme �t = AE.

We found that performance is better when feeding the past
phoneme prediction to the bottom LSTM layer, instead of other
layers such as the softmax layer. However, this architecture can
be further extended, e.g., by feeding the past phoneme predic-
tions to both the top and bottom layers, which we may investi-
gate in future work.

In the figure, we draw one layer of bi-directional LSTMs. In
Section 5, we also report results for deeper networks, in which
the forward and backward layers are duplicated several times;
each layer in the stack takes the concatenated outputs of the
forward-backward networks below as its input.

Note that the backward direction LSTM is independent of
the past phoneme predictions. Therefore, during decoding, we
first pre-compute its activities. We then treat the output from the
backward direction LSTM as additional input to the top-layer
LSTM that also has input from the lower layer forward direction
LSTM. The same beam search decoder described before can
then be used.

5. Experiments
5.1. Datasets

Our experiments were conducted on the three US English
datasets1: the CMUDict, NetTalk, and Pronlex datasets that
have been evaluated in [20, 21]. We report phoneme error rate
(PER) and word error rate (WER) 2. In the phoneme error rate
computation, following [20, 21], in the case of multiple refer-
ence pronunciations, the variant with the smallest edit distance
is used. Similarly, if there are multiple reference pronunciations
for a word, a word error occurs only if the predicted pronuncia-
tion doesn’t match any of the references.

The CMUDict contains 107877 training words, 5401 vali-
dation words, and 12753 words for testing. The Pronlex data
contains 83182 words for training, 1000 words for validation,
and 4800 words for testing. The NetTalk data contains 14985
words for training and 5002 words for testing, and does not have
a validation set.

5.2. Training details

For the CMUDict and Pronlex experiments, all meta-parameters
were set via experimentation with the validation set. For the
NetTalk experiments, we used the same model structures as
with the Pronlex experiments.

To generate the alignments used for training the alignment-
based methods of Sec. 4, we used the alignment package of [32].
We used BPTT to train the LSTMs. We used sentence level
minibatches without truncation. To speed-up training, we used
data parallelism with 100 sentences per minibatch, except for
the CMUDict data, where one sentence per minibatch gave the
best performance on the development data. For the alignment-
based methods, we sorted sentences according to their lengths,
and each minibatch had sentences with the same length. For
encoder-decoder LSTMs, we didn’t sort sentences in the same
lengths as done in the alignment-based methods, and instead,
followed [5].

For the encoder-decoder LSTM in Sec. 3, we used 500 di-
mensional projection and hidden layers. When increasing the
depth of the encoder-decoder LSTMs, we increased the depth
of both encoder and decoder networks. For the bi-directional
LSTMs, we used a 50 dimensional projection layer and 300
dimensional hidden layer. For the uni-directional LSTM ex-
periments on CMUDict, we used a 400 dimensional projection
layer, 400 dimensional hidden layer, and the above described
data parallelism.

For both encoder-decoder LSTMs and the alignment-based
methods, we randomly permuted the order of the training sen-
tences in each epoch. We found that the encoder-decoder LSTM
needed to start from a small learning rate, approximately 0.007
per sample. For bi-directional LSTMs, we used initial learn-
ing rates of 0.1 or 0.2. For the uni-directional LSTM, the ini-
tial learning rate was 0.05. The learning rate was controlled
by monitoring the improvement of cross-entropy scores on val-
idation sets. If there was no improvement of the cross-entropy
score, we halved the learning rate. NetTalk dataset doesn’t have
a validation set. Therefore, on NetTalk, we first ran 10 itera-
tions with a fixed per-sample learning rate of 0.1, reduced the
learning rate by half for 2 more iterations, and finally used 0.01
for 70 iterations.

1We thank Stanley F. Chen who kindly shared the data set partition
he used in [21].

2We observed a strong correlation of BLEU and WER scores on
these tasks. Therefore we didn’t report BLEU scores in this paper.

Method PER (%) WER (%)
encoder-decoder LSTM 7.53 29.21
encoder-decoder LSTM (2 layers) 7.63 28.61
uni-directional LSTM 8.22 32.64
uni-directional LSTM (window size 6) 6.58 28.56
bi-directional LSTM 5.98 25.72
bi-directional LSTM (2 layers) 5.84 25.02
bi-directional LSTM (3 layers) 5.45 23.55

Table 2: Results on the CMUDict dataset.

The models of Secs. 3 and 4 require using a beam search de-
coder. Based on validation results, we report results with beam
width of 1.0 in likelihood. We did not observe an improvement
with larger beams. Unless otherwise noted, we used a window
of 3 letters in the models. We plan to release our training recipes
to public through computation network toolkit (CNTK) [33].

5.3. Results

We first report results for all our models on the CMUDict
dataset [21]. The first two lines of Table 2 show results for the
encoder-decoder models. While the error rates are reasonable,
the best previously reported results of 24.53% WER [20] are
somewhat better. It is possible that combining multiple systems
as in [5] would achieve the same result, we have chosen not to
engage in system combination.

The effect of using alignment based models is shown at
the bottom of Table 2. Here, the bi-directional models produce
an unambiguous improvement over the earlier models, and by
training a three-layer bi-directional LSTM, we are able to sig-
nificantly exceed the previous state-of-the-art.

We noticed that the uni-directional LSTM with default win-
dow size had the highest WER, perhaps because one does not
observe the entire input sequence as is the case with both the
encoder-decoder and bi-directional LSTMs. To validate this
claim, we increased the window size to 6 to include the cur-
rent and five future letters as its source-side input. Because
the average number of letters is 7.5 on CMUDict dataset, the
uni-directional model in many cases thus sees the entire letter
sequences. With a window size of 6 and additional informa-
tion from the alignments, the uni-directional model was able to
perform better than the encoder-decoder LSTM.

5.4. Comparison with past results

We now present additional results for the NetTalk and Pron-
lex datasets, and compare with the best previous results. The
method of [20] uses 9-gram graphone models, and [21] uses
8-gram maximum entropy model.

Changes in WER of 0.77, 1.30, and 1.27 for CMUDict,
NetTalk and Pronlex datasets respectively are significant at the
95% confidence level. For PER, the corresponding values are
0.15, 0.29, and 0.28. On both the CMUDict and NetTalk
datasets, the bi-directional LSTM outperforms the previous re-
sults at the 95% significance level.

6. Related Work
Grapheme-to-phoneme has important applications in text-to-
speech and speech recognition. It has been well studied in the
past decades. Although many methods have been proposed in
the past, the best performance on the standard dataset so far

Data Method PER (%) WER (%)
CMUDict past results [20] 5.88 24.53

bi-directional LSTM 5.45 23.55
NetTalk past results [20] 8.26 33.67

bi-directional LSTM 7.38 30.77
Pronlex past results [20, 21] 6.78 27.33

bi-directional LSTM 6.51 26.69

Table 3: The PERs and WERs using bi-directional LSTM in
comparison to the previous best performances in the literature.

was achieved using a joint sequence model [20] of grapheme-
phoneme joint multi-gram or graphone, and a maximum en-
tropy model [21].

To our best knowledge, our methods are the first sin-
gle neural-network-based system that outperform the previous
state-of-the-art methods [20,21] on these common datasets. It is
possible to improve performances by combining multiple sys-
tems and methods [34, 35], we have chosen not to engage in
building hybrid models.

Our work can be cast in the general sequence to sequence
translation category, which includes tasks such as machine
translation and speech recognition. Therefore, perhaps the most
closely related work is [6]. However, instead of the marginal
gains in their bi-direction models, our model obtained signifi-
cant gains from using bi-direction information. Also, their work
doesn’t include experimenting with deeper structures, which we
found beneficial. We plan to conduct machine translation tasks
to compare our models and theirs.

7. Conclusion
In this paper, we have applied both encoder-decoder neural
networks and alignment based models to the grapheme-to-
phoneme task. The encoder-decoder models have the signifi-
cant advantage of not requiring a separate alignment step. Per-
formance with these models comes close to the best previous
alignment-based results. When we go further, and inform a bi-
directional neural network models with alignment information,
we are able to make significant advances over previous meth-
ods.

8. References
[1] L. H. Son, A. Allauzen, and F. Yvon, “Continuous space

translation models with neural networks,” in Proceedings
of the 2012 conference of the north american chapter of
the association for computational linguistics: Human lan-
guage technologies. Association for Computational Lin-
guistics, 2012, pp. 39–48.

[2] M. Auli, M. Galley, C. Quirk, and G. Zweig, “Joint lan-
guage and translation modeling with recurrent neural net-
works.,” in EMNLP, 2013, pp. 1044–1054.

[3] N. Kalchbrenner and P. Blunsom, “Recurrent continuous
translation nodels,” in EMNLP, 2013.

[4] J. Devlin, R. Zbib, Z. Huang, T. Lamar, R. Schwartz, and
J. Makhoul, “Fast and robust neural network joint models
for statistical machine translation,” in ACL, 2014.

[5] H. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to
sequence learning with neural networks,” in NIPS, 2014.

Method PER (%) WER (%)
encoder-decoder LSTM 7.53 29.21
encoder-decoder LSTM (2 layers) 7.63 28.61
uni-directional LSTM 8.22 32.64
uni-directional LSTM (window size 6) 6.58 28.56
bi-directional LSTM 5.98 25.72
bi-directional LSTM (2 layers) 5.84 25.02
bi-directional LSTM (3 layers) 5.45 23.55

Table 2: Results on the CMUDict dataset.

The models of Secs. 3 and 4 require using a beam search de-
coder. Based on validation results, we report results with beam
width of 1.0 in likelihood. We did not observe an improvement
with larger beams. Unless otherwise noted, we used a window
of 3 letters in the models. We plan to release our training recipes
to public through computation network toolkit (CNTK) [33].

5.3. Results

We first report results for all our models on the CMUDict
dataset [21]. The first two lines of Table 2 show results for the
encoder-decoder models. While the error rates are reasonable,
the best previously reported results of 24.53% WER [20] are
somewhat better. It is possible that combining multiple systems
as in [5] would achieve the same result, we have chosen not to
engage in system combination.

The effect of using alignment based models is shown at
the bottom of Table 2. Here, the bi-directional models produce
an unambiguous improvement over the earlier models, and by
training a three-layer bi-directional LSTM, we are able to sig-
nificantly exceed the previous state-of-the-art.

We noticed that the uni-directional LSTM with default win-
dow size had the highest WER, perhaps because one does not
observe the entire input sequence as is the case with both the
encoder-decoder and bi-directional LSTMs. To validate this
claim, we increased the window size to 6 to include the cur-
rent and five future letters as its source-side input. Because
the average number of letters is 7.5 on CMUDict dataset, the
uni-directional model in many cases thus sees the entire letter
sequences. With a window size of 6 and additional informa-
tion from the alignments, the uni-directional model was able to
perform better than the encoder-decoder LSTM.

5.4. Comparison with past results

We now present additional results for the NetTalk and Pron-
lex datasets, and compare with the best previous results. The
method of [20] uses 9-gram graphone models, and [21] uses
8-gram maximum entropy model.

Changes in WER of 0.77, 1.30, and 1.27 for CMUDict,
NetTalk and Pronlex datasets respectively are significant at the
95% confidence level. For PER, the corresponding values are
0.15, 0.29, and 0.28. On both the CMUDict and NetTalk
datasets, the bi-directional LSTM outperforms the previous re-
sults at the 95% significance level.

6. Related Work
Grapheme-to-phoneme has important applications in text-to-
speech and speech recognition. It has been well studied in the
past decades. Although many methods have been proposed in
the past, the best performance on the standard dataset so far

Data Method PER (%) WER (%)
CMUDict past results [20] 5.88 24.53

bi-directional LSTM 5.45 23.55
NetTalk past results [20] 8.26 33.67

bi-directional LSTM 7.38 30.77
Pronlex past results [20, 21] 6.78 27.33

bi-directional LSTM 6.51 26.69

Table 3: The PERs and WERs using bi-directional LSTM in
comparison to the previous best performances in the literature.

was achieved using a joint sequence model [20] of grapheme-
phoneme joint multi-gram or graphone, and a maximum en-
tropy model [21].

To our best knowledge, our methods are the first sin-
gle neural-network-based system that outperform the previous
state-of-the-art methods [20,21] on these common datasets. It is
possible to improve performances by combining multiple sys-
tems and methods [34, 35], we have chosen not to engage in
building hybrid models.

Our work can be cast in the general sequence to sequence
translation category, which includes tasks such as machine
translation and speech recognition. Therefore, perhaps the most
closely related work is [6]. However, instead of the marginal
gains in their bi-direction models, our model obtained signifi-
cant gains from using bi-direction information. Also, their work
doesn’t include experimenting with deeper structures, which we
found beneficial. We plan to conduct machine translation tasks
to compare our models and theirs.

7. Conclusion
In this paper, we have applied both encoder-decoder neural
networks and alignment based models to the grapheme-to-
phoneme task. The encoder-decoder models have the signifi-
cant advantage of not requiring a separate alignment step. Per-
formance with these models comes close to the best previous
alignment-based results. When we go further, and inform a bi-
directional neural network models with alignment information,
we are able to make significant advances over previous meth-
ods.

8. References
[1] L. H. Son, A. Allauzen, and F. Yvon, “Continuous space

translation models with neural networks,” in Proceedings
of the 2012 conference of the north american chapter of
the association for computational linguistics: Human lan-
guage technologies. Association for Computational Lin-
guistics, 2012, pp. 39–48.

[2] M. Auli, M. Galley, C. Quirk, and G. Zweig, “Joint lan-
guage and translation modeling with recurrent neural net-
works.,” in EMNLP, 2013, pp. 1044–1054.

[3] N. Kalchbrenner and P. Blunsom, “Recurrent continuous
translation nodels,” in EMNLP, 2013.

[4] J. Devlin, R. Zbib, Z. Huang, T. Lamar, R. Schwartz, and
J. Makhoul, “Fast and robust neural network joint models
for statistical machine translation,” in ACL, 2014.

[5] H. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to
sequence learning with neural networks,” in NIPS, 2014.

[Yao15] Sequence-to-sequence neural net models for G2P conversion, Interspeech 2015

G2P conversion (II)

• Neural network based methods are the new state-of-the-art
for G2P

• Bidirectional LSTM-based networks using a CTC output
layer [Rao15]. Comparable to Ngram models.

• Incorporate alignment information [Yao15]. Beats Ngram
models.

• No alignment. Encoder-decoder with attention. Beats the
above systems [Toshniwal16].

[Rao15] Grapheme-to-phoneme conversion using LSTM RNNs, ICASSP 2015
[Yao15] Sequence-to-sequence neural net models for G2P conversion, Interspeech 2015

[Toshniwal16] Jointly learning to align and convert graphemes to phonemes with neural attention models, SLT 2016.

Encoder-decoder + attention for G2P
[Toshniwal16]

[Toshniwal16] Jointly learning to align and convert graphemes to phonemes with neural attention models, SLT 2016.

LSTM network with explicit alignments. Among these previous ap-
proaches, the best performance by a single model is obtained by Yao
and Zweig’s alignment-based approach, although Rao et al. obtain
even better performance on one data set by combining their LSTM
model with an (alignment-based) n-gram model.

In this paper, we explore the use of attention in the encoder-
decoder framework as a way of removing the dependency on align-
ments. The use of a neural attention model was first explored by
Bahdanau et al. for machine translation [7] (though a precursor of
this model was the windowing approach of Graves [14]), which has
since been applied to a variety of tasks including speech recogni-
tion [8] and image caption generation [9]. The G2P problem is in fact
largely analogous to the translation problem, with a many-to-many
mapping between subsequences of input labels and subsequences of
output labels and with potentially long-range dependencies (as in the
effect of the final “e” in paste on the pronunciation of the “a”). In ex-
periments presented below, we find that this type of attention model
indeed removes our dependency on an external aligner and achieves
improved performance on standard data sets.

3. MODEL

We next describe the main components of our models both without
and with attention.

ct

↵t

yt

dt

h1

x1x2xTg

h2h3hTg

Attention Layer

Encoder

x3

Decoder

Fig. 1. A global attention encoder-decoder model reading the input
sequence x1, · · · , xTg and outputting the sequence y1, · · · , yt, · · ·

3.1. Encoder-decoder models

We briefly describe the encoder-decoder (“sequence-to-sequence”)
approach, as proposed by [13]. An encoder-decoder model includes
an encoder, which reads in the input (grapheme) sequence, and a
decoder, which generates the output (phoneme) sequence. A typ-
ical encoder-decoder model is shown in Figure 1. In our model,
the encoder is a bidirectional long short-term memory (BiLSTM)
network; we use a bidirectional network in order to capture the
context on both sides of each grapheme. The encoder takes as in-
put the grapheme sequence, represented as a sequence of vectors
x = (x1, · · · ,xTg), obtained by multiplying the one-hot vectors
representing the input characters with a character embedding matrix
which is learned jointly with the rest of the model. The encoder
computes a sequence of hidden state vectors, h = (h1, · · · ,hTg),

given by:
�!
hi = f(xi,

��!
hi�1)

 �
hi = f 0(xi,

 ��
hi+1)

hi = (
�!
hi;
 �
hi)

We use separate stacked (deep) LSTMs to model f and f 0.3 A “con-
text vector” c is computed from the encoder’s state sequence:

c = q({h1, · · · ,hTg})

In our case, we use a linear combination of
��!
hTg and

 �
h1, with pa-

rameters learned during training. Since our models are stacked, we
carry out this linear combination at every layer.

This context vector is passed as an input to the decoder. The
decoder, g(·), is modeled as another stacked (unidirectional) LSTM,
which predicts each phoneme yt given the context vector c and all of
the previously predicted phonemes {y1, · · · , yt�1} in the following
way:

dt = g(ỹt�1,dt�1, c)

p(yt|y<t,x) = softmax(Wsdt + bs)

where dt�1 is the hidden state of the decoder LSTM and ỹt�1 is the
vector obtained by projecting the one hot vector corresponding to
yt�1 using a phoneme embedding matrix E. The embedding matrix
E is jointly learned with other parameters of the model. In basic
encoder-decoder models, the context vector c is just used as an initial
state for the decoder LSTM, d0 = c, and is not used after that.

3.2. Global Attention

One of the important extensions of encoder-decoder models is the
use of attention mechanism to adapt the context vector c for every
output label prediction [7]. Rather than just using the context vector
as an initial state for the decoder LSTM, we use a different context
vector ct at every decoder time step, where ct is a linear combination
of all of the encoder hidden states. The choice of initial state for
the decoder LSTM is now less important; we simply use the last
hidden state of the encoder’s backward LSTM. The ability to attend
to different encoder states when decoding each output label means
that the attention mechanism can be seen as a soft alignment between
the input (grapheme) sequence and output (phoneme) sequence. We
use the attention mechanism proposed by [16], where the context
vector ct at time t is given by:

uit = vT tanh(W1hi +W2dt + ba)

↵t = softmax(ut)

ct =

TgX

i=1

↵ithi

where the vectors v, ba and the matrices W1,W2 are parameters
learned jointly with the rest of the encoder-decoder model. The score
↵it is a weight that represents the importance of the hidden encoder
state hi in generating the phoneme yt. It should be noted that the
vector hi is really a stack of vectors and for attention calculations
we only use its top layer.

The decoder then uses ct in the following way:

p(yt|y<t,x) = softmax(Ws[ct;dt] + bs)

3For brevity we exclude the LSTM equations. The details can be found
in Zaremba et al. [15].

Encoder-decoder + attention for G2P
[Toshniwal16]

[Toshniwal16] Jointly learning to align and convert graphemes to phonemes with neural attention models, SLT 2016.

LSTM network with explicit alignments. Among these previous ap-
proaches, the best performance by a single model is obtained by Yao
and Zweig’s alignment-based approach, although Rao et al. obtain
even better performance on one data set by combining their LSTM
model with an (alignment-based) n-gram model.

In this paper, we explore the use of attention in the encoder-
decoder framework as a way of removing the dependency on align-
ments. The use of a neural attention model was first explored by
Bahdanau et al. for machine translation [7] (though a precursor of
this model was the windowing approach of Graves [14]), which has
since been applied to a variety of tasks including speech recogni-
tion [8] and image caption generation [9]. The G2P problem is in fact
largely analogous to the translation problem, with a many-to-many
mapping between subsequences of input labels and subsequences of
output labels and with potentially long-range dependencies (as in the
effect of the final “e” in paste on the pronunciation of the “a”). In ex-
periments presented below, we find that this type of attention model
indeed removes our dependency on an external aligner and achieves
improved performance on standard data sets.

3. MODEL

We next describe the main components of our models both without
and with attention.

ct

↵t

yt

dt

h1

x1x2xTg

h2h3hTg

Attention Layer

Encoder

x3

Decoder

Fig. 1. A global attention encoder-decoder model reading the input
sequence x1, · · · , xTg and outputting the sequence y1, · · · , yt, · · ·

3.1. Encoder-decoder models

We briefly describe the encoder-decoder (“sequence-to-sequence”)
approach, as proposed by [13]. An encoder-decoder model includes
an encoder, which reads in the input (grapheme) sequence, and a
decoder, which generates the output (phoneme) sequence. A typ-
ical encoder-decoder model is shown in Figure 1. In our model,
the encoder is a bidirectional long short-term memory (BiLSTM)
network; we use a bidirectional network in order to capture the
context on both sides of each grapheme. The encoder takes as in-
put the grapheme sequence, represented as a sequence of vectors
x = (x1, · · · ,xTg), obtained by multiplying the one-hot vectors
representing the input characters with a character embedding matrix
which is learned jointly with the rest of the model. The encoder
computes a sequence of hidden state vectors, h = (h1, · · · ,hTg),

given by:
�!
hi = f(xi,

��!
hi�1)

 �
hi = f 0(xi,

 ��
hi+1)

hi = (
�!
hi;
 �
hi)

We use separate stacked (deep) LSTMs to model f and f 0.3 A “con-
text vector” c is computed from the encoder’s state sequence:

c = q({h1, · · · ,hTg})

In our case, we use a linear combination of
��!
hTg and

 �
h1, with pa-

rameters learned during training. Since our models are stacked, we
carry out this linear combination at every layer.

This context vector is passed as an input to the decoder. The
decoder, g(·), is modeled as another stacked (unidirectional) LSTM,
which predicts each phoneme yt given the context vector c and all of
the previously predicted phonemes {y1, · · · , yt�1} in the following
way:

dt = g(ỹt�1,dt�1, c)

p(yt|y<t,x) = softmax(Wsdt + bs)

where dt�1 is the hidden state of the decoder LSTM and ỹt�1 is the
vector obtained by projecting the one hot vector corresponding to
yt�1 using a phoneme embedding matrix E. The embedding matrix
E is jointly learned with other parameters of the model. In basic
encoder-decoder models, the context vector c is just used as an initial
state for the decoder LSTM, d0 = c, and is not used after that.

3.2. Global Attention

One of the important extensions of encoder-decoder models is the
use of attention mechanism to adapt the context vector c for every
output label prediction [7]. Rather than just using the context vector
as an initial state for the decoder LSTM, we use a different context
vector ct at every decoder time step, where ct is a linear combination
of all of the encoder hidden states. The choice of initial state for
the decoder LSTM is now less important; we simply use the last
hidden state of the encoder’s backward LSTM. The ability to attend
to different encoder states when decoding each output label means
that the attention mechanism can be seen as a soft alignment between
the input (grapheme) sequence and output (phoneme) sequence. We
use the attention mechanism proposed by [16], where the context
vector ct at time t is given by:

uit = vT tanh(W1hi +W2dt + ba)

↵t = softmax(ut)

ct =

TgX

i=1

↵ithi

where the vectors v, ba and the matrices W1,W2 are parameters
learned jointly with the rest of the encoder-decoder model. The score
↵it is a weight that represents the importance of the hidden encoder
state hi in generating the phoneme yt. It should be noted that the
vector hi is really a stack of vectors and for attention calculations
we only use its top layer.

The decoder then uses ct in the following way:

p(yt|y<t,x) = softmax(Ws[ct;dt] + bs)

3For brevity we exclude the LSTM equations. The details can be found
in Zaremba et al. [15].

Data Method PER (%) WER (%)
CMUDict BiDir LSTM + Alignment [6] 5.45 23.55

DBLSTM-CTC [5] - 25.8
DBLSTM-CTC + 5-gram model [5] - 21.3
Encoder-decoder + global attn 5.04± 0.03 21.69± 0.21
Encoder-decoder + local-m attn 5.11± 0.03 21.85± 0.21
Encoder-decoder + local-p attn 5.39± 0.04 22.83± 0.22
Ensemble of 5 [Encoder-decoder + global attn] models 4.69 20.24

Pronlex BiDir LSTM + Alignment [6] 6.51 26.69
Encoder-decoder + global attn 6.24± 0.1 25.39± 0.61
Encoder-decoder + local-m attn 5.99± 0.11 24.23± 0.42
Encoder-decoder + local-p attn 6.49± 0.06 25.64± 0.42

NetTalk BiDir LSTM + Alignment [6] 7.38 30.77
Encoder-decoder + global attn 7.14± 0.72 29.20± 2.18 5

Encoder-decoder + local-m attn 7.13± 0.11 29.67± 0.49
Encoder-decoder + local-p attn 8.41± 0.19 32.32± 0.41

Table 1. Comparison of our models’ performance with the best previous results for CMUDict, Pronlex and NetTalk. ± indicates the standard
deviation across 5 training runs of the model.

4.4. Inference

We use a greedy decoder (beam size = 1) to decode the phoneme
sequence during inference. That is, at each decoding time step we
consider the output phone to be the argmax of the softmax output of
the decoder at that time frame. We got no reliable gains by using
beam search with any beam size greater than 1.

4.5. Results

Table 1 presents the main results with our tuned models on the three
test sets, compared to the best previously reported results. For all
three data sets, the best prior results to our knowledge with a sin-
gle model are those of Yao and Zweig [6] with an alignment-based
deep bidirectional LSTM. For CMUDict, a better WER was ob-
tained by [5] by ensembling their CTC bidirectional LSTM with
an alignment-based 5-gram model, but no corresponding PER was
reported.

Our best attention models clearly outperform all of the previous
best models in terms of PER. In terms of WER, the attention model
outperforms all prior single (non-ensembled) models. For CMU-
Dict, we also include the result of ensembling five of our global at-
tention models using different random initializations, by voting on
their outputs (with random tie-breaking), which outperforms the en-
semble of Rao et al..

Among the three attention models, global and local-m atten-
tion model perform well across all three data sets, while the local-p
model performs well on CMUDict and Pronlex but not on NetTalk.
The success of the global model may be explained by the fact that
the source sequence length in this task (i.e., the word length) is rather
short, always less than 25 characters in these three data sets. There-
fore, it is feasible for the global attention model to consider all of the
encoder states and weight them in an appropriate manner.

The local-m attention model, even with its simplistic assump-
tion about alignment, outperforms the local-p model on every data
set and is a clear best performer on Pronlex. Although the assump-
tion of monotonic alignment turns out to be too simplistic for other
tasks, such as machine translation [17], it is a reasonable choice for
G2P.

Surprisingly, the local-p attention model remains a distant third
among the three attention models across all three data sets. More-
over, it suffers a higher PER even when it obtains comparable WERs,

Model Changes Dev WER (%)
No changes (full global attention model) 21.81
No sampling 22.05
No dropout 22.17
No input feeding 22.06
No attention 22.98
No attention (rev. unidirectional encoder) 22.65
of LSTM units - 256 24.00
of LSTM units - 50 32.70
2-layer LSTM 22.36
1-layer LSTM 23.67
Rev. unidirectional encoder 22.12
Rev. unidirectional encoder + GRU 23.78

Table 2. Ablation study on CMUDict development set.

as is the case for Pronlex. This means that words with errors tend to
have a large number of errors. This seems to suggest that if an align-
ment error is made near the beginning of the word, then it is hard for
the local-p model to recover. This points towards a need for a better
alignment prediction strategy. The particular poor performance of
local-p on NetTalk also suggests that it may need a larger training
set for learning the alignment prediction parameters.

For all of our results, we make the choice of dropout probability
and input feeding based on tuning on the development set. The typi-
cal choice of dropout probability tends to be around 0.2-0.3 while the
decision of using input feeding or not tends to vary with the choice
of attention model and the data set used. However, performance does
not vary greatly with these two parameters.

4.5.1. Ablation analysis for CMUDict

In order to measure the contributions of various components of our
attention models, we performed an ablation analysis for the global
attention model evaluated on the CMUDict development data. The
results are shown in Table 2. As can be seen from the table, the re-
moval of input feeding results in a very minor drop in performance.
The use of regularization in the form of dropout and scheduled sam-
pling also provides a minor boost. The importance of attention is
reflected in almost a 1% absolute drop in performance when atten-

