Speaker Adaptation

Instructor: Preethi Jyothi

Lecture 21

Speaker variations

- Major cause of variability in speech is the differences between speakers
 - Speaking styles, accents, gender, physiological differences, etc.
- Speaker independent (SI) systems: Treat speech from all different speakers as though it came from one and train acoustic models
- Speaker dependent (SD) systems: Train models on data from a single speaker
- Speaker adaptation (SA): Start with an SI system and adapt using a small amount of SD training data

Modes of speaker adaptation

• as the user uses a system

• for the adaptation speech vs. not knowing them

Batch/Incremental adaptation: User supplies adaptation speech beforehand vs. system makes use of speech collected

Supervised/Unsupervised adaptation: Knowing transcriptions

Types of speaker adaptation

all models to reduce cross-speaker variation

vs. modifying the model parameters.

 Training/Normalization: Modify only parameters of the models observed in the adaptation speech vs. find transformation for

Feature/Model transformation: Modify the input feature vectors

Speaker adaptation

- families:
 - 1. Feature-based approaches
 - 2. Maximum a posterior (MAP) adaptation
 - 3. Linear transform-based adaptation

Speaker adaptation techniques can be grouped into three

Speaker adaptation

- families:
 - 1. Feature-based approaches
 - 2. Maximum a posterior (MAP) adaptation
 - 3. Linear transform-based adaptation

Speaker adaptation techniques can be grouped into three

Normalization

• reduce variations due to channel distortions

> $\mu_f = \frac{1}{T}$ $\sigma_f{}^2 = \frac{1}{T}$ $\hat{f}_t = \frac{f_t}{-}$

• channel characteristics

Cepstral mean and variance normalization: Effectively

$$\frac{1}{2} \sum_{t} f_{t}$$

$$\frac{1}{2} \sum_{t} (f_{t}^{2} - \mu_{f,t}^{2})$$

$$\frac{1}{2} \sum_{t} (f_{t}^{2} - \mu_{f,t}^{2})$$

Mean subtracted from the cepstral features to nullify the

Vocal Tract Length Normalization (VTLN)

• filterbank analysis

VTLN is implemented by warping the frequency axis in the

Image from: HTK Book, http://www1.icsi.berkeley.edu/Speech/docs/HTKBook3.2/node63_mn.html

Speaker adaptation

- families:
 - 1. Feature-based approaches
 - 2. Maximum a posterior (MAP) adaptation
 - 3. Linear transform-based adaptation

Speaker adaptation techniques can be grouped into three

Maximum a posteriori adaptation

• Let λ characterise the parameters of an HMM and Pr(λ) be prior knowledge. For observed data X, the maximum a posterior (MAP) estimate is defined as:

$$\lambda^* = \arg \max_{\lambda}$$
$$= \arg \max_{\lambda}$$

- If $Pr(\lambda)$ is uniform, then MAP estimate is the same as the maximum likelihood (ML) estimate

- $\operatorname{ax} Pr(\lambda|X)$
- $\operatorname{ax} Pr(X|\lambda) \cdot Pr(\lambda)$

Recall: ML estimation of GMM parameters

ML estimate:

 $\mu_{jm} = \frac{\sum}{n}$

• where $\gamma_t(j, m)$ is the probability of occupying mixture component m of state j at time t

$$\frac{\sum_{t=1}^{T} \gamma_t(j,m) x_t}{\sum_{t=1}^{T} \gamma_t(j,m)}$$

MAP estimation

ML estimate:

 $\mu_{jm} = \underline{\sum}$

• where $\gamma_t(j, m)$ is the probability of occupying mixture component m of state j at time t

MAP estimate:

$$\hat{\mu}_{jm} = \frac{\tau \mu_{jm} + \sum_{t} \gamma_t(j,m) x_t}{\tau + \sum_{t} \gamma_t(j,m)}$$

adaptation data

$$\frac{\sum_{t=1}^{T} \gamma_t(j,m) x_t}{\sum_{t=1}^{T} \gamma_t(j,m)}$$

where μ_{im} is prior mean chosen from previous EM iteration, τ controls the bias between prior and information from the

MAP estimation

- model parameters using EM
- as the amount of adaptation data increases
- adaptation data

 MAP estimate is derived after 1) choosing a specific prior distribution for $\lambda = (c_1, \dots, c_m, \mu_1, \dots, \mu_m, \Sigma_1, \dots, \Sigma_m)$ 2) updating

Property of MAP: Asymptotically converges to ML estimate

Updates only those parameters which are observed in the

Speaker adaptation

- families:
 - 1. Feature-based approaches
 - 2. Maximum a posterior (MAP) adaptation
 - 3. Linear transform-based adaptation

Speaker adaptation techniques can be grouped into three

Linear transform-based adaptation

- Estimate a linear transform from the adaptation data to modify HMM parameters
- Estimate transformations for each HMM parameter? Would require very large amounts of training data.
 - Tie several HMM states and estimate one transform for all tied parameters
 - Could also estimate a single transform for all the model parameters
- Main approach: Maximum Likelihood Linear Regression (MLLR)

In MLLR, the mean of the *m*-th Gaussian mixture • component μ_m is adapted in the following form:

$$\hat{\mu}_m = A\mu_m + b = W\xi_m$$

where $\hat{\mu}_m$ is the adapted mean, W = [A, b] is the linear transform and ξ_m is the extended mean vector, $[\mu_m^T, 1]^T$

W is estimated by maximising the likelihood of the • adaptation data X:

W

• EM algorithm is used to derive this ML estimate

MLLR

```
W^* = \arg\max\{\log\Pr(X;\lambda,W)\}
```

Regression classes

- So far, assumed that all Gaussian components are tied to a global transform
- Until the global transform: Cluster Gaussian components into groups and each group is associated with a different transform
- E.g. group the components based on phonetic knowledge
 - Broad phone classes: silence, vowels, nasals, stops, etc.
 - Could build a decision tree to determine clusters of components

Speaker adaptation of NN-based models

- Approach analogous to MAP for GMMs: Can we update the weights of the network using adaptation speech data from a target speaker?
 - Limitation: Typically, too many parameters to update!
- Can we feed the network untransformed features and let the network figure out how to do speaker normalisation?
 - Along with untransformed features that capture content (e.g. MFCCs), also include features that characterise the speaker.
 - i-vectors are a popular representation which captures all relevant information about a speaker.

i-vectors

• Acoustic features from all the speakers (x_t) are seen as being GMM with M diagonal co-variance matrices

$$x_t \sim \sum_{m=1}^{M} c_m \mathcal{N}(\mu_m, \Sigma_m)$$

for m = 1, ..., M for the speaker s. The i-vector model is:

v(s) is the *i-vector* of dimension K.

generated from a Universal Background Model (UBM) which is a

• Let U₀ denote the UBM supervector which is the concatenation of μ_m for m = 1, ..., M. Let U_s denote the mean supervector for a speaker s, which is the concatenation of speaker-adapted GMM means $\mu_m(s)$

 $\mathbf{U}_s = \mathbf{U}_0 + \mathbf{V} \cdot v(s)$

where V is the total variability matrix of dimensionality $M \cdot F \times K$,

i-vectors

- Given adaptation data for a speaker s, how do we estimate V? How do we further estimate v(s)?
 - EM algorithm to the rescue. •
- variability matrix V.

 $\mathbf{U}_s = \mathbf{U}_0 + \mathbf{V} \cdot v(s)$

 i-vectors are estimated by iterating between the estimation of the posterior distribution P(v(s) | X(s)) (where X(s)) denotes speech from speaker s) and update of the total

ASR improvements with i-vectors

	Model	Training	Hub5'00	RT'03	
-			SWB	FSH	SWB
	DNN-SI	x-entropy	16.1%	18.9%	29.0%
	DNN-SI	sequence	14.1%	16.9%	26.5%
	DNN-SI+ivecs	x-entropy	13.9%	16.7%	25.8%
	DNN-SI+ivecs	sequence	12.4%	15.0%	24.0%
-	DNN-SA	x-entropy	14.1%	16.6%	25.2%
	DNN-SA	sequence	12.5%	15.1%	23.7%
	DNN-SA+ivecs	x-entropy	13.2%	15.5%	23.7%
	DNN-SA+ivecs	sequence	11.9%	14.1%	22.3%

20