
Instructor: Preethi Jyothi

Speaker Adaptation

Lecture 21

CS 753

Speaker variations

• Major cause of variability in speech is the differences between
speakers

• Speaking styles, accents, gender, physiological differences, etc.

• Speaker independent (SI) systems: Treat speech from all different
speakers as though it came from one and train acoustic models

• Speaker dependent (SD) systems: Train models on data from a
single speaker

• Speaker adaptation (SA): Start with an SI system and adapt using
a small amount of SD training data

Modes of speaker adaptation

• Batch/Incremental adaptation: User supplies adaptation
speech beforehand vs. system makes use of speech collected
as the user uses a system

• Supervised/Unsupervised adaptation: Knowing transcriptions
for the adaptation speech vs. not knowing them

Types of speaker adaptation

• Training/Normalization: Modify only parameters of the models
observed in the adaptation speech vs. find transformation for
all models to reduce cross-speaker variation

• Feature/Model transformation: Modify the input feature vectors
vs. modifying the model parameters.

Speaker adaptation

• Speaker adaptation techniques can be grouped into three
families:

1. Feature-based approaches

2. Maximum a posterior (MAP) adaptation

3. Linear transform-based adaptation

Speaker adaptation

• Speaker adaptation techniques can be grouped into three
families:

1. Feature-based approaches

2. Maximum a posterior (MAP) adaptation

3. Linear transform-based adaptation

Normalization

• Cepstral mean and variance normalization: Effectively
reduce variations due to channel distortions

µf =
1

T

X

t

ft

�f
2 =

1

T

X

t

(f2
t � µ2

f,t)

f̂t =
ft � µf

�f

• Mean subtracted from the cepstral features to nullify the
channel characteristics

Vocal Tract Length Normalization (VTLN)

• VTLN is implemented by warping the frequency axis in the
filterbank analysis

Image from: HTK Book, http://www1.icsi.berkeley.edu/Speech/docs/HTKBook3.2/node63_mn.html

http://www1.icsi.berkeley.edu/Speech/docs/HTKBook3.2/node63_mn.html

Speaker adaptation

• Speaker adaptation techniques can be grouped into three
families:

1. Feature-based approaches

2. Maximum a posterior (MAP) adaptation

3. Linear transform-based adaptation

Maximum a posteriori adaptation

• Let λ characterise the parameters of an HMM and Pr(λ) be
prior knowledge. For observed data X, the maximum a
posterior (MAP) estimate is defined as:

• If Pr(λ) is uniform, then MAP estimate is the same as the
maximum likelihood (ML) estimate

�⇤ = argmax
�

Pr(�|X)

= argmax
�

Pr(X|�) · Pr(�)

Recall: ML estimation of GMM parameters

• where 𝛾t(j, m) is the probability of occupying mixture
component m of state j at time t

ML estimate:

µjm =

PT
t=1 �t(j,m)xtPT
t=1 �t(j,m)

MAP estimation

• where 𝛾t(j, m) is the probability of occupying mixture
component m of state j at time t

• where μjm is prior mean chosen from previous EM iteration,  
τ controls the bias between prior and information from the
adaptation data

ML estimate:

MAP estimate:

µjm =

PT
t=1 �t(j,m)xtPT
t=1 �t(j,m)

̂μjm =
τμjm + ∑t γt(j, m)xt

τ + ∑t γt(j, m)

MAP estimation

• MAP estimate is derived after 1) choosing a specific prior
distribution for λ = (c1,…,cm, μ1,…,μm, Σ1,…,Σm) 2) updating
model parameters using EM

• Property of MAP: Asymptotically converges to ML estimate
as the amount of adaptation data increases

• Updates only those parameters which are observed in the
adaptation data

Speaker adaptation

• Speaker adaptation techniques can be grouped into three
families:

1. Feature-based approaches

2. Maximum a posterior (MAP) adaptation

3. Linear transform-based adaptation

Linear transform-based adaptation

• Estimate a linear transform from the adaptation data to modify
HMM parameters

• Estimate transformations for each HMM parameter? Would
require very large amounts of training data.

• Tie several HMM states and estimate one transform for all
tied parameters

• Could also estimate a single transform for all the model
parameters

• Main approach: Maximum Likelihood Linear Regression (MLLR)

MLLR
• In MLLR, the mean of the m-th Gaussian mixture

component μm is adapted in the following form:

where μ̂m is the adapted mean, W = [A, b] is the linear
transform and ξm is the extended mean vector, [µmT, 1]T

• W is estimated by maximising the likelihood of the
adaptation data X:

• EM algorithm is used to derive this ML estimate

W ⇤ = argmax
W

{log Pr(X;�,W)}

µ̂m = Aµm + b = W ⇠m

Regression classes

• So far, assumed that all Gaussian components are tied to a
global transform

• Untie the global transform: Cluster Gaussian components into
groups and each group is associated with a different transform

• E.g. group the components based on phonetic knowledge

• Broad phone classes: silence, vowels, nasals, stops, etc.

• Could build a decision tree to determine clusters of
components

Speaker adaptation of NN-based models

• Approach analogous to MAP for GMMs: Can we update the weights
of the network using adaptation speech data from a target speaker?

• Limitation: Typically, too many parameters to update!

• Can we feed the network untransformed features and let the
network figure out how to do speaker normalisation?

• Along with untransformed features that capture content (e.g.
MFCCs), also include features that characterise the speaker.

• i-vectors are a popular representation which captures all relevant
information about a speaker.

i-vectors
• Acoustic features from all the speakers (�) are seen as being

generated from a Universal Background Model (UBM) which is a
GMM with M diagonal co-variance matrices

• Let U0 denote the UBM supervector which is the concatenation of μm
for m = 1, … , M. Let Us denote the mean supervector for a speaker
s, which is the concatenation of speaker-adapted GMM means μm(s)
for m = 1, … , M for the speaker s. The i-vector model is:

 where V is the total variability matrix of dimensionality M � F × K,  
 v(s) is the i-vector of dimension K.

xt

⋅

Us = U0 +V · v(s)

xt ⇠
MX

m=1

cmN (µm,⌃m)

i-vectors

• Given adaptation data for a speaker s, how do we estimate
V? How do we further estimate v(s)?

• EM algorithm to the rescue.

• i-vectors are estimated by iterating between the estimation
of the posterior distribution � (where �
denotes speech from speaker s) and update of the total
variability matrix V.

P(v(s) |X(s)) X(s)

Us = U0 +V · v(s)

ASR improvements with i-vectors

 46

 48

 50

 52

 54

 56

 58

 0 2 4 6 8 10 12 14 16 18 20

P
ho

ne
 fr

am
e

er
ro

r r
at

e
(%

)

Epoch

DNN-SI
DNN-SI+ivecs

DNN-SA
DNN-SA+ivecs

Fig. 2. Phone frame error rates on heldout data for various DNNs.

from the log of the DNN output scores. The vocabulary
used has 30.5K words and 32.8K pronunciation variants. The
decoding language model is a 4-gram LM with 4M n-grams.

E. Experimental results

In Figure 2, we compare the phone frame error rates
obtained on the held-out set during the cross-entropy fine-
tuning (i.e. after pretraining) of 4 networks: a DNN on SI
features only, a DNN on SI features and i-vectors of dimension
100, a DNN on SA features only and a DNN on SA features
and i-vectors of dimension 100. We observe that DNNs with
i-vector inputs are substantially better than the ones trained on
ASR features only. Interestingly, the curve for DNNs trained
on SI features and i-vectors is almost indistinguishable from
the one obtained by DNNs trained on SA features only which
suggests that the i-vector input has the same effect as adding
VTLN and FMLLR.

Model Training Hub5’00 RT’03
SWB FSH SWB

DNN-SI x-entropy 16.1% 18.9% 29.0%
DNN-SI sequence 14.1% 16.9% 26.5%
DNN-SI+ivecs x-entropy 13.9% 16.7% 25.8%
DNN-SI+ivecs sequence 12.4% 15.0% 24.0%
DNN-SA x-entropy 14.1% 16.6% 25.2%
DNN-SA sequence 12.5% 15.1% 23.7%
DNN-SA+ivecs x-entropy 13.2% 15.5% 23.7%
DNN-SA+ivecs sequence 11.9% 14.1% 22.3%

TABLE I
COMPARISON OF WORD ERROR RATES FOR VARIOUS DNNS ON HUB5’00
AND RT’03 WITHOUT AND WITH HESSIAN-FREE SEQUENCE TRAINING.

This is also mirrored in the word error rates shown in
Table I where the DNN-SI+ivecs and DNN-SA models exhibit
very similar recognition performance (10% relative WER
improvement over DNN-SI). Additionally, we observe that
DNN-SA with i-vectors results in a 5-6% relative improvement
over DNN-SA both before and after sequence training. The
additive gains can be explained by observing that the i-vectors

for DNN-SA were extracted using a GMM trained on speaker-
adapted features as opposed to using a UBM trained on
speaker independent features for DNN-SI. This allows the i-
vectors to encode additional salient speaker information after
the VTLN and FMLLR speaker normalization steps.

i-vector Training Hub5’00 RT’03
dimension SWB FSH SWB

40 x-entropy 13.7% 16.0% 24.6%
100 x-entropy 13.2% 15.5% 23.7%
200 x-entropy 13.4% 15.6% 23.6%

TABLE II
COMPARISON OF WORD ERROR RATES FOR DNNS TRAINED ON
SPEAKER-ADAPTED FEATURES AND I-VECTORS OF DIFFERENT

DIMENSIONS ON HUB5’00 AND RT’03 WITH CROSS-ENTROPY TRAINING.

Lastly, we discuss the effect of having different i-vector
dimensions in Table II for DNNs trained on speaker-adapted
features with cross-entropy only (no sequence training). It can
be seen that having a sufficiently large dimension for the i-
vectors matters; there is a significant drop in WER from 40
to 100 dimensions. The performance is flat for 100 and 200
dimensions which suggests that having an i-vector dimension
of 100 is a reasonable choice for this task. Of course, more
training data from a larger number of speakers might result in
a different operating point.

IV. CONCLUSION

We have presented a simple yet effective way to perform
speaker adaptation for neural network acoustic models. The
method consists in providing speaker identity vectors along-
side regular ASR features as inputs to the neural net. The
training and test data are augmented with these i-vectors which
are constant for a given speaker and change across different
speakers. Unlike other speaker adaptation techniques, i-vector
extraction does not require a first pass decoding step yet pro-
vides similar gains as VTLN and FMLLR which do require an
additional decoding pass. Moreover, i-vectors extracted from
speaker-adapted features are complementary to the feature
normalization methods applied and provide additional gains
when used in conjunction with speaker normalized features as
input to the neural networks. Future work will address refining
the i-vector inputs along the lines of the speaker code idea
proposed in [4]. Also, we plan to interleave neural network
training with speaker identity feature estimation analogous to
speaker-adaptive training in feature-space for GMM-HMMs.

ACKNOWLEDGMENT

The authors wish to thank Jason Pelecanos from IBM and
Ondrej Glembek from Brno University of Technology for
helpful discussions about i-vectors.

58

 46

 48

 50

 52

 54

 56

 58

 0 2 4 6 8 10 12 14 16 18 20

P
ho

ne
 fr

am
e

er
ro

r r
at

e
(%

)

Epoch

DNN-SI
DNN-SI+ivecs

DNN-SA
DNN-SA+ivecs

Fig. 2. Phone frame error rates on heldout data for various DNNs.

from the log of the DNN output scores. The vocabulary
used has 30.5K words and 32.8K pronunciation variants. The
decoding language model is a 4-gram LM with 4M n-grams.

E. Experimental results

In Figure 2, we compare the phone frame error rates
obtained on the held-out set during the cross-entropy fine-
tuning (i.e. after pretraining) of 4 networks: a DNN on SI
features only, a DNN on SI features and i-vectors of dimension
100, a DNN on SA features only and a DNN on SA features
and i-vectors of dimension 100. We observe that DNNs with
i-vector inputs are substantially better than the ones trained on
ASR features only. Interestingly, the curve for DNNs trained
on SI features and i-vectors is almost indistinguishable from
the one obtained by DNNs trained on SA features only which
suggests that the i-vector input has the same effect as adding
VTLN and FMLLR.

Model Training Hub5’00 RT’03
SWB FSH SWB

DNN-SI x-entropy 16.1% 18.9% 29.0%
DNN-SI sequence 14.1% 16.9% 26.5%
DNN-SI+ivecs x-entropy 13.9% 16.7% 25.8%
DNN-SI+ivecs sequence 12.4% 15.0% 24.0%
DNN-SA x-entropy 14.1% 16.6% 25.2%
DNN-SA sequence 12.5% 15.1% 23.7%
DNN-SA+ivecs x-entropy 13.2% 15.5% 23.7%
DNN-SA+ivecs sequence 11.9% 14.1% 22.3%

TABLE I
COMPARISON OF WORD ERROR RATES FOR VARIOUS DNNS ON HUB5’00
AND RT’03 WITHOUT AND WITH HESSIAN-FREE SEQUENCE TRAINING.

This is also mirrored in the word error rates shown in
Table I where the DNN-SI+ivecs and DNN-SA models exhibit
very similar recognition performance (10% relative WER
improvement over DNN-SI). Additionally, we observe that
DNN-SA with i-vectors results in a 5-6% relative improvement
over DNN-SA both before and after sequence training. The
additive gains can be explained by observing that the i-vectors

for DNN-SA were extracted using a GMM trained on speaker-
adapted features as opposed to using a UBM trained on
speaker independent features for DNN-SI. This allows the i-
vectors to encode additional salient speaker information after
the VTLN and FMLLR speaker normalization steps.

i-vector Training Hub5’00 RT’03
dimension SWB FSH SWB

40 x-entropy 13.7% 16.0% 24.6%
100 x-entropy 13.2% 15.5% 23.7%
200 x-entropy 13.4% 15.6% 23.6%

TABLE II
COMPARISON OF WORD ERROR RATES FOR DNNS TRAINED ON
SPEAKER-ADAPTED FEATURES AND I-VECTORS OF DIFFERENT

DIMENSIONS ON HUB5’00 AND RT’03 WITH CROSS-ENTROPY TRAINING.

Lastly, we discuss the effect of having different i-vector
dimensions in Table II for DNNs trained on speaker-adapted
features with cross-entropy only (no sequence training). It can
be seen that having a sufficiently large dimension for the i-
vectors matters; there is a significant drop in WER from 40
to 100 dimensions. The performance is flat for 100 and 200
dimensions which suggests that having an i-vector dimension
of 100 is a reasonable choice for this task. Of course, more
training data from a larger number of speakers might result in
a different operating point.

IV. CONCLUSION

We have presented a simple yet effective way to perform
speaker adaptation for neural network acoustic models. The
method consists in providing speaker identity vectors along-
side regular ASR features as inputs to the neural net. The
training and test data are augmented with these i-vectors which
are constant for a given speaker and change across different
speakers. Unlike other speaker adaptation techniques, i-vector
extraction does not require a first pass decoding step yet pro-
vides similar gains as VTLN and FMLLR which do require an
additional decoding pass. Moreover, i-vectors extracted from
speaker-adapted features are complementary to the feature
normalization methods applied and provide additional gains
when used in conjunction with speaker normalized features as
input to the neural networks. Future work will address refining
the i-vector inputs along the lines of the speaker code idea
proposed in [4]. Also, we plan to interleave neural network
training with speaker identity feature estimation analogous to
speaker-adaptive training in feature-space for GMM-HMMs.

ACKNOWLEDGMENT

The authors wish to thank Jason Pelecanos from IBM and
Ondrej Glembek from Brno University of Technology for
helpful discussions about i-vectors.

58

Image from: Saon et al.,Speaker Adaptation of Neural Network Acoustic Models Using I-Vectors, ASRU 13

