Speaker Adaptation

Lecture 21




Speaker variations

Major cause of variability in speech is the differences between
speakers

Speaking styles, accents, gender, physiological differences, etc.

- Speaker independent (Sl) systems: Treat speech from all different
speakers as though it came from one and train acoustic models

- Speaker dependent (SD) systems: Train models on data from a
single speaker

- Speaker adaptation (SA): Start with an S| system and adapt using
a small amount of SD training data



Modes of speaker adaptation

Batch/Incremental adaptation: User supplies adaptation
speech beforehand vs. system makes use of speech collected

as the user uses a system

Supervised/Unsupervised adaptation: Knowing transcriptions
for the adaptation speech vs. not knowing them



Types of speaker adaptation

- Training/Normalization: Modify only parameters of the models
observed in the adaptation speech vs. find transformation for
all models to reduce cross-speaker variation

Feature/Model transformation: Modify the input feature vectors
vs. modifying the model parameters.



Speaker adaptation

Speaker adaptation techniques can be grouped into three
families:

1. Feature-based approaches
2. Maximum a posterior (MAP) adaptation

3. Linear transform-based adaptation



Speaker adaptation

- Speaker adaptation techniques can be grouped into three

families:

1. Feature-based approaches



Normalization

Cepstral mean and variance normalization: Effectively
reduce variations due to channel distortions
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Mean subtracted from the cepstral features to nullify the
channel characteristics



Vocal Tract Length Normalization (VTLN)

VTLN is implemented by warping the frequency axis in the
filterbank analysis

Image from: HTK Book, http://www1.icsi.berkeley.edu/Speech/docs/HTKBook3.2/node63_mn.html



http://www1.icsi.berkeley.edu/Speech/docs/HTKBook3.2/node63_mn.html

Speaker adaptation

- Speaker adaptation techniques can be grouped into three

families:

2. Maximum a posterior (MAP) adaptation



Maximum a posteriori adaptation

Let A characterise the parameters of an HMM and Pr(A) be
prior knowledge. For observed data X, the maximum a
posterior (MAP) estimate is defined as:

A" = argmax Pr(\|X)
A

= arg max Pr(X|\) - Pr(\)
A

If Pr(A) is uniform, then MAP estimate is the same as the
maximum likelihood (ML) estimate



Recall: ML estimation of GMM parameters
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MAP estimation

ML estimate:
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component m of state | at time t
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where u;»is prior mean chosen from previous EM iteration,
T controls the bias between prior and information from the
adaptation data



MAP estimation

MAP estimate is derived after 1) choosing a specific prior
distribution for A = (c4,...,Cm, M1,...,Mm, 21,...,2m) 2) updating
model parameters using EM

Property of MAP: Asymptotically converges to ML estimate
as the amount of adaptation data increases

Updates only those parameters which are observed in the
adaptation data



Speaker adaptation

- Speaker adaptation techniques can be grouped into three

families:

3. Linear transform-based adaptation



Linear transform-based adaptation

Estimate a linear transform from the adaptation data to modify
HMM parameters

Estimate transformations for each HMM parameter? Would
require very large amounts of training data.

- Tie several HMM states and estimate one transform for all
tied parameters

Could also estimate a single transform for all the model
parameters

Main approach: Maximum Likelihood Linear Regression (MLLR)



MLLR

In MLLR, the mean of the m-th Gaussian mixture
component u,, is adapted in the following form:

where (., is the adapted mean, W = [A, b] is the linear
transform and &,, is the extended mean vector, [umT, 1]7

W is estimated by maximising the likelihood of the
adaptation data X:

W* = argmax{log Pr(X; A\, W)}
7%

EM algorithm is used to derive this ML estimate



Regression classes

So far, assumed that all Gaussian components are tied to a
global transform

Untie the global transform: Cluster Gaussian components into
groups and each group is associated with a different transform

E.g. group the components based on phonetic knowledge
Broad phone classes: silence, vowels, nasals, stops, etc.

Could build a decision tree to determine clusters of
components



Speaker adaptation of NN-based models

- Approach analogous to MAP for GMMs: Can we update the weights
of the network using adaptation speech data from a target speaker?

Limitation: Typically, too many parameters to update!

Can we feed the network untransformed features and let the
network figure out how to do speaker normalisation?

Along with untransformed features that capture content (e.qg.
MFCCs), also include features that characterise the speaker.

I-vectors are a popular representation which captures all relevant
information about a speaker.



I-vectors

. Acoustic features from all the speakers (x,) are seen as being

generated from a Universal Background Model (UBM) which is a
GMM with M diagonal co-variance matrices

M
Ly ~ Z CmN(,uma Zm)
m=1

Let Uo denote the UBM supervector which is the concatenation of wu,

form=1, ..., M. Let Us denote the mean supervector for a speaker
s, which is the concatenation of speaker-adapted GMM means u(s)
form=1, ..., Mftor the speaker s. The i-vector model is:

Us =Up+ V- v(s)

where V is the total variability matrix of dimensionality M-F x K,
v(s) Is the I-vector of dimension K.



I-vectors

Us=Uyg+ V- v(s)

Given adaptation data for a speaker s, how do we estimate
V? How do we further estimate v(s)?

EM algorithm to the rescue.

I-vectors are estimated by iterating between the estimation
of the posterior distribution P(v(s) | X(s)) (where X(s)
denotes speech from speaker s) and update of the total

variability matrix V.



Phone frame error rate (%)
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ASR improvements with i-vectors

Model Training Hub5’00 RT’03
SWB FSH SWB
DNN-SI X-entropy 16.1% 18.9% | 29.0%
DNN-SI sequence 14.1% 16.9% | 26.5%
DNN-SI+ivecs X-entropy 13.9% 16.7% | 25.8%
DNN-SI+ivecs sequence 12.4% 15.0% | 24.0%
DNN-SA X-entropy 14.1% 16.6% | 25.2%
DNN-SA sequence 12.5% 15.1% | 23.7%
DNN-SA+ivecs | x-entropy 13.2% 15.5% | 23.7%
DNN-SA+ivecs | sequence 11.9% 14.1% | 22.3%

Image from: Saon et al.,Speaker Adaptation of Neural Network Acoustic Models Using I-Vectors, ASRU 13




