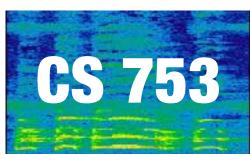
Discriminative Training

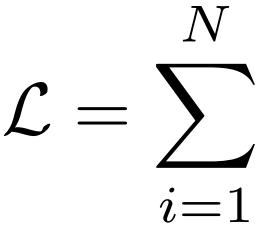


Instructor: Preethi Jyothi

Lecture 22

Recall: MLE for HMMs

Maximum likelihood estimation (MLE) sets HMM parameters so as to maximise the objective function:



where

 $X_1, \ldots, X_i, \ldots, X_N$ are training utterances

What are some conceptual problems with this approach?

 $\mathcal{L} = \sum \log P_{\lambda}(X_i | W_i)$

(Assume M_i is the HMM corresponding to the word sequence W_i of X_i and λ corresponds to the HMM parameters)

Discriminative Learning

- minimised
 - probability model of the data distribution
- an intermediate step"

 Discriminative models directly model the class posterior probability or learn the parameters of a joint probability model discriminatively so that classification errors are

As opposed to generative models that attempt to learn a

• [Vapnik] "one should solve the (classification/recognition) problem directly and never solve a more general problem as

Discriminative Learning

- methods:
 - 1. Constructing suitable objective functions for optimisation
 - functions

Two central issues in developing discriminative learning

2. Developing optimization techniques for these objective

Estimating acoustic model parameters

to the utterance A,

- the highest probability to O_A
- How do we estimate λ in $P_{\lambda}(O_A | W)$?
 - MLE estimation •
 - MMI estimation
 - MPE/MWE estimation

• If A: speech utterance and O_A : acoustic features corresponding

 $W^* = \arg \max P_{\lambda}(O_A|W)P_{\beta}(W)$

ASR decoding: Return the word sequence that jointly assigns

Estimating acoustic model parameters

to the utterance A,

- the highest probability to O_A
- How do we estimate λ in $P_{\lambda}(O_A | W)$?
 - MLE estimation •
 - MMI estimation •
 - MPE/MWE estimation

• If A: speech utterance and O_A : acoustic features corresponding

 $W^* = \arg\max P_{\lambda}(O_A|W)P_{\beta}(W)$

ASR decoding: Return the word sequence that jointly assigns

Covered in this class

Maximum mutual information (MMI) estimation: Discriminative Training

• (criterion also referred to as conditional maximum likelihood)

$$\mathcal{F}_{\text{MMI}} = \sum_{i=1}^{N} \log P_{\lambda}(W_i | X_i)$$
$$= \sum_{i=1}^{N} \log \frac{P_{\lambda}(X_i | W_i) P(W_i)}{\sum_{W_j} P_{\lambda}(X_i | W_j) P(W_j)}$$

• P(W) is the language model probability

MMI aims to directly maximise the posterior probability

Why is it called MMI?

word labels W is defined as:

$$I(X,W) = \sum_{X,W} \operatorname{Pr}$$

 $\Pr(X, W) \log \frac{\Pr(X, W)}{\Pr(X) \Pr(W)}$ $= \sum_{\mathbf{V},\mathbf{W}} \Pr(X,W) \log \frac{\Pr(W|X)}{\Pr(W)}$ X,W= H(W) - H(W|X)

where H(W) is the entropy of W and H(WIX) is the conditional entropy

• Mutual information I(X, W) between acoustic data X and

Why is it called MMI?

• Assume H(W) is given via the language model. Then, minimising conditional entropy

$$H(W|X) = -\frac{1}{N} \sum_{i=1}^{N} \log \Pr(W_i|X_i)$$
$$= -\frac{1}{N} \sum_{i=1}^{N} \log \frac{\Pr(X_i|W_i) \Pr(W_i)}{\sum_{W'} \Pr(X_i|W') \Pr(W')}$$

Thus, MMI is equivalent to maximizing: •

$$\mathcal{F}_{\mathrm{MMI}} = \sum_{i=1}^{N} \log \frac{1}{i}$$

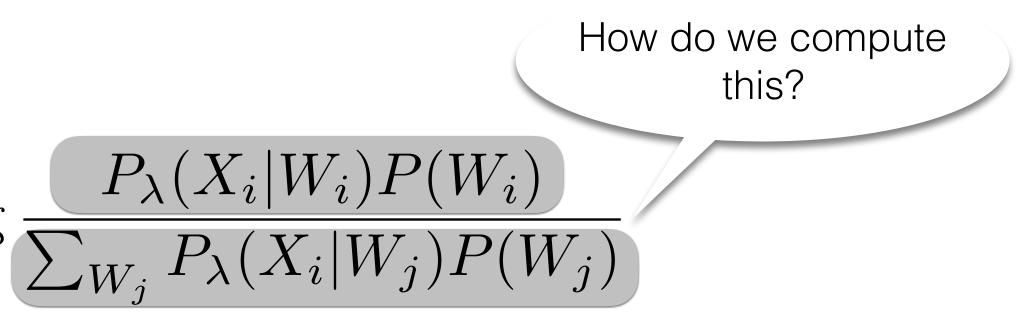
maximizing mutual information becomes equivalent to

 $P_{\lambda}(X_i|W_i)P(W_i)$ $\sum_{W_i} P_{\lambda}(X_i | W_j) P(W_j)$

MMI estimation

$$\mathcal{F}_{\mathrm{MMI}} = \sum_{i=1}^{N} \log$$

- word sequences



• Numerator: Likelihood of data given correct word sequence

Denominator: Total likelihood of the data given all possible

Recall: Word Lattices

- A word lattice is a pruned version of the decoding graph for an utterance
- Acyclic directed graph with arc costs computed from acoustic model and language model scores
- Lattice nodes implicitly capture information about time within the utterance

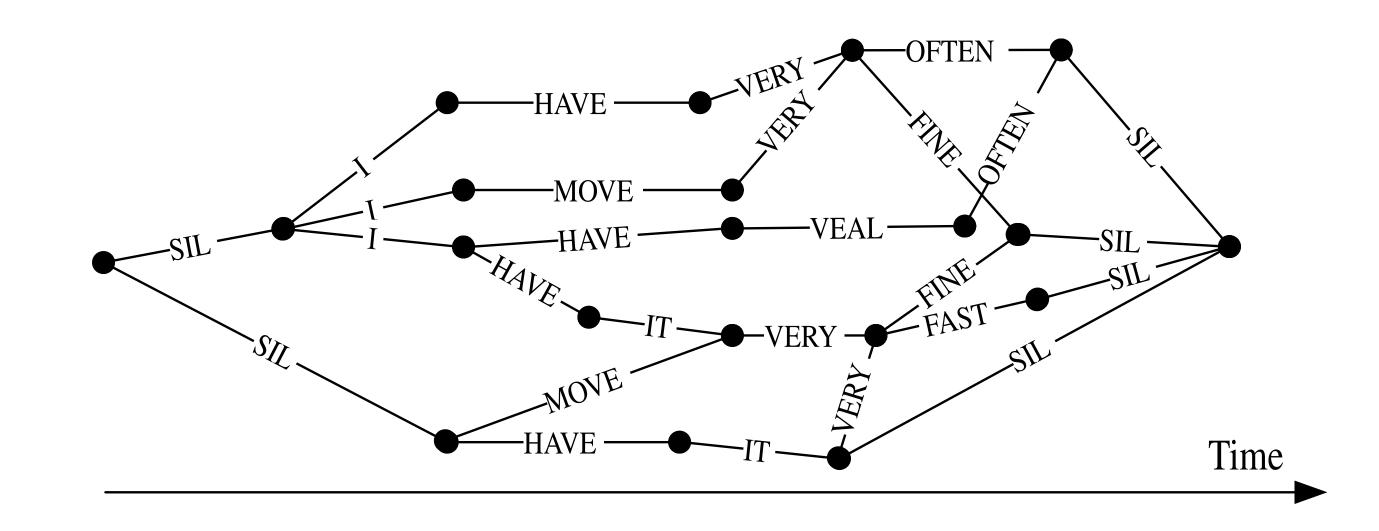
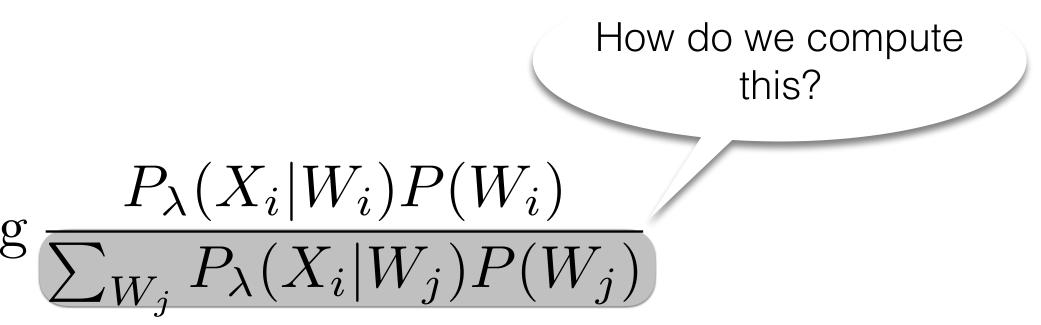


Image from [GY08]: Gales & Young, Application of HMMs in speech recognition, NOW book, 2008

MMI estimation

$$\mathcal{F}_{\mathrm{MMI}} = \sum_{i=1}^{N} \log_{i=1}^{N}$$

- •
- word sequences
 - all the word sequences in the lattice



Numerator: Likelihood of data given correct word sequence

Denominator: Total likelihood of the data given all possible

Estimate by generating lattices, and summing over

MMI Training and Lattices

- Computing the denominator: Estimate by generating lattices, and summing over all the words in the lattice
- Numerator lattices: Restrict G to a linear chain acceptor representing the words in the correct word sequence. Lattices are usually only computed once for MMI training.
- HMM parameter estimation for MMI uses the extended Baum-Welch algorithm [V96,WP00]
- Like HMMs, can DNNs also be trained with an MMI-type objective function? Yes!

[V96]:Valtchev et al., Lattice-based discriminative training for large vocabulary speech recognition, 1996 [WP00]: Woodland and Povey, Large scale discriminative training for speech recognition, 2000

Sequence-discriminative (MMI) Training of DNNs

- In a hybrid system, DNNs are typically trained to optimise the cross-entropy objective function using SGD
- We could maximise MMI instead, that is maximise the mutual information between the distributions of the observation and word sequences
- Compute gradients of the MMI objective function with • respect to the activations at the output layer

MMI results on Switchboard

MMI-trained DNNs.

• Switchboard results on two eval sets (SWB, CHE). Trained on 300 hours of speech. Comparing maximum likelihood (ML) against discriminatively trained GMM systems and

SWB	CHE	Total
21.2	36.4	28.8
18.6	33.0	25.8
14.2	25.7	20.0
12.9	24.6	18.8

[V et al.]: Vesely et al., Sequence discriminative training of DNNs, Interspeech 2013

Another Discriminative Training Objective: Minimum Phone/Word Error (MPE/MWE)

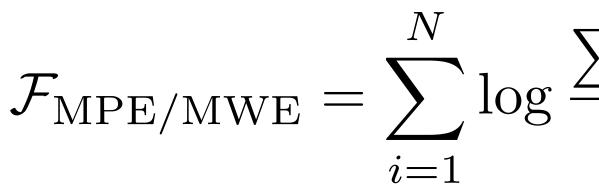
- sentence (i.e. word or phone) error rate.
- MPE/MWE objective function is defined as:

$$\mathcal{F}_{\text{MPE/MWE}} = \sum_{i=1}^{N} \frac{\sum_{W} P_{\lambda}(X_i | W_i) P(W_i) A(W, W_i)}{\sum_{W'} P_{\lambda}(X_i | W') P(W')}$$

MMI is an optimisation criterion at the sentence-level. Change the criterion so that it is directly related to sub-

where $A(W, W_i)$ is phone/word accuracy of the sentence W given the reference sentence W_i i.e. the total phone count in W_i minus the sum of insertion/deletion/substitution errors of W

MPE/MWE training



- The MPE/MWE criterion is a weighted average of the
- for the MPE or MWE criterion, respectively
- whether the entire sentence is correct or not

 $\mathcal{F}_{\text{MPE/MWE}} = \sum_{i=1}^{N} \log \frac{\sum_{W} P_{\lambda}(X_i | W_i) P(W_i) A(W, W_i)}{\sum_{W'} P_{\lambda}(X_i | W') P(W')}$

phone/word accuracy over all the training instances

• $A(W, W_i)$ can be computed either at the phone or word level

 The weighting given by MPE/MWE depends on the number of incorrect phones/words in the string while MMI looks at

MPE results on Switchboard (GMMs)

GMM MLE

GMM MMI

GMM MPE

GMM MWE

 Switchboard results on eval set SWB. Trained on 68 hours of speech. Comparing maximum likelihood (MLE) against discriminatively trained (MMI/MPE/MWE) GMM systems

SWB	%WER redn
46.6	_
44.3	2.3
43.1	3.5
43.3	3.3

[V96]:Valtchev et al., Lattice-based discriminative training for large vocabulary speech recognition, 1996 [WP00]: Woodland and Povey, Large scale discriminative training for speech recognition, 2000

Sequence-discriminative training results on Switchboard (DNNs)

Switchboard results from DNNs trained on the full 300 hour • training set, using different optimization criteria

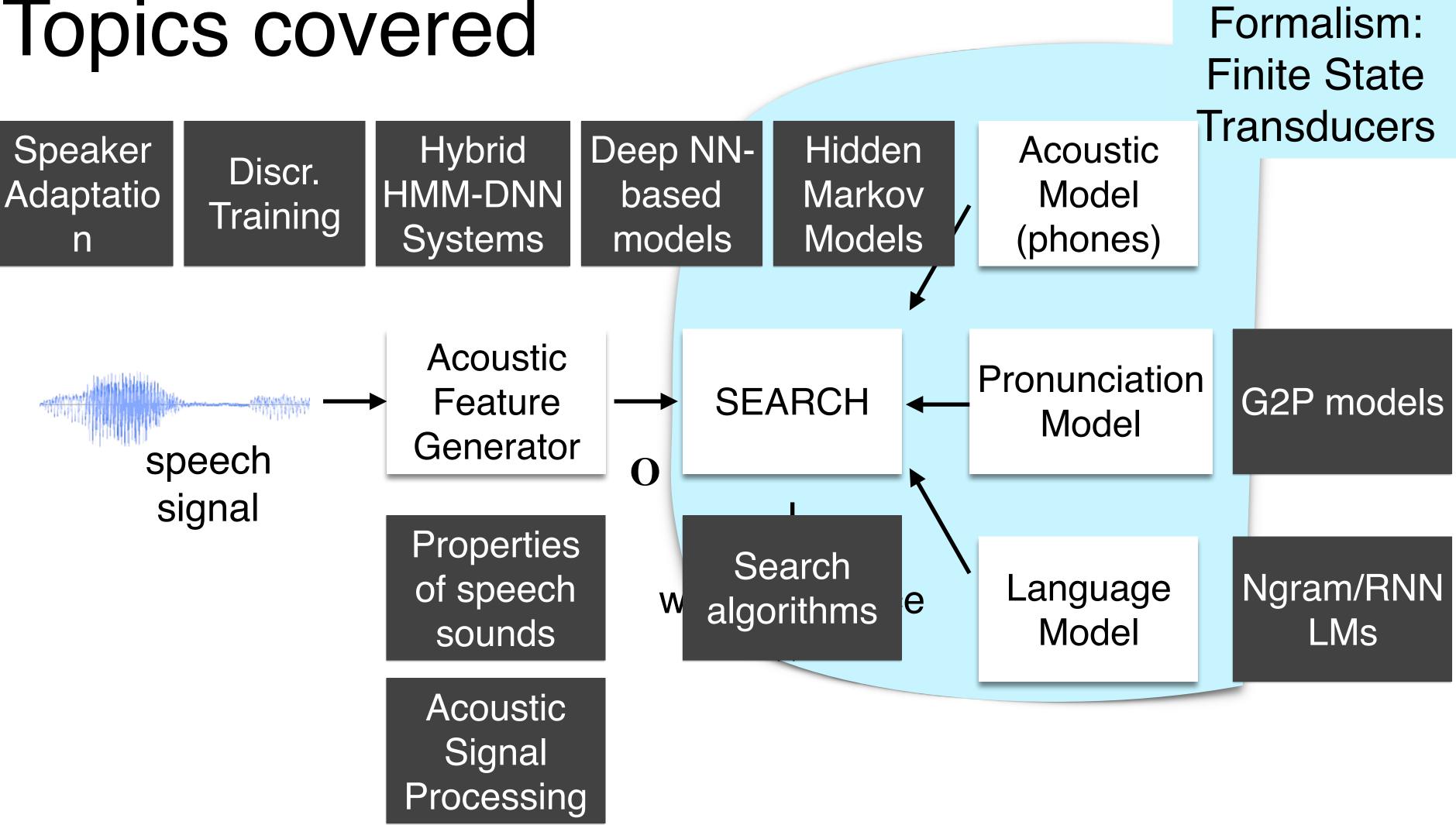
> GMM MMI DNN CE DNN MMI DNN sMBR DNN MPE

SWB	CHE	Total
18.6	33.0	25.8
14.2	25.7	20.0
12.9	24.6	18.8
12.6	24.1	18.4
12.9	24.1	18.5

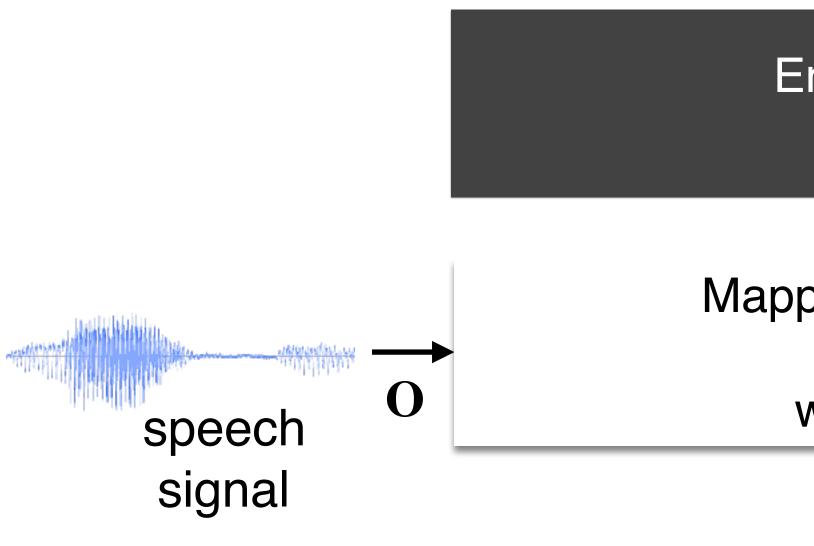
[V et al.]: Vesely et al., Sequence discriminative training of DNNs, Interspeech 2013

CS-753 Concluding Remarks

Topics covered



Topics covered



End-to-end Neural Models

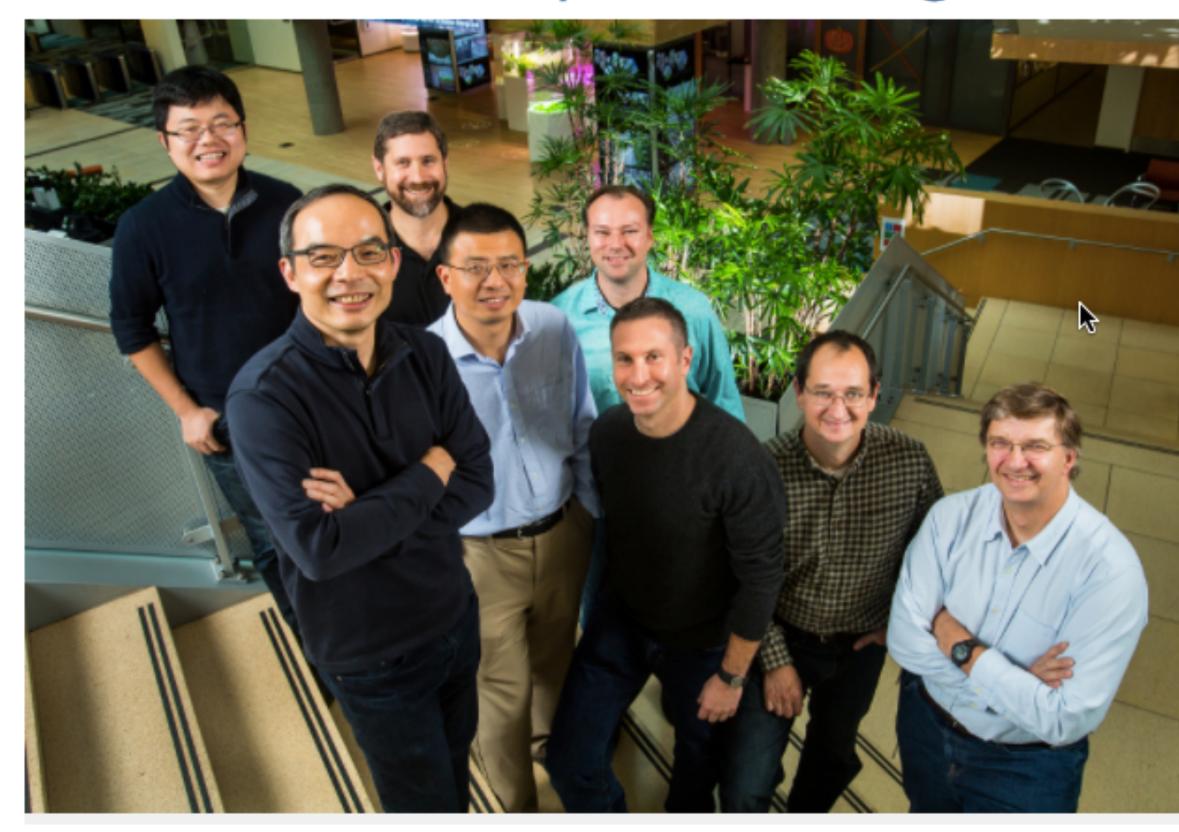
Mapping acoustic signals to word sequences

> ↓ word sequence W* ↓ Speech Synthesis

____Ngram/RNN LMs

Exciting time to do speech research

Historic Achievement: Microsoft researchers reach human parity in conversational speech recognition



CLOUD SPEECH API

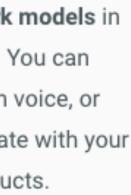
Speech to text conversion powered by machine learning

TRY IT FREE

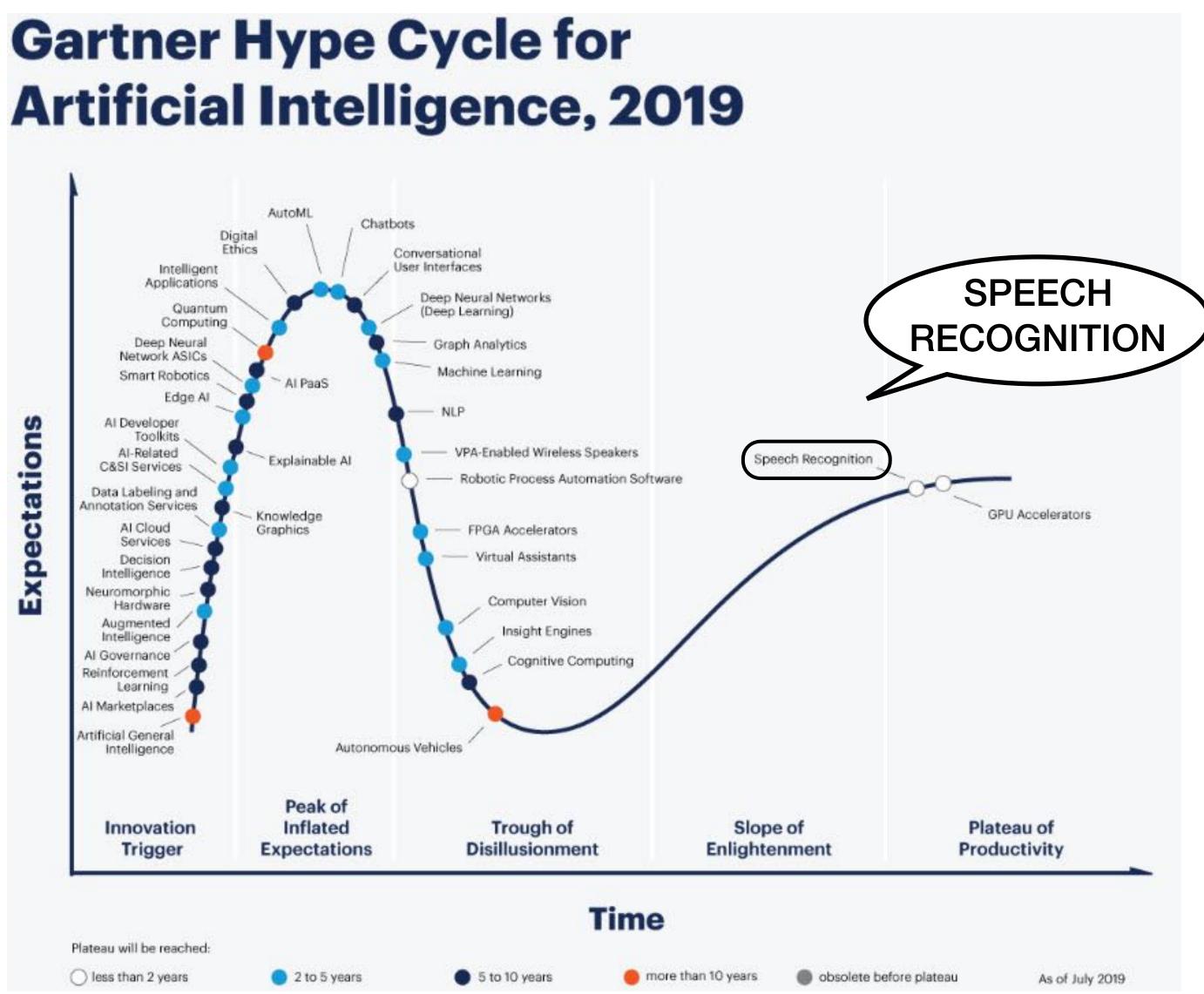
VIEW DOCUMENTATION

Powerful Speech Recognition

Google Cloud Speech API enables developers to convert audio to text by applying powerful neural network models in an easy to use API. The API recognizes over 80 languages and variants, to support your global user base. You can transcribe the text of users dictating to an application's microphone, enable command-and-control through voice, or transcribe audio files, among many other use cases. Recognize audio uploaded in the request, and integrate with your audio storage on Google Cloud Storage, by using the same technology Google uses to power its own products.



Called Hype Cycle for a reason...



Expectations

What's next?

Need to do more...

- Robust to variations in age, accent and ability
- Handling noisy real-life settings with many speakers (e.g., meetings, parties)
- Handling pronunciation variability
- Handling new languages/ dialects

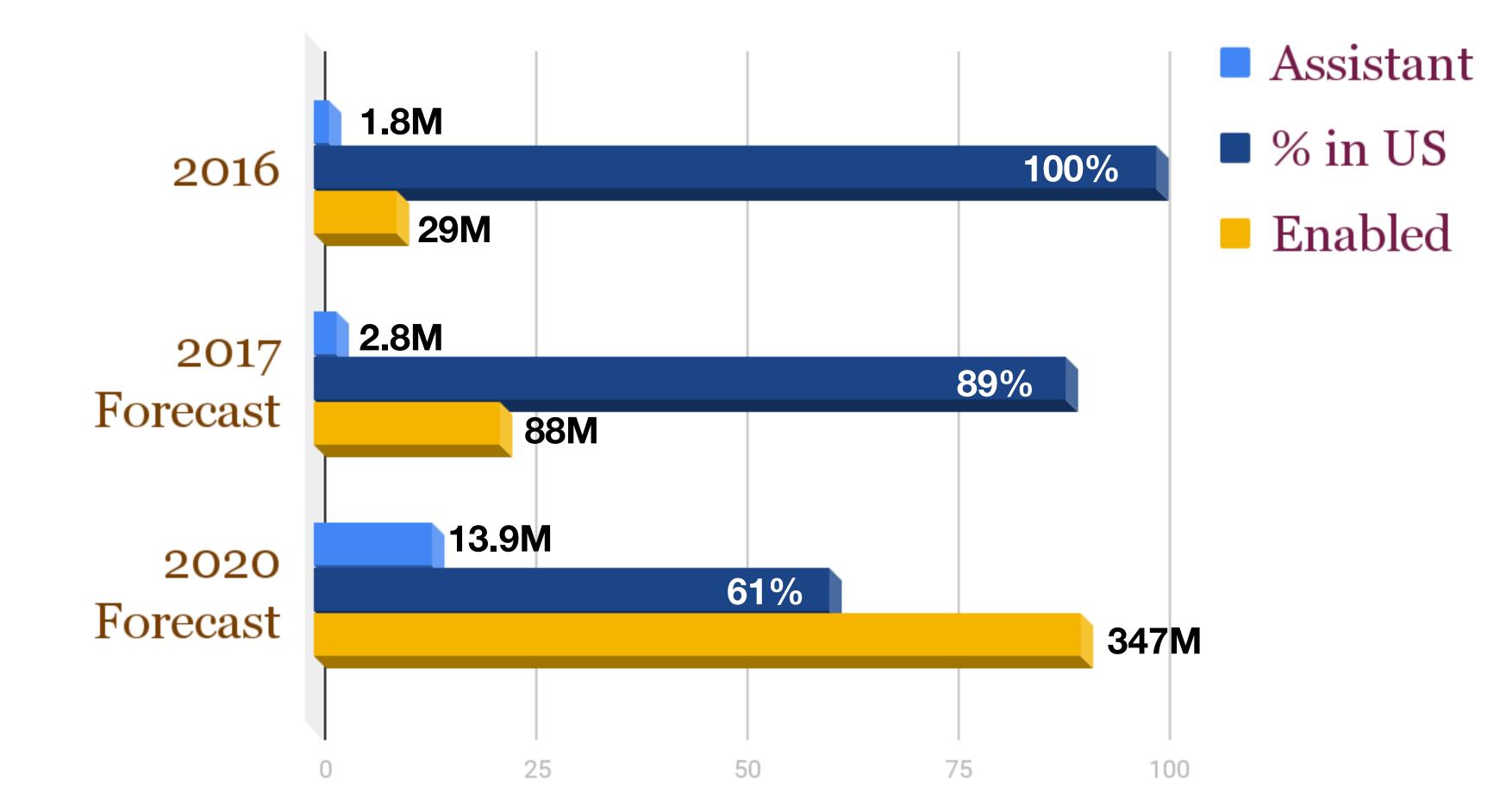
DESPITE THE JULY DECLINE DURABLE GOODS ORDERS REMAINS SEVEN POINT SEVEN PERCENT ABOVE THE YEAR EARLIER LEVEL

DESPITE THE JULY DECLINE TO <UNK> ITS AUGUST REMAINED SEVEN POINT SEVEN OH CENT LEVEL THAT THE ABILITY OF THAT

E.g.: ASR on accented speech

Speech interfaces

Market for Voice



What's next?

Need to do more...

- Robust to variations in age, accent and ability
- Handling noisy real-life settings with many speakers (e.g., meetings, parties)
- Handling pronunciation variability
- Handling new languages/ dialects

... with less

- Fast (real-time) decoding using limited computational power/ memory
- Faster training algorithms
- Reduce duplicated effort across domains/languages
- Reduce dependence on language-specific resources
- Train with less labeled data

Remaining Coursework

Participation Points

- Six in-class mini-quizzes
- Total points out of 20
 (Quiz 2 scaled to 4 points)
- \geq 10 points gets full 5 participation points
- $\begin{array}{c} (8-10) 4 \\ (6-8) 3 \\ (4-6) 2 \\ (2-4) 1 \\ < 2 0 \end{array}$

\sim	nt	\frown
		S
		U

Quiz	Points	# of responses
1	3	96
2	10	79
3	4	99
4	4	76
5	2	68
6	3	53

Final Exam Syllabus

- 1. WFST algorithms/WFSTs used in ASR
- 2. HMM algorithms/EM/Tied state Triphone models
- 3. DNN-based acoustic models
- 4. N-gram/Smoothing/RNN language models
- 5. End-to-end ASR (CTC, LAS, RNN-T)
- 6. MFCC feature extraction
- 7. Search & Decoding
- 8. HMM-based speech synthesis models
- 9. Multilingual ASR
- 10. Speaker Adaptation
- 11. Discriminative training of HMMs

Questions can be asked on any of the 11 topics listed above. You will be allowed a single A-4 cheat sheet of **handwritten notes**; content on both sides permitted.

Final Project

Deliverables

- 4-5 page final report:
 - Analysis (if any), Summary
- Short talk summarizing the project: •
 - and ≈ 5 minutes for Q/A

✓ Task definition, Methodology, Prior work, Implementation Details, Experimental Setup, Experiments and Discussion, Error

✓ Each team will get 8-10 minutes for their presentation

Clearly demarcate which team member worked on what part

Final Project Grading

- Break-up of 20 points:
 - 6 points for the report
 - 4 points for the presentation
 - 6 points for Q/A
 - 4 points for overall evaluation of the project •

Final Project Schedule

- Presentations will be held on Nov 23rd and Nov 24th
- The final report in pdf format should be sent to pjyothi@cse.iitb.ac.in before Nov 24th
- and shared via Moodle before Nov 9th

The order of presentations will be decided on a lottery basis