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Final practice questions

Lecture 23




Final Exam Syllabus

. WEST algorithms/WFSTs used in ASR

HMM algorithms/EM/Tied state Triphone models
DNN-based acoustic models
N-gram/Smoothing/RNN language models
End-to-end ASR (CTC, LAS, RNN-T)

MFCC feature extraction

. Search & Decoding
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HMM-based speech synthesis models
9. Multilingual ASR

10. Speaker Adaptation

11. Discriminative training of HMMSs

Questions can be asked on any of the 11 topics listed above. You will be allowed a single A-4
cheat sheet of handwritten notes; content on both sides permitted.



Final Project

Deliverables

- 4-5 page final report:

v Task definition, Methodology, Prior work, Implementation
Details, Experimental Setup, Experiments and Discussion, Error
Analysis (if any), Summary

Short talk summarizing the project:

v Each team will get 8-10 minutes for their presentation
and =5 minutes for Q/A

v Clearly demarcate which team member worked on what part



Final Project Grading

Break-up of 20 points:

+ 6 points for the report

+ 4 points for the presentation
+ 6 points for Q/A

* 4 points for overall evaluation of the project



Final Project Schedule

Presentations will be held on Nov 23rd and Nov 24th

- The final report in pdf format should be sent to

pjvothi@cse.iitb.ac.in before Nov 24th

-+ The order of presentations will be decided on a lottery basis
and shared via Moodle before Nov 9th


mailto:pjyothi@cse.iitb.ac.in

Generative Adversarial Networks (GANS) b

and a discriminative network Discriminator

. Training process is formulated as a -
game between a generator network

Obijective of the generator: Create

samples that seem to be from the

same distribution as the training

Objective of the discriminator:
Examine a generated sample and
distinguish between fake or real
samples

- The generator tries to fool the -

!

discriminator network
Z

Generator




Generative Adversarial Networks

max min L(G, D)
G D

where L£(G, D) = Ezep[—log D(x)] + E.[—log(1 — D(G(2)))]

e (Cost function of the generator is the opposite of the discriminator’s

 Minimax game: The generator and discriminator are playing a zero-sum
game against each other



Training Generative Adversarial Networks

for number of training iterations do
for £k steps do

e Sample minibatch of m noise samples {z(}), ..., z("™)} from noise prior p,(2).
e Sample minibatch of m examples {x"),..., ("™} from data generating distribution
pdata(a?)-
e Update the discriminator by ascending its stochastic gradient:
I i i
nga ; [logD (m( )) + log (1 — D (G (z( >)))} .
end for
e Sample minibatch of m noise samples {z1), ..., z("™)} from noise prior p,(2).

e Update the generator by descending its stochastic gradient:

o, 2o (120 (6 ().

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum 1n our experuments.

Image from [Goodfellow16]: https://arxiv.org/pdf/1701.00160.pdf



Better objective for the generator

Problem of saturation: If the

generated sample is really poor, modified
the generator’s cost is relatively flat cost
+ Original cost

Loen(G, D) = E.[log(1 — D(G(2))))

minimax

Modified cost
cost

ﬁGEN(Gv D) — Ez [_ 1Og D(G(Z))]




Large (& growing!) list of GANs

The GAN Zoo
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e 3D-ED-GAN - Shape Inpainting using 3D Generative Adversarial Network and Recurrent Convolutional Networks
e 3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling (github)
e 3D-IWGAN - Improved Adversarial Systems for 3D Object Generation and Reconstruction (github)

e 3D-PhysNet - 3D-PhysNet: Learning the Intuitive Physics of Non-Rigid Object Deformations
e 3D-RecGAN - 3D Object Reconstruction from a Single Depth View with Adversarial Learning (github)

e ABC-GAN - ABC-GAN: Adaptive Blur and Control for improved training stability of Generative Adversarial Networks
(github)

e ABC-GAN - GANs for LIFE: Generative Adversarial Networks for Likelihood Free Inference

e AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs

e acGAN - Face Aging With Conditional Generative Adversarial Networks

e ACGAN - Coverless Information Hiding Based on Generative adversarial networks

e acGAN - On-line Adaptative Curriculum Learning for GANs

e ACtuAL - ACtuAL: Actor-Critic Under Adversarial Learning

e AdaGAN - AdaGAN: Boosting Generative Models

e Adaptive GAN - Customizing an Adversarial Example Generator with Class-Conditional GANs
e AdvEntuRe - AdvEntuRe: Adversarial Training for Textual Entailment with Knowledge-Guided Examples
e AdVGAN - Generating adversarial examples with adversarial networks

e AE-GAN - AE-GAN: adversarial eliminating with GAN

Image from https://github.com/hindupuravinash/the-gan-zoo



https://github.com/hindupuravinash/the-gan-zoo
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Image-to-image Translation using G-GANs

Labels to Street Scene Labels to Facade BW to Color

output
Edges to Photo

iInput output

Image from Isola et al., CVPR 2017, https://arxiv.org/pdi/1611.07004.pdf



Text-to-Image Synthesis

this small bird has a pink this magnificent fellow is
breast and crown, and black almost all black with a red
primaries and secondaries. crest, and white cheek patch.

the flower has petals that this white and yellow flower
are bright pinkish purple have thin white petals and a
with white stigma round yellow stamen

;U

Image from Reed et al., ICML 2016, https://arxiv.org/pdt/1605.05396 .pdf



Text-to-Image Synthesis

This flower has small, round violet This flower has small, round violet
petals with a dark purple center petals with a dark purple center
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Generator Network Discriminator Network

Image from Reed et al., ICML 2016, https://arxiv.org/pdi/1605.05396.pdf



Three Speech Applications of GANs



GANSs for speech synthesis

(Generator Discriminator:
produces VY
synthesised speech sinary WA - OR oo

- classifier .
which the //X\\‘//ﬁ\ : *
Discriminator XX '
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real SpeeCh Linguistic features

l Natural samples
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Image from Yang et al., “SPSS using GANs”, 2017



clean gtruth

SEGAN: GANs for speech enhancement

Enhancement: Given an input noisy

signal x, we want to clean it to obtain an

enhanced signal x

Generator G will take both X and 7z as

inputs; G is fully convolutional
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Image from https://arxiv.org/pdt/1703.09452 .pdf



https://arxiv.org/pdf/1703.09452.pdf

Cycle-concistency loss

Voice Conversion Using Cycle-GANSs

Adversarial loss

Gxy Dy

T

A\

L

| | GY—>X
(a) Forward-inverse mapping

Adversarial loss

DX GY—)X y

A\

L

GX—>Y

(b) Inverse-forward mapping

Image from https://arxiv.org/abs/1711.11293

Cycle-concistency loss


https://arxiv.org/abs/1711.11293

Practice Questions



HMM 101

A water sample collected from Powal lake is either Clean or Polluted. However, this
information is hidden from us and all we can observe is whether the water is muddy, clear,

odorless or cloudy. We start at time step 1 in the Clean state. The HMM below models this
problem. Let gt and Ot denote the state and observation at time step t, respectively.
0.2

a)What is P(O, = clear)?

b)What is P(g, = Clean | O, =clear)?

Clean Polluted

Pr(muddy) = 0.5
Pr(clear) = 0.1
Pr(odorless) = 0.2
Pr(cloudy) = 0.2

Pr(muddy) = 0.1
Pr(clear) = 0.5
Pr(odorless) = 0.2
Pr(cloudy) = 0.2

C)What IS P(OZOO = CIOUdy)?

d)What’s the most likely sequence of
states for the following observation

. sequence: {0, = clear,0, = clear,
O, = clear,0, = clear,Os = clear}?

0.2



HMM 101

Say that we are now given a modified HMM for the water samples as shown below. Initial
probabilities and transition probabilities are shown next to the arcs. (Note: You do not need to
use the Viterbi algorithm to answer the next two questions.)

a) What is the most likely sequence of
states given a sequence of three
observations: {muddy, muddy,

100 Muddy}?

0.9 0.9

0.1

0.01

Clean Polluted

Pr(muddy) = 0.51
Pr(clear) = 0.49

Pr(muddy) = 0.49
Pr(clear) = 0.51

b) Say we observe a very long
sequence of “muddy” (e.g. 10 million
“muddy” in a row). What happens to
the most likely state sequence then?

0.1



Handling disfluencies in ASR

Recall that a pronunciation lexicon L maps a sequence of phones to a sequence of words. In this
problem, we shall modify L in order to handle some limited forms of interruptions in speech (a.k.a.
disfluencies). We will consider a dictionary of two words: W, with the phone sequence “a b ¢’ and W,

with the phone sequence “xy z”.
a) Draw the state diagram of the finite-state machine L.

b) We want to modify L such that it accounts for “breaks” when the speaker stops in the middle of a
word and says the word all over again. For instance, the word W, may be pronounced as “a b (break)
a b c,” where (break) is a special token produced by the acoustic model. In a valid phone sequence,

breaks are allowed to appear only within a word, and not at the end or beginning of a word. Further,
two consecutive {break) tokens are not allowed. But a word can be pronounced with an arbitrary

number of breaks. E.g. W, can be pronounced also as “a b (break) a (break) a b <break) a b c”. Let L,

be an FST (obtained by modifying L from the previous part) that accepts all valid phone sequences
with breaks, and outputs a corresponding sequence of words. Draw the state diagram of L.



Handling disfluencies in ASR

Recall that a pronunciation lexicon L maps a sequence of phones to a sequence of words. In this
problem, we shall modify L in order to handle some limited forms of interruptions in speech (a.k.a.
disfluencies). We will consider a dictionary of two words: W, with the phone sequence “a b ¢” and

W, with the phone sequence “x y z”.

c) Next, we want to modify L, such that it can account for both “breaks” and “pauses.” A pause
corresponds to when the speaker briefly stops in the middle of a word and continues. For instance,
the word W, may be pronounced as “a b {pause) c”, “a (break) a (pause) b <break) a b c,” etc.
where {pause) is another special token produced by the acoustic model. In a valid phone

sequence, these special tokens are allowed to appear only within a word, and two consecutive
special tokens are not allowed. Let L, be an FST (obtained by modifying L; from the previous

part) that accepts all valid phone sequences with breaks and pauses, and outputs a corresponding
sequence of words. Draw the state diagram of L,.



Mixed Bag

An HMM-based speech synthesis system can be described using the following steps:

1.Spectral feature and excitation features are extracted from a speech database
2.Context-dependent HMMs are trained on these features

3.These HMMSs are clustered using a decision tree

4.Durations of the HMM models are explicitly modeled

At synthesis time, for a given text sequence, the decision tree yields the appropriate
HMM state sequence which in turn determines the output spectral and excitation
features (that are passed through a synthesis filter to produce speech). Say we
want to add expressivity to the synthesized speech: i.e. we want to make the voice
sound happy or sad, friendly or stern. Pick one of the above-mentioned steps from
(A)-(D) you would modify to add expressivity and briefly justify your choice.



Mixed Bag

Find the probability, Pr(drank|Mohan), given the following bigram counts:

Mohan drank 10
drank coftee 1
Mohan coffee 10
drank Mohan 5

Mohan ate 10
drank water 20

Pr(drank|Mohan) =

Say you have an n-gram distribution which is smoothed using add-a smoothing for some o > 0. The
entropy of the smoothed distribution is

(A) equal to (B) less than (C) greater than

the entropy of the original unsmoothed n-gram distribution. Pick one of (A), (B) or (C) and briefly justify
your choice.



Mixed Bag

Recall neural network language models (NNLMs) as shown in the schematic diagram below. For a given
context of fixed length, each word in the context (drawn from a vocabulary of size V) is projected onto a P
dimensional projection layer using a common N X P projection matrix, that is shared across the different
word positions in the context. The value of the :th node in the output layer corresponds directly to the
probability of a word 7 given its context.

° projection output
Q layer hidden layer
Wj-n+1 8 |
O
3 softmax
W e over vocabulary
2 Q _— of size N

shared
- projections

/H

P O

=
@00000

The complexity to calculate probabilities using this NNLM is quite high. Describe one main reason why
this evaluation is very costly in processing time.



CTC Alignments

Given an input sequence x of length 1 and an output character sequence y
of length N, the CTC objective function is given by:

Pore(ylx) = Z P(a|x)
a:B(a)=
where B maps a per-frame output sequence a = (ai,...,ar) to a final

output sequence y = (y1,...,yn)

Consider a different definition of B which first removes all occurrences of the blank symbol, and then
compresses each run of an identical character to a run of length 1. Give an example of a sequence y such
that there is no a with B(a) =y, for this new B. Briefly justify your answer.




CTC Alignments

Now suppose we would like to avoid the use of the blank symbol altogether. Towards this, we define a new

B which works as follows. Given a = (ai,...,ar), B defines the sequence ((c1,%1),(c2,€2),...,(crr,lar))
where ¢; # ¢;11 and £; > 0 for all 7, and a = (¢1,...,¢c1,¢2,...,¢C2, ..., CM,. .., CM).
S N S —
/1 times /5 times ¢ times

Then B calculates the average run length ¢ = ﬁ Z,f\i , i, and outputs

y — (Cl,...,Cl,CQ,...,CQ,...,CM,...,CM)
S—r N—— N——
k1 times ko times ks times

where k; = max{1, |¢;/¢|}. Here, k; is an estimate of how many times ¢; needs to be repeated, depending
on how ¢; compares with the average run length /.

For example, B(a,a,b,b,b,b,b,b,b,b,c,c) = (a,b,b,c) because ¢1 = 2,f, = 8,3 = 2 and therefore k; =
1,ky =2, ks = 1.

Give an example of a sequence y such that there is no a with B(a) = y, for this new B.



