
Instructor: Preethi Jyothi

GANs  
+ 

Final practice questions 

Lecture 23

CS 753 



Final Exam Syllabus
1. WFST algorithms/WFSTs used in ASR
2. HMM algorithms/EM/Tied state Triphone models
3. DNN-based acoustic models
4. N-gram/Smoothing/RNN language models
5. End-to-end ASR (CTC, LAS, RNN-T)
6. MFCC feature extraction
7. Search & Decoding
8. HMM-based speech synthesis models
9. Multilingual ASR
10. Speaker Adaptation
11. Discriminative training of HMMs

Questions can be asked on any of the 11 topics listed above. You will be allowed a single A-4 
cheat sheet of handwritten notes; content on both sides permitted.



Final Project

Deliverables

• 4-5 page final report: 

✓ Task definition, Methodology, Prior work, Implementation 
Details, Experimental Setup, Experiments and Discussion, Error 
Analysis (if any), Summary

• Short talk summarizing the project:

✓ Each team will get 8-10 minutes for their presentation  
and � 5 minutes for Q/A

✓ Clearly demarcate which team member worked on what part

≈



Final Project Grading

• Break-up of 20 points:

• 6 points for the report

• 4 points for the presentation

• 6 points for Q/A

• 4 points for overall evaluation of the project



Final Project Schedule

• Presentations will be held on Nov 23rd and Nov 24th

• The final report in pdf format should be sent to 
pjyothi@cse.iitb.ac.in before Nov 24th

• The order of presentations will be decided on a lottery basis 
and shared via Moodle before Nov 9th

mailto:pjyothi@cse.iitb.ac.in


Generative Adversarial Networks (GANs)

Z

D(x)

x = G(z)xreal

Discriminator

Generator

• Training process is formulated as a 
game between a generator network 
and a discriminative network

• Objective of the generator: Create 
samples that seem to be from the 
same distribution as the training 
data

• Objective of the discriminator: 
Examine a generated sample and 
distinguish between fake or real 
samples

• The generator tries to fool the 
discriminator network



Generative Adversarial Networks

• Cost function of the generator is the opposite of the discriminator’s


• Minimax game: The generator and discriminator are playing a zero-sum 
game against each other

max
G

min
D

L(G,D)
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where L(G,D) = Ex2D[� logD(x)] + Ez[� log(1�D(G(z)))]
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Training Generative Adversarial NetworksAlgorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do

for k steps do

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Sample minibatch of m examples {x(1), . . . ,x(m)} from data generating distribution
pdata(x).
• Update the discriminator by ascending its stochastic gradient:
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end for

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Update the generator by descending its stochastic gradient:
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end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

4.1 Global Optimality of pg = pdata

We first consider the optimal discriminator D for any given generator G.
Proposition 1. For G fixed, the optimal discriminator D is

D⇤
G(x) =

pdata(x)

pdata(x) + pg(x)
(2)

Proof. The training criterion for the discriminator D, given any generator G, is to maximize the
quantity V (G,D)

V (G,D) =

Z

x
pdata(x) log(D(x))dx+

Z

z
pz(z) log(1�D(g(z)))dz

=

Z

x
pdata(x) log(D(x)) + pg(x) log(1�D(x))dx (3)

For any (a, b) 2 R2 \ {0, 0}, the function y ! a log(y) + b log(1 � y) achieves its maximum in
[0, 1] at a

a+b . The discriminator does not need to be defined outside of Supp(pdata) [ Supp(pg),
concluding the proof.

Note that the training objective for D can be interpreted as maximizing the log-likelihood for es-
timating the conditional probability P (Y = y|x), where Y indicates whether x comes from pdata
(with y = 1) or from pg (with y = 0). The minimax game in Eq. 1 can now be reformulated as:

C(G) =max
D

V (G,D)

=Ex⇠pdata [logD
⇤
G(x)] + Ez⇠pz [log(1�D⇤

G(G(z)))] (4)
=Ex⇠pdata [logD

⇤
G(x)] + Ex⇠pg [log(1�D⇤

G(x))]

=Ex⇠pdata


log

pdata(x)

Pdata(x) + pg(x)

�
+ Ex⇠pg


log

pg(x)

pdata(x) + pg(x)

�
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Image from [Goodfellow16]: https://arxiv.org/pdf/1701.00160.pdf



Better objective for the generator

A Better Cost Function

Original minimax cost:

JG = Ez[log(1� D(G (z)))]

Modified generator cost:

JG = Ez[� logD(G (z))]

This fixes the saturation problem.
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• Problem of saturation: If the 
generated sample is really poor, 
the generator’s cost is relatively flat 

• Original cost

• Modified cost

LGEN(G,D) = Ez[log(1�D(G(z)))]
<latexit sha1_base64="LGWrBEXN/oGBn/UGMdYvD/mje+0="></latexit>

LGEN(G,D) = Ez[� logD(G(z))]
<latexit sha1_base64="axrtjiZYFFfZltVUN2PIU2Ef0eo=">AAACKnicbVDLSgMxFM3UV62vqks3wSK0oGWmCroRqrbUhUgF+4CZoWTStA3NPEgyQjvM97jxV9x0oRS3fojpQ9DqgcDJOfdy7z1OwKiQuj7WEkvLK6tryfXUxubW9k56d68u/JBjUsM+83nTQYIw6pGapJKRZsAJch1GGk7/ZuI3nggX1Pce5SAgtou6Hu1QjKSSWukry0WyhxGL7uJWNP1wN6qU7+M4WzmGpRy8hN9qWVUMY2ieWMzvwlK2kh3mcnYrndHz+hTwLzHmJAPmqLbSI6vt49AlnsQMCWEaeiDtCHFJMSNxygoFCRDuoy4xFfWQS4QdTU+N4ZFS2rDjc/U8Cafqz44IuUIMXEdVTrYWi95E/M8zQ9m5sCPqBaEkHp4N6oQMSh9OcoNtygmWbKAIwpyqXSHuIY6wVOmmVAjG4sl/Sb2QN07zhYezTPF6HkcSHIBDkAUGOAdFcAuqoAYweAav4A28ay/aSBtrH7PShDbv2Qe/oH1+ASE1pcM=</latexit>



Large (& growing!) list of GANs

Image from https://github.com/hindupuravinash/the-gan-zoo

https://github.com/hindupuravinash/the-gan-zoo


Conditional GANs

• Generator and discriminator 
receive some additional 
conditioning information

Z

D(x)

x = G(z)xreal

C



Image-to-image Translation using C-GANs

Image-to-Image Translation with Conditional Adversarial Networks

Phillip Isola Jun-Yan Zhu Tinghui Zhou Alexei A. Efros

Berkeley AI Research (BAIR) Laboratory, UC Berkeley
{isola,junyanz,tinghuiz,efros}@eecs.berkeley.edu

Labels to Facade BW to Color

Aerial to Map

Labels to Street Scene

Edges to Photo

input output input

inputinput

input output

output

outputoutput

input output

Day to Night

Figure 1: Many problems in image processing, graphics, and vision involve translating an input image into a corresponding output image.
These problems are often treated with application-specific algorithms, even though the setting is always the same: map pixels to pixels.
Conditional adversarial nets are a general-purpose solution that appears to work well on a wide variety of these problems. Here we show
results of the method on several. In each case we use the same architecture and objective, and simply train on different data.

Abstract

We investigate conditional adversarial networks as a
general-purpose solution to image-to-image translation
problems. These networks not only learn the mapping from
input image to output image, but also learn a loss func-
tion to train this mapping. This makes it possible to apply
the same generic approach to problems that traditionally
would require very different loss formulations. We demon-
strate that this approach is effective at synthesizing photos
from label maps, reconstructing objects from edge maps,
and colorizing images, among other tasks. Indeed, since the
release of the pix2pix software associated with this pa-
per, a large number of internet users (many of them artists)
have posted their own experiments with our system, further
demonstrating its wide applicability and ease of adoption
without the need for parameter tweaking. As a commu-
nity, we no longer hand-engineer our mapping functions,
and this work suggests we can achieve reasonable results
without hand-engineering our loss functions either.

1. Introduction
Many problems in image processing, computer graphics,

and computer vision can be posed as “translating” an input
image into a corresponding output image. Just as a concept
may be expressed in either English or French, a scene may
be rendered as an RGB image, a gradient field, an edge map,
a semantic label map, etc. In analogy to automatic language
translation, we define automatic image-to-image translation
as the task of translating one possible representation of a
scene into another, given sufficient training data (see Figure
1). Traditionally, each of these tasks has been tackled with
separate, special-purpose machinery (e.g., [16, 25, 20, 9,
11, 53, 33, 39, 18, 58, 62]), despite the fact that the setting
is always the same: predict pixels from pixels. Our goal in
this paper is to develop a common framework for all these
problems.

The community has already taken significant steps in this
direction, with convolutional neural nets (CNNs) becoming
the common workhorse behind a wide variety of image pre-
diction problems. CNNs learn to minimize a loss function –
an objective that scores the quality of results – and although
the learning process is automatic, a lot of manual effort still

1
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Image from Isola et al., CVPR 2017, https://arxiv.org/pdf/1611.07004.pdf



Text-to-Image Synthesis

Generative Adversarial Text to Image Synthesis

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran REEDSCOT1 , AKATA2 , XCYAN1 , LLAJAN1

Bernt Schiele, Honglak Lee SCHIELE2 ,HONGLAK1

1 University of Michigan, Ann Arbor, MI, USA (UMICH.EDU)
2 Max Planck Institute for Informatics, Saarbrücken, Germany (MPI-INF.MPG.DE)

Abstract

Automatic synthesis of realistic images from text
would be interesting and useful, but current AI
systems are still far from this goal. However, in
recent years generic and powerful recurrent neu-
ral network architectures have been developed
to learn discriminative text feature representa-
tions. Meanwhile, deep convolutional generative
adversarial networks (GANs) have begun to gen-
erate highly compelling images of specific cat-
egories, such as faces, album covers, and room
interiors. In this work, we develop a novel deep
architecture and GAN formulation to effectively
bridge these advances in text and image model-
ing, translating visual concepts from characters
to pixels. We demonstrate the capability of our
model to generate plausible images of birds and
flowers from detailed text descriptions.

1. Introduction

In this work we are interested in translating text in the form
of single-sentence human-written descriptions directly into
image pixels. For example, “this small bird has a short,
pointy orange beak and white belly” or ”the petals of this
flower are pink and the anther are yellow”. The problem of
generating images from visual descriptions gained interest
in the research community, but it is far from being solved.

Traditionally this type of detailed visual information about
an object has been captured in attribute representations -
distinguishing characteristics the object category encoded
into a vector (Farhadi et al., 2009; Kumar et al., 2009;
Parikh & Grauman, 2011; Lampert et al., 2014), in partic-
ular to enable zero-shot visual recognition (Fu et al., 2014;
Akata et al., 2015), and recently for conditional image gen-
eration (Yan et al., 2015).

While the discriminative power and strong generalization

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

this small bird has a pink 
breast and crown, and black 
primaries and secondaries.

the flower has petals that 
are bright pinkish purple 
with white stigma

this magnificent fellow is 
almost all black with a red 
crest, and white cheek patch.

this white and yellow flower 
have thin white petals and a 
round yellow stamen

Figure 1. Examples of generated images from text descriptions.
Left: captions are from zero-shot (held out) categories, unseen
text. Right: captions are from the training set.

properties of attribute representations are attractive, at-
tributes are also cumbersome to obtain as they may require
domain-specific knowledge. In comparison, natural lan-
guage offers a general and flexible interface for describing
objects in any space of visual categories. Ideally, we could
have the generality of text descriptions with the discrimi-
native power of attributes.

Recently, deep convolutional and recurrent networks for
text have yielded highly discriminative and generaliz-
able (in the zero-shot learning sense) text representations
learned automatically from words and characters (Reed
et al., 2016). These approaches exceed the previous state-
of-the-art using attributes for zero-shot visual recognition
on the Caltech-UCSD birds database (Wah et al., 2011),
and also are capable of zero-shot caption-based retrieval.
Motivated by these works, we aim to learn a mapping di-
rectly from words and characters to image pixels.

To solve this challenging problem requires solving two sub-
problems: first, learn a text feature representation that cap-
tures the important visual details; and second, use these fea-
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Image from Reed et al., ICML 2016, https://arxiv.org/pdf/1605.05396.pdf



Generative Adversarial Text to Image Synthesis

This flower has small, round violet 
petals with a dark purple center

This flower has small, round violet 
petals with a dark purple center

Generator Network Discriminator Network
Figure 2. Our text-conditional convolutional GAN architecture. Text encoding '(t) is used by both generator and discriminator. It is
projected to a lower-dimensions and depth concatenated with image feature maps for further stages of convolutional processing.

then concatenated to the noise vector z. Following this, in-
ference proceeds as in a normal deconvolutional network:
we feed-forward it through the generator G; a synthetic im-
age x̂ is generated via x̂  G(z,'(t)). Image generation
corresponds to feed-forward inference in the generator G
conditioned on query text and a noise sample.

In the discriminator D, we perform several layers of stride-
2 convolution with spatial batch normalization (Ioffe &
Szegedy, 2015) followed by leaky ReLU. We again reduce
the dimensionality of the description embedding '(t) in a
(separate) fully-connected layer followed by rectification.
When the spatial dimension of the discriminator is 4 ⇥ 4,
we replicate the description embedding spatially and per-
form a depth concatenation. We then perform a 1⇥ 1 con-
volution followed by rectification and a 4 ⇥ 4 convolution
to compute the final score from D. Batch normalization is
performed on all convolutional layers.

4.2. Matching-aware discriminator (GAN-CLS)

The most straightforward way to train a conditional GAN
is to view (text, image) pairs as joint observations and train
the discriminator to judge pairs as real or fake. This type of
conditioning is naive in the sense that the discriminator has
no explicit notion of whether real training images match
the text embedding context.

However, as discussed also by (Gauthier, 2015), the
dynamics of learning may be different from the non-
conditional case. In the beginning of training, the discrim-
inator ignores the conditioning information and easily re-
jects samples from G because they do not look plausible.
Once G has learned to generate plausible images, it must
also learn to align them with the conditioning information,
and likewise D must learn to evaluate whether samples
from G meet this conditioning constraint.

In naive GAN, the discriminator observes two kinds of in-
puts: real images with matching text, and synthetic images
with arbitrary text. Therefore, it must implicitly separate
two sources of error: unrealistic images (for any text), and

Algorithm 1 GAN-CLS training algorithm with step size
↵, using minibatch SGD for simplicity.

1: Input: minibatch images x, matching text t, mis-
matching t̂, number of training batch steps S

2: for n = 1 to S do

3: h '(t) {Encode matching text description}
4: ĥ '(t̂) {Encode mis-matching text description}
5: z ⇠ N (0, 1)Z {Draw sample of random noise}
6: x̂ G(z, h) {Forward through generator}
7: sr  D(x, h) {real image, right text}
8: sw  D(x, ĥ) {real image, wrong text}
9: sf  D(x̂, h) {fake image, right text}

10: LD  log(sr) + (log(1� sw) + log(1� sf ))/2
11: D  D � ↵@LD/@D {Update discriminator}
12: LG  log(sf )
13: G G� ↵@LG/@G {Update generator}
14: end for

realistic images of the wrong class that mismatch the con-
ditioning information. Based on the intuition that this may
complicate learning dynamics, we modified the GAN train-
ing algorithm to separate these error sources. In addition
to the real / fake inputs to the discriminator during train-
ing, we add a third type of input consisting of real im-
ages with mismatched text, which the discriminator must
learn to score as fake. By learning to optimize image / text
matching in addition to the image realism, the discrimina-
tor can provide an additional signal to the generator.

Algorithm 1 summarizes the training procedure. After en-
coding the text, image and noise (lines 3-5) we generate the
fake image (x̂, line 6). sr indicates the score of associat-
ing a real image and its corresponding sentence (line 7), sw
measures the score of associating a real image with an ar-
bitrary sentence (line 8), and sf is the score of associating
a fake image with its corresponding text (line 9). Note that
we use @LD/@D to indicate the gradient of D’s objective
with respect to its parameters, and likewise for G. Lines
11 and 13 are meant to indicate taking a gradient step to
update network parameters.

Text-to-Image Synthesis

Image from Reed et al., ICML 2016, https://arxiv.org/pdf/1605.05396.pdf



Three Speech Applications of GANs



GANs for speech synthesis

Linguistic features

OR

Predicted samplesNoise

AND

Natural samples

MSE

Binary 
classifier 

Discriminator:

Generator:

Fig. 1. System diagram of GAN-based multi-task learning
framework.

min-max game with value function:

lossgan = min
G

max
D

Ex⇠pdata(x)[logD(x)]

+ Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the above generative model, the modes of generated
samples cannot be controlled because of the weak guid-
ance. So the conditional generative adversarial network
(CGAN) [18] is proposed to direct the generation by consid-
ering additional information y. Then the loss function can be
expressed as

losscgan = argmin
G

max
D

Ex⇠pdata(x)[logD(x|y)]

+ Ez⇠pz(z)[log(1�D(G(z|y)|y))]. (2)

3.2. Multi-Task Learning with GANs in SPSS

In the traditional acoustic model for SPSS, we usually mini-
mize the MSE between the predicted parameters Xmodel and
the natural speech Xreal during the estimation. The objective
can be written as

lossmse = argmin

Pn
i=1(Xreal,i �Xmodel,i)2

n
. (3)

As Eq. (3) shows, the numerical difference (in terms of
MSE) is only concerned in the estimation, and the numer-
ical error reduction may not necessarily lead to perceptual
improvement on the synthesized speech [12]. To solve this
problem, we propose to use GANs to learn the essential differ-
ences between the synthesized speech and the natural speech
through a discriminative process.

GAN is able to generate data rather than estimate the den-
sity function. Due to the model collapse problem in the gener-
ative model in GAN [18], we propose the following generator
loss function in order to guide GAN to converge to optimal
solution such that the generative model produces desired data:

Ez⇠pz(z)[G(z|y))�Xreal]
2+

Ez⇠pz(z)[log(1�D(G(z|y)|y))], (4)

where Xreal⇠pdata(x), and Xmodel is generated by the gen-
erator G using uniformly random noise z under condition y.
Combining Eq. (2) and Eq. (4), the final objective of our MTL
framework is:

lossmulti = argmin
G

max
D

Ex⇠pdata(x)[logD(x|y)]

+ Ez⇠pz(z)[G(z|y))�Xreal]
2

+ Ez⇠pz(z)[log(1�D(G(z|y)|y))]. (5)

We treat the linguistic features as additional vector y, and
make the input noise z obey a uniform distribution in the in-
terval [-1,1]. Then our framework can generate the speech
Xmodel by G(z|y), and the lossmse and losscgan are esti-
mated at the same time during training. Note that the input of
our speech generator is uniformly random noise and linguis-
tic features are used as conditions for both the generator and
the discriminator, which in different from [16].

Since the effective likelihood of GAN is unknown and in-
tractable [22], several auto-encoder GAN variants use zero-
mean Laplace distribution exp(��||x � G(z)||1) [26, 27] to
solve the problems. In order to directly show the likelihood
of these variants, we can simply set � = 1 and replace the
L1 reconstruction loss with L2 norm, and then we can get
the MSE format as traditional methods. That is to say, we
can take other explicit likelihood (e.g., MSE) to solve the in-
tractable inference of GANs. The L1 reconstruction loss will
be investigated in the near future.

3.3. Phoneme Discrimination for GANs

In Section 3.2, the discriminator is a binary classifier to judge
whether the data x is from G(z) or pdata(x) under the condi-
tion y. We also try to use phoneme information to guide the
discrimination process in our multi-task framework, as shown
in Fig.2.

Assume label is a one-hot encoded vector representing
the phoneme class, which is the category of both fake and real
samples for D. Then our goal is to minimize the cross entropy
(CE) for the real and to maximize this loss for the fake, and
the latter one means that we do not know which phoneme the
fake belongs to. So the target function of GANs in lossmulti

can be updated with

argminEx⇠pdata(x)[DCE(x|y, label)]
� Ez⇠pz(z)[DCE(G(z|y)|y, label)]. (6)

• Generator 
produces  
synthesised speech 
which the 
Discriminator 
distinguishes from 
real speech

• During synthesis, a 
random noise + 
linguistic features 
generates speech

Image from Yang et al., “SPSS using GANs”, 2017



SEGAN: GANs for speech enhancement

Figure 1: GAN training process. First, D back-props a batch
of real examples. Then, D back-props a batch of fake exam-
ples that come from G, and classifies them as fake. Finally, D’s
parameters are frozen and G back-props to make D misclassify.

coming from G, X̂ , have to be classified as fake. This leads
to G trying to fool D, and the way to do so is that G adapts
its parameters such that D classifies G’s output as real. During
back-propagation, D gets better at finding realistic features in its
input and, in turn, G corrects its parameters to move towards the
real data manifold described by the training data (Fig. 1). This
adversarial learning process is formulated as a minimax game
between G and D, with the objective

min
G

max
D

V (D,G) = Ex⇠pdata(x) [logD(x)] +

+ Ez⇠pz(z) [log (1�D (G (z)))] .
(1)

We can also work with a conditioned version of GANs,
where we have some extra information in G and D to perform
mapping and classification (see [20] and references therein).
In that case, we may add some extra input xc, with which we
change the objective function to

min
G

max
D

V (D,G) = Ex,xc⇠pdata(x,xc) [logD(x, xc)] +

+ Ez⇠pz(z),xc⇠pdata(xc) [log (1�D (G (z, xc) , xc))] .
(2)

There have been recent improvements in the GAN method-
ology to stabilize training and increase the quality of the gen-
erated samples in G. For instance, the classic approach suf-
fered from vanishing gradients due to the sigmoid cross-entropy
loss used for training. To solve this, the least-squares GAN
(LSGAN) approach [21] substitutes the cross-entropy loss by
the least-squares function with binary coding (1 for real, 0 for
fake). With this, the formulation in Eq. 2 changes to

min
D

VLSGAN(D) =
1
2
Ex,xc⇠pdata(x,xc)[(D(x, xc)� 1)2]+

+
1
2
Ez⇠pz(z),xc⇠pdata(xc)[D(G(z, xc), xc)

2]

(3)

min
G

VLSGAN(G) =
1
2
Ez⇠pz(z),xc⇠pdata(xc)[(D(G(z, xc), xc)�1)2].

(4)

3. Speech Enhancement GAN

The enhancement problem is defined so that we have an input
noisy signal x̃ and we want to clean it to obtain the enhanced
signal x̂. We propose to do so with a speech enhancement GAN

Figure 2: Encoder-decoder architecture for speech enhance-
ment (G network). The arrows between encoder and decoder
blocks denote skip connections.

(SEGAN). In our case, the G network performs the enhance-
ment. Its inputs are the noisy speech signal x̃ together with the
latent representation z, and its output is the enhanced version
x̂ = G(x̃). We design G to be fully convolutional, so that there
are no dense layers at all. This enforces the network to focus on
temporally-close correlations in the input signal and throughout
the whole layering process. Furthermore, it reduces the number
of training parameters and hence training time.

The G network is structured similarly to an auto-encoder
(Fig. 2). In the encoding stage, the input signal is projected
and compressed through a number of strided convolutional lay-
ers followed by parametric rectified linear units (PReLUs) [23],
getting a convolution result out of every N steps of the filter. We
choose strided convolutions as they were shown to be more sta-
ble for GAN training than other pooling approaches [22]. Dec-
imation is done until we get a condensed representation, called
the thought vector c, which gets concatenated with the latent
vector z. The encoding process is reversed in the decoding stage
by means of fractional-strided transposed convolutions (some-
times called deconvolutions), followed again by PReLUs.

The G network also features skip connections, connecting
each encoding layer to its homologous decoding layer, and by-
passing the compression performed in the middle of the model
(Fig. 2). This is done because the input and output of the model
share the same underlying structure, which is that of natural
speech. Therefore, many low level details could be lost to re-
construct the speech waveform properly if we force all informa-
tion to flow through the compression bottleneck. Skip connec-
tions directly pass the fine-grained information of the waveform
to the decoding stage (e.g., phase, alignment). In addition, they
offer a better training behavior, as the gradients can flow deeper
through the whole structure [24].

An important feature of G is its end-to-end structure, so that
it processes raw speech sampled at 16 kHz, getting rid of any

• Enhancement: Given an input noisy 
signal � , we want to clean it to obtain an 
enhanced signal �

• Generator G will take both �  and �  as 
inputs; G is fully convolutional 

x̃
x

x̃ z

intermediate transformations to extract acoustic features (con-
trasting to many common pipelines). In this type of model, we
have to be careful with typical regression losses like mean ab-
solute error or mean squared error, as noted in the raw speech
generative model WaveNet [25]. These losses work under
strong assumptions on how our output distribution is shaped
and, therefore, impose important modeling limitations (like not
allowing multi-modal distributions and biasing the predictions
towards an average of all the possible predictions). Our solution
to overcome these limitations is to use the generative adversar-
ial setting. This way, D is in charge of transmitting information
to G of what is real and what is fake, such that G can slightly
correct its output waveform towards the realistic distribution,
getting rid of the noisy signals as those are signaled to be fake.
In this sense, D can be understood as learning some sort of loss
for G’s output to look real.

In preliminary experiments, we found it convenient to add
a secondary component to the loss of G in order to minimize
the distance between its generations and the clean examples. To
measure such distance, we chose the L1 norm, as it has been
proven to be effective in the image manipulation domain [20,
26]. This way, we let the adversarial component to add more
fine-grained and realistic results. The magnitude of the L1 norm
is controlled by a new hyper-parameter �. Therefore, the G loss,
which we choose to be the one of LSGAN (Eq. 4), becomes

min
G

VLSGAN(G) =
1
2
Ez⇠pz(z),x̃⇠pdata(x̃)[(D(G(z, x̃), x̃)� 1)2]+

+ � kG(z, x̃)� xk1.
(5)

4. Experimental Setup

4.1. Data Set

To evaluate the effectiveness of the SEGAN, we resort to the
data set by Valentini et al. [27]. We choose it because it is open
and available1, and because the amount and type of data fits our
purposes for this work: generalizing on many types of noise for
many different speakers. The data set is a selection of 30 speak-
ers from the Voice Bank corpus [28]: 28 are included in the train
set and 2 in the test set.

To make the noisy training set, a total of 40 different con-
ditions are considered [27]: 10 types of noise (2 artificial and
8 from the Demand database [29]) with 4 signal-to-noise ratio
(SNR) each (15, 10, 5, and 0 dB). There are around 10 different
sentences in each condition per training speaker. To make the
test set, a total of 20 different conditions are considered [27]:
5 types of noise (all from the Demand database) with 4 SNR
each (17.5, 12.5, 7.5, and 2.5 dB). There are around 20 different
sentences in each condition per test speaker. Importantly, the
test set is totally unseen by (and different from) the training set,
using different speakers and conditions.

4.2. SEGAN Setup

The model is trained for 86 epochs with RMSprop [30] and a
learning rate of 0.0002, using an effective batch size of 400. We
structure the training examples in two pairs (Fig. 3): the real
pair, composed of a noisy signal and a clean signal (x̃ and x),
and the fake pair, composed of a noisy signal and an enhanced
signal (x̃ and x̂). To adequate the data set files to our waveform
generation purposes, we down-sample the original utterances

1http://dx.doi.org/10.7488/ds/1356

Figure 3: Adversarial training for speech enhancement. Dashed
lines represent gradient backprop.

from 48 kHz to 16 kHz. During train, we extract chunks of
waveforms with a sliding window of approximately one second
of speech (16384 samples) every 500 ms (50% overlap). Dur-
ing test, we basically slide the window with no overlap through
the whole duration of our test utterance and concatenate the re-
sults at the end of the stream. In both train and test, we apply a
high-frequecy preemphasis filter of coefficient 0.95 to all input
samples (during test, output is correspondingly deemphasized).

Regarding the � weight of our L1 regularization, after some
experimentation, we set it to 100 for the whole training. We ini-
tially set it to 1, but we observed that the G loss was two orders
of magnitude under the adversarial one, so the L1 had no prac-
tical effect on the learning. Once we set it to 100, we saw a
minimization behavior in the L1 and an equilibrium behavior in
the adversarial one. As the L1 got lower, the quality of the out-
put samples increased, which we hypothesize helped G being
more effective in terms of realistic generation.

Regarding the architecture, G is composed of 22 one-
dimensional strided convolutional layers of filter width 31 and
strides of N = 2. The amount of filters per layer increases
so that the depth gets larger as the width (duration of signal in
time) gets narrower. The resulting dimensions per layer, being
it samples ⇥ feature maps, is 16384⇥1, 8192⇥16, 4096⇥32,
2048⇥32, 1024⇥64, 512⇥64, 256⇥128, 128⇥128, 64⇥256,
32⇥256, 16⇥512, and 8⇥1024. There, we sample the noise
samples z from our prior 8⇥1024-dimensional normal distribu-
tion N (0, I). As mentioned, the decoder stage of G is a mir-
roring of the encoder with the same filter widths and the same
amount of filters per layer. However, skip connections and the
addition of the latent vector make the number of feature maps
in every layer to be doubled.

The network D follows the same one-dimensional convolu-
tional structure as G’s encoder stage, and it fits to the conven-
tional topology of a convolutional classification network. The
differences are that (1) it gets two input channels of 16384 sam-
ples, (2) it uses virtual batch-norm [31] before LeakyReLU non-
linearities with ↵ = 0.3, and (3) in the last activation layer there
is a one-dimensional convolution layer with one filter of width
one that does not downsample the hidden activations (1⇥1 con-
volution). The latter (3) reduces the amount of parameters re-
quired for the final classification neuron, which is fully con-
nected to all hidden activations with a linear behavior. This
means that we reduce the amount of required parameters in that
fully-connected component from 8 ⇥ 1024 = 8192 to 8, and
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Practice Questions



HMM 101
A water sample collected from Powai lake is either Clean or Polluted. However, this 
information is hidden from us and all we can observe is whether the water is muddy, clear, 
odorless or cloudy. We start at time step 1 in the Clean state. The HMM below models this 
problem. Let qt and Ot denote the state and observation at time step t, respectively. 

Problem 2: HMM 101 (15 points)

A water sample collected from Powai lake is either Clean or Polluted. However, this information is hidden
from us and all we can observe is whether the water is muddy, clear, odorless or cloudy. We start at time
step 1 in the Clean state. The HMM below models this problem. Let qt and Ot denote the state and
observation at time step t, respectively.

Clean  

Pr(muddy) = 0.5 
Pr(clear) = 0.1 

Pr(odorless) = 0.2 
Pr(cloudy) = 0.2

Polluted  
 

Pr(muddy) = 0.1 
Pr(clear) = 0.5 

Pr(odorless) = 0.2 
Pr(cloudy) = 0.2

0.2

0.8

0.2

0.8

a) What is Pr(O2 = clear)? [2 pts]

b) What is Pr(q2 = Clean|O2 = clear)? [2 pts]

c) What is Pr(O200 = cloudy)? [3 pts]

d) What is the most likely sequence of states for the following observation sequence: {O1 = clear, O2 =
clear, O3 = clear, O4 = clear, O5 = clear}? [3 pts]

a)What is P( �  = clear)?

b)What is P( �  = Clean �  = clear)?

c)What is P( �  = cloudy)?

d)What’s the most likely sequence of 
states for the following observation 
sequence: {�  = clear,�  = clear, 
�  = clear,�  = clear,�  = clear}?

O2

q2 ∣ O2

O200

O1 O2
O3 O4 O5



HMM 101
Say that we are now given a modified HMM for the water samples as shown below. Initial 
probabilities and transition probabilities are shown next to the arcs. (Note: You do not need to 
use the Viterbi algorithm to answer the next two questions.) 

a) What is the most likely sequence of 
states given a sequence of three 
observations: {muddy, muddy, 
muddy}?

b) Say we observe a very long 
sequence of “muddy” (e.g. 10 million 
“muddy” in a row). What happens to 
the most likely state sequence then? 

Clean  

Pr(muddy) = 0.51 
Pr(clear) = 0.49

Polluted  
 

Pr(muddy) = 0.49 
Pr(clear) = 0.51

0.9 0.9

0.01 0.990.1

0.1

Say that we are now given a modified HMM for the water samples as shown above. Initial probabilities and
transition probabilities are shown next to the arcs. (Note: You do not need to use the Viterbi algorithm
to answer the next two questions.)

a) What is the most likely sequence of states given a sequence of three observations: {muddy, muddy, muddy}?
Briefly explain how you arrived at your answer. [2 pts]

b) Say we observe a very long sequence of “muddy” (e.g. 10 million “muddy” in a row). What happens to
the most likely state sequence then? Briefly explain. [3 pts]



Handling disfluencies in ASR

Recall that a pronunciation lexicon �  maps a sequence of phones to a sequence of words. In this 
problem, we shall modify �  in order to handle some limited forms of interruptions in speech (a.k.a. 
disfluencies). We will consider a dictionary of two words:  with the phone sequence “a b c” and  
with the phone sequence “x y z”. 

a) Draw the state diagram of the finite-state machine � . 

b) We want to modify �  such that it accounts for “breaks” when the speaker stops in the middle of a 
word and says the word all over again. For instance, the word �  may be pronounced as “a b ⟨break⟩ 
a b c,” where ⟨break⟩ is a special token produced by the acoustic model. In a valid phone sequence, 
breaks are allowed to appear only within a word, and not at the end or beginning of a word. Further, 
two consecutive ⟨break⟩ tokens are not allowed. But a word can be pronounced with an arbitrary 
number of breaks. E.g.  can be pronounced also as “a b ⟨break⟩ a ⟨break⟩ a b ⟨break⟩ a b c”. Let  

be an FST (obtained by modifying �  from the previous part) that accepts all valid phone sequences 
with breaks, and outputs a corresponding sequence of words. Draw the state diagram of � . 

L
L

W1 W2

L

L
W1

W1 L1
L

L1



Handling disfluencies in ASR

Recall that a pronunciation lexicon �  maps a sequence of phones to a sequence of words. In this 
problem, we shall modify �  in order to handle some limited forms of interruptions in speech (a.k.a. 
disfluencies). We will consider a dictionary of two words: �  with the phone sequence “a b c” and 

 with the phone sequence “x y z”. 

c) Next, we want to modify    such that it can account for both “breaks” and “pauses.” A pause 
corresponds to when the speaker briefly stops in the middle of a word and continues. For instance, 
the word �  may be pronounced as “a b ⟨pause⟩ c”, “a ⟨break⟩ a ⟨pause⟩ b ⟨break⟩ a b c,” etc. 
where ⟨pause⟩ is another special token produced by the acoustic model. In a valid phone 
sequence, these special tokens are allowed to appear only within a word, and two consecutive 
special tokens are not allowed. Let    be an FST (obtained by modifying    from the previous 
part) that accepts all valid phone sequences with breaks and pauses, and outputs a corresponding 
sequence of words. Draw the state diagram of � . 

L
L

W1
W2

L1

W1

L2 L1

L2



Mixed Bag

An HMM-based speech synthesis system can be described using the following steps:

1.Spectral feature and excitation features are extracted from a speech database 
2.Context-dependent HMMs are trained on these features
3.These HMMs are clustered using a decision tree
4.Durations of the HMM models are explicitly modeled 

At synthesis time, for a given text sequence, the decision tree yields the appropriate 
HMM state sequence which in turn determines the output spectral and excitation 
features (that are passed through a synthesis filter to produce speech). Say we 
want to add expressivity to the synthesized speech: i.e. we want to make the voice 
sound happy or sad, friendly or stern. Pick one of the above-mentioned steps from 
(A)-(D) you would modify to add expressivity and briefly justify your choice. 



Mixed Bag

c) Standard maximum-likelihood (ML) training attempts to find parameters of a model that maximizes the
likelihood of the training data. However, ML estimation makes a number of simplying assumptions which
do not typically hold for speech. An alternate approach is discriminative training of HMMs which focuses
directly on optimizing the model parameters to minimize recognition errors on the training data. We have
studied two types of objective functions in discriminative training: maximum mutual information (MMI)
and minimum phone error (MPE). One can formulate a unified framework for both MMI and MPE. For
utterances X1, . . . , XN , the unified objective function is:

Funified(�) =
1

N

NX

i=1

log

P
W Pr�(Xi|M(W )) Pr(W ) · G(W,Wi)P

W Pr�(Xi|M(W )) Pr(W )

where Wi is the word sequence corresponding to utterance Xi and M(W ) is the HMM sequence corre-
sponding to W .

Define what G(W,Wi) should be set to in order to recover a) the MMI objective function and, b) the MPE
objective function. [3 pts]

d) Find the probability, Pr(drank|Mohan), given the following bigram counts:

Mohan drank 10
drank co↵ee 1
Mohan co↵ee 10
drank Mohan 5
Mohan ate 10
drank water 20

Pr(drank|Mohan) = [1 pts]

Say you have an n-gram distribution which is smoothed using add-↵ smoothing for some ↵ > 0. The
entropy of the smoothed distribution is

(A) equal to (B) less than (C) greater than

the entropy of the original unsmoothed n-gram distribution. Pick one of (A), (B) or (C) and briefly justify
your choice. [2 pts]



Mixed BagProblem 5: Mixed bag (22 points)

a) Recall neural network language models (NNLMs) as shown in the schematic diagram below. For a given
context of fixed length, each word in the context (drawn from a vocabulary of size N) is projected onto a P
dimensional projection layer using a common N ⇥ P projection matrix, that is shared across the di↵erent
word positions in the context. The value of the ith node in the output layer corresponds directly to the
probability of a word i given its context.

0 5

1

2

3 4

see/5.2

she/1.2

he/2.5 [s]/1.5

[iy]/1.8 [s]/1.1

sees/4.5

[s]/1

⋮

P
H

O

projection  
layer hidden  

layer

output  
layer

shared  
projections

wj-1

wj-n+2

wj-n+1

softmax
over vocabulary

of size N

The complexity to calculate probabilities using this NNLM is quite high. Describe one main reason why
this evaluation is very costly in processing time. [3 pts]

Briefly describe one improvement that can be used to reduce this complexity. [3 pts]



CTC Alignments

Given an input sequence x of length �  and an output character sequence  
of length N, the CTC objective function is given by:

T

PCTC(y|x) =
X

a:B(a)=y

P (a|x)
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where     maps a per-frame output sequence                           to a final 
output sequence 

a = (a1, . . . , aT )
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y = (y1, . . . , yN )
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Problem 3: CTC Alignments (10 points)

The connectionist temporal classification (CTC) training criterion has been used to train end-to-end ASR
systems by removing the need for apriori input-output alignments. CTC is defined using a function B that
maps a per-frame output sequence a = (a1, ..., aT ) to a final output sequence y = (y1, . . . , yN ), by first
compressing each run of an identical character in a to a run of length 1, and then removing all occurrences
of the special blank symbol hblanki. Here yj 2 V and ai 2 V [{hblanki}, where V is the output vocabulary.

Given an input sequence x of length T and an output character sequence y of length N , the CTC
objective function is given by:

PrCTC(y|x) =
X

a:B(a)=y

Pr(a|x).

a) CTC makes an independence assumption about the labels predicted at each time step. Explicitly state
this assumption, and fill in the blank below by applying this independence condition. [1 pts]

Independence Assumption:

PrCTC(y|x) =
X

a:B(a)=y

b) Consider a di↵erent definition of B which first removes all occurrences of the blank symbol, and then
compresses each run of an identical character to a run of length 1. Give an example of a sequence y such
that there is no a with B(a) = y, for this new B. Briefly justify your answer. [1 pts]

c) Now suppose we would like to avoid the use of the blank symbol altogether. Towards this, we define a new
B which works as follows. Given a = (a1, . . . , aT ), B defines the sequence ((c1, `1), (c2, `2), . . . , (cM , `M ))
where ci 6= ci+1 and `i > 0 for all i, and a = (c1, . . . , c1| {z }

`1 times

, c2, . . . , c2| {z }
`2 times

, . . . , cM , . . . , cM| {z }
`M times

).

Then B calculates the average run length ` = 1
M

PM
i=1 `i, and outputs

y = (c1, . . . , c1| {z }
k1 times

, c2, . . . , c2| {z }
k2 times

, . . . , cM , . . . , cM| {z }
kM times

)

where ki = max{1, b`i/`c}. Here, ki is an estimate of how many times ci needs to be repeated, depending
on how `i compares with the average run length `.

For example, B(a, a, b, b, b, b, b, b, b, b, c, c) = (a, b, b, c) because `1 = 2, `2 = 8, `3 = 2 and therefore k1 =
1, k2 = 2, k3 = 1.

Give an example of a sequence y such that there is no a with B(a) = y, for this new B. Briefly justify your
answer. [2 pts]



CTC Alignments

Problem 3: CTC Alignments (10 points)

The connectionist temporal classification (CTC) training criterion has been used to train end-to-end ASR
systems by removing the need for apriori input-output alignments. CTC is defined using a function B that
maps a per-frame output sequence a = (a1, ..., aT ) to a final output sequence y = (y1, . . . , yN ), by first
compressing each run of an identical character in a to a run of length 1, and then removing all occurrences
of the special blank symbol hblanki. Here yj 2 V and ai 2 V [{hblanki}, where V is the output vocabulary.

Given an input sequence x of length T and an output character sequence y of length N , the CTC
objective function is given by:

PrCTC(y|x) =
X

a:B(a)=y

Pr(a|x).

a) CTC makes an independence assumption about the labels predicted at each time step. Explicitly state
this assumption, and fill in the blank below by applying this independence condition. [1 pts]

Independence Assumption:

PrCTC(y|x) =
X

a:B(a)=y

b) Consider a di↵erent definition of B which first removes all occurrences of the blank symbol, and then
compresses each run of an identical character to a run of length 1. Give an example of a sequence y such
that there is no a with B(a) = y, for this new B. Briefly justify your answer. [1 pts]

c) Now suppose we would like to avoid the use of the blank symbol altogether. Towards this, we define a new
B which works as follows. Given a = (a1, . . . , aT ), B defines the sequence ((c1, `1), (c2, `2), . . . , (cM , `M ))
where ci 6= ci+1 and `i > 0 for all i, and a = (c1, . . . , c1| {z }

`1 times

, c2, . . . , c2| {z }
`2 times

, . . . , cM , . . . , cM| {z }
`M times

).

Then B calculates the average run length ` = 1
M

PM
i=1 `i, and outputs

y = (c1, . . . , c1| {z }
k1 times

, c2, . . . , c2| {z }
k2 times

, . . . , cM , . . . , cM| {z }
kM times

)

where ki = max{1, b`i/`c}. Here, ki is an estimate of how many times ci needs to be repeated, depending
on how `i compares with the average run length `.

For example, B(a, a, b, b, b, b, b, b, b, b, c, c) = (a, b, b, c) because `1 = 2, `2 = 8, `3 = 2 and therefore k1 =
1, k2 = 2, k3 = 1.

Give an example of a sequence y such that there is no a with B(a) = y, for this new B. Briefly justify your
answer. [2 pts]


