HMMs for Acoustic Modeling
(Part 1)

Lecture 3




Recap: HMMs for Acoustic Modeling

What are (first-order) HMMs?
What are the simplifying assumptions governing HMMs?

What are the three fundamental problems related to HMMs?

1. What is the forward algorithm? What is it used to compute?

Computing Likelihood: Given an HMM A = (A, B) and an observa-
tion sequence O, determine the likelihood P(O|A).

v

2. What is the Viterbi algorithm”? What is it used to compute?

Decoding: Given as input an HMM A = (A, B) and a sequence of ob-
servations O = 01,03, ...,07, 1ind the most probable sequence of states

0=q19293...4T.



Problem 3: Learning in HMMs

Problem 1 (Likelihood): Given an HMM A = (A, B) and an observation se-
quence O, determine the likelihood P(O|A).

Problem 2 (Decoding): Given an observation sequence O and an HMM A =
(A B), discover the best hidden state sequence Q.

Learning: Given an observation sequence O and the set of possible
states 1n the HMM, learn the HMM parameters A and B.

Standard algorithm for HMM training: Forward-backward or Baum-Welch algorithm



Forward and Backward Probabilities

Baum-Welch algorithm iteratively estimates transition & observation
probabilities and uses these values to derive even better estimates.

Require two probabilities to compute estimates for the transition and
observation probabilities:

1. Forward probability: Recall o (j) = P(o1,02...01,q: = j|A)

2. Backward probability: (i) = P(0/+1,0142...07|q: = i,A)



Backward probability

1. Initialization:

2. Recursion

N

Bi(i) =) aijbj(or11) Bre1(j), 1<i<N1<t<T
i=1

3. Termination:

P(O|L) Zn] (01) B1(j



Visualising backward probability computation




1. Baum-Welch: Estimating a;,

We need to define &:(¢, 7) to estimate a;;

where &(i,j) =P(q: =i,q:+1 = j|O,A)
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2. Baum-Welch: Estimating 5(v,)

We need to define V:(j) to estimate bj(vi)

where 1 (j) = P(q: = j|O,4) State occupancy
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Bringing it all together: Baum-Welch

Estimating HMM parameters iteratively using the EM algorithm.
For each iteration, do:

E step: For all time-state pairs, compute the state occupation
probabilities y«j) and &1, j)

M step: Reestimate HMM parameters, i.e. transition probabillities,
observation probabillities, based on the estimates derived in the E step



Baum-Welch algorithm (pseudocode)

function FORWARD-BACKWARD(observations of len T, output vocabulary V, hidden
state set Q) returns HMM=(A,B)

initialize A and B
iterate until convergence

K-step
. oy (J ' .
v (j) = to(é)(gtzg) Vtand j
£ ) — at(l)aij[;jT(?tq;l))ﬁHl(J) V1. i and j
M-step
T—-1
Z &t(lvj)
A =1
9%j = T1 N
ét(ivk)
t=1 k=1
T
> )
gj(vk) _ tzls-t-TOIZVk
¥ (J)

t=1
return A, B



Discrete to continuous outputs

We derived Baum-Welch updates for discrete outputs.
However, HMMSs in acoustic models emit real-valued vectors as observations.

Before we understand how Baum-Welch works for acoustic modelling using
HMMs, let’s look at an overview of the Expectation Maximization (EM) algorithm
and establish some notation.



EM Algorithm: Fitting Parameters to Data

Observed data: i.i.d samples x;, i=1, ..., N
Goal: Find arg max L(0) where L(6 Zlog Pr(xz;; 0
Initial parameters 69 (x Is observed and z 1S hidden)

lteratively compute 6¢ as follows:

N

Q0,0 ) =) > Pr(zlz;; 0 ") log Pr(;, 2;0)

=1 =z

p* = argmax Q(6,0° 1)
0

Estimate 6/ cannot get worse over iterations because for all 6:
L(0) = L) >Q0,0") — Qo671

EM is guaranteed to converge to a local optimum or saddle points [Wu83]



Coin example to illustrate EM

—_

p1 = Pr(H) p2 = Pr(H) p3 = Pr(H)

Repeat:
Toss Com | privately
If it shows H:
Toss Coin 2 twice

else
Toss Coin % twice

The following sequence is observed: “HH, TT, HH, TT, HH”
How do you estimate p1, p2 and p3?



Coin example to illustrate EM

Recall, for partially observed data, the log likelihood is given by:

N N
L(0) = Zlog Pr(z;;0) = ZlogZPr(xi, z;0)
1=1 1=1 z

where, for the coin example:
» each observationz;e X = {HH,HT,TH,TT}
- the hidden variable z € Z = {H, T}



Coin example to illustrate EM

Recall, for partially observed data, the log likelihood is given by:

N N
L(0) = Zlog Pr(z;;0) = ZlogZPr(xi, z;0)
1=1 1=1 z

Pr(z, z;0) = Pr(x|z;0) Pr(z;0)

p1 = Pr(H) p2 =Pr(H) p3 = Pr(H)

if 2z =H
where Pr(z;0) = A1 1 :
l—p; itz =T
(1 —po)t ifz =H
Pr(x|z;0) = pi< pQ)t 1z
pa(l —p3)t ifz =T

h : number of heads, ¢ : number of tails D




Coin example to illustrate EM

Our observed data is: {HH, TT, HH, TT, HH}
Let’s use EM to estimate 6 = (p1, p2, p3)

[EM lteration, E-step]
Compute quantltles involved in

Q(6, 6~ b ZZV z,x;) log Pr(x;, z;0)

=1 =z

where y(z, x) = Pr(z | x;0¢1)
.e., compute y(z, x;) for all z and all i
Suppose 641 is p1=0.3, p2=0.4, p3=0.6:

What is y(H, HH)? =0.16
What is y(H, TT)? =0.49



Coin example to illustrate EM

Our observed data is: {HH, TT, HH, TT, HH}
Let’s use EM to estimate 6 = (p1, p2, p3)

[EM lteration, M-step]
Find 6 which maX|mlses

Q(6, 6~ b LLV z,x;) log Pr(x;, z;0)

=1 =z

ng\;1 ”Y(Ha mz)
N
S y(H, @) (hi + t)

p1 =

p2 =

S (T, 2:)h
SN (T, x) (hi + L)

P3 =



Coin example to illustrate EM

This was a very simple HMM -
(with observations from 2 states) P @

— O\
Q H/po T/1-po

1-p1 @ 1
/U

v estimated the distribution of this state H/ps T/1-ps

State remains the same after the first transition

More generally, will need the distribution of the state at each
time step

EM for general HMMs: Baum-Welch algorithm (1972)
(predates the general formulation of EM (1977))



Baum-Welch Algorithm as EM

Observed data: N sequences, x;, i=1...N where x;& 'V
Parameters 0 : transition matrix A, observation probabilities B

[EM lteration, E-step]
Compute quantities involved in Q(6,6¢-1)

vit (j) = Pr(z:=j | xi;6¢-1)
§i,t(]',k) — PI’(Zt =j, Zev1 =k | x; 265'1)



Baum-Welch Algorithm as EM

Observed data: N sequences, x;, i=1...N where x;& 'V
Parameters 0 : transition matrix A, observation probabilities B

[EM lteration, M-step]
Find 6 which maximises Q(60,6¢-1)

. st 2y it k)
Ik =™ SN ~~Ti—1 -
2ic1 2ute1 2 Sit (05 K)
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Discrete to continuous outputs

We derived Baum-Welch updates for discrete outputs.
However, HMMSs in acoustic models emit real-valued vectors as observations.

Use probability density functions to define observation probabilities

If x were 1D values, HMM observation probabilities: b,(x) = 4 (x| u;, 0].2)

where yi; Is the mean assoclated with state ] and (sz IS Its variance

f x € R% then we use multivariate Gaussians, bj(X) = N (x| H Zj)

where Zj IS the covariance matrix associated with state |



BW for Gaussian Observation Model

Observed data: N sequences, x; = (xi1, ..., xiry), i=1...N where x;; € Rd
Parameters 6 : transition matrix A, observation prob. B = {(1;,2)} or all

[EM lteration, M-step]
Find 6 which maximises Q(60,6¢-1)

A same as with discrete outputs

N T :
y:i—l 5}5—1 %,t(])xit
N T; .
S:i—l S:t—l %',t(J)
N T :
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Gaussian Mixture Model

* Assuming that observations associated with a state
follow a Gaussian distribution is too simplistic.

 More generally, we use a “mixture of Gaussians” to

allow for acoustic vectors associated with a state to
be non-Gaussian.

+ Instead of bi(x) = N (X | H;, 2;) in the single Gaussian

case, bj(X) can be an M-component mixture model:
M

bi(x) = Y CimN (X[, Zjm)
m=1
where c;jn IS the mixing probability for Gaussian component m of state ;
M

Zij:L ijZO

m=1



BW for Gaussian Mixture Model

Observed data: N sequences, x; = (xi1, ..., xiry), i=1...N where x;; € Rd
Parameters 6 : transition matrix A, observation prob. B = {(4jm,Zjm.Cim)} for all j,m

[EM lteration, M-step]
Find 6 which maximises Q(60,6¢-1)
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N T :
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Hjm =

N T; .
y:z'—l y:t—l %,t(]» m)(Tit — /ﬁjm)(ﬂfit — Mjm)T

jm =

N 15 -
2i=1 2u=1 Vit (J; m)/ Prob. of component m
SN ST ) of state | at time t

Cim — N T M .
21—1 xt—l :mle 772,75(]7 m,)




Baum Welch: In summary

[Every EM lteration]
Compute 0 ={ A, (Ljm,Zjm,Cim) } for all j,k,m
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