
Instructor: Preethi Jyothi

HMMs for Acoustic Modeling
(Part II)

Lecture 3

CS 753

Recap: HMMs for Acoustic Modeling

What are (first-order) HMMs?

What are the simplifying assumptions governing HMMs?

What are the three fundamental problems related to HMMs?

1. What is the forward algorithm? What is it used to compute?

6 CHAPTER 9 • HIDDEN MARKOV MODELS

22 443311

33

22

44

11

Figure 9.4 Two 4-state hidden Markov models; a left-to-right (Bakis) HMM on the left and
a fully connected (ergodic) HMM on the right. In the Bakis model, all transitions not shown
have zero probability.

Now that we have seen the structure of an HMM, we turn to algorithms for
computing things with them. An influential tutorial by Rabiner (1989), based on
tutorials by Jack Ferguson in the 1960s, introduced the idea that hidden Markov
models should be characterized by three fundamental problems:

Problem 1 (Likelihood): Given an HMM l = (A,B) and an observation se-
quence O, determine the likelihood P(O|l).

Problem 2 (Decoding): Given an observation sequence O and an HMM l =
(A,B), discover the best hidden state sequence Q.

Problem 3 (Learning): Given an observation sequence O and the set of states
in the HMM, learn the HMM parameters A and B.

We already saw an example of Problem 2 in Chapter 10. In the next three sec-
tions we introduce all three problems more formally.

9.3 Likelihood Computation: The Forward Algorithm

Our first problem is to compute the likelihood of a particular observation sequence.
For example, given the HMM in Fig. 9.3, what is the probability of the sequence 3
1 3? More formally:

Computing Likelihood: Given an HMM l = (A,B) and an observa-
tion sequence O, determine the likelihood P(O|l).

For a Markov chain, where the surface observations are the same as the hidden
events, we could compute the probability of 3 1 3 just by following the states labeled
3 1 3 and multiplying the probabilities along the arcs. For a hidden Markov model,
things are not so simple. We want to determine the probability of an ice-cream
observation sequence like 3 1 3, but we don’t know what the hidden state sequence
is!

Let’s start with a slightly simpler situation. Suppose we already knew the weather
and wanted to predict how much ice cream Jason would eat. This is a useful part
of many HMM tasks. For a given hidden state sequence (e.g., hot hot cold), we can
easily compute the output likelihood of 3 1 3.

Let’s see how. First, recall that for hidden Markov models, each hidden state
produces only a single observation. Thus, the sequence of hidden states and the

2. What is the Viterbi algorithm? What is it used to compute?

10 CHAPTER 9 • HIDDEN MARKOV MODELS

ot-1 ot

a1j

a2j

aNj

a3j

bj(ot)

αt(j)= Σi αt-1(i) aij bj(ot)

q1

q2

q3

qN

q1

qj

q2

q1

q2

ot+1ot-2

q1

q2

q3 q3

qN qN

αt-1(N)

αt-1(3)

αt-1(2)

αt-1(1)

αt-2(N)

αt-2(3)

αt-2(2)

αt-2(1)

Figure 9.8 Visualizing the computation of a single element at(i) in the trellis by summing
all the previous values at�1, weighted by their transition probabilities a, and multiplying by
the observation probability bi(ot+1). For many applications of HMMs, many of the transition
probabilities are 0, so not all previous states will contribute to the forward probability of the
current state. Hidden states are in circles, observations in squares. Shaded nodes are included
in the probability computation for at(i). Start and end states are not shown.

function FORWARD(observations of len T, state-graph of len N) returns forward-prob

create a probability matrix forward[N+2,T]
for each state s from 1 to N do ; initialization step

forward[s,1] a0,s ⇤ bs(o1)
for each time step t from 2 to T do ; recursion step

for each state s from 1 to N do

forward[s, t]
NX

s0=1

forward[s0, t�1] ⇤ as0,s ⇤ bs(ot)

forward[qF ,T]
NX

s=1

forward[s,T] ⇤ as,qF ; termination step

return forward[qF ,T]

Figure 9.9 The forward algorithm. We’ve used the notation forward[s, t] to represent
at(s).

9.4 Decoding: The Viterbi Algorithm

For any model, such as an HMM, that contains hidden variables, the task of deter-
mining which sequence of variables is the underlying source of some sequence of
observations is called the decoding task. In the ice-cream domain, given a sequenceDecoding

of ice-cream observations 3 1 3 and an HMM, the task of the decoder is to find theDecoder
best hidden weather sequence (H H H). More formally,

Decoding: Given as input an HMM l = (A,B) and a sequence of ob-
servations O = o1,o2, ...,oT , find the most probable sequence of states
Q = q1q2q3 . . .qT .

Problem 3: Learning in HMMs

6 CHAPTER 9 • HIDDEN MARKOV MODELS

22 443311

33

22

44

11

Figure 9.4 Two 4-state hidden Markov models; a left-to-right (Bakis) HMM on the left and
a fully connected (ergodic) HMM on the right. In the Bakis model, all transitions not shown
have zero probability.

Now that we have seen the structure of an HMM, we turn to algorithms for
computing things with them. An influential tutorial by Rabiner (1989), based on
tutorials by Jack Ferguson in the 1960s, introduced the idea that hidden Markov
models should be characterized by three fundamental problems:

Problem 1 (Likelihood): Given an HMM l = (A,B) and an observation se-
quence O, determine the likelihood P(O|l).

Problem 2 (Decoding): Given an observation sequence O and an HMM l =
(A,B), discover the best hidden state sequence Q.

Problem 3 (Learning): Given an observation sequence O and the set of states
in the HMM, learn the HMM parameters A and B.

We already saw an example of Problem 2 in Chapter 10. In the next three sec-
tions we introduce all three problems more formally.

9.3 Likelihood Computation: The Forward Algorithm

Our first problem is to compute the likelihood of a particular observation sequence.
For example, given the HMM in Fig. 9.3, what is the probability of the sequence 3
1 3? More formally:

Computing Likelihood: Given an HMM l = (A,B) and an observa-
tion sequence O, determine the likelihood P(O|l).

For a Markov chain, where the surface observations are the same as the hidden
events, we could compute the probability of 3 1 3 just by following the states labeled
3 1 3 and multiplying the probabilities along the arcs. For a hidden Markov model,
things are not so simple. We want to determine the probability of an ice-cream
observation sequence like 3 1 3, but we don’t know what the hidden state sequence
is!

Let’s start with a slightly simpler situation. Suppose we already knew the weather
and wanted to predict how much ice cream Jason would eat. This is a useful part
of many HMM tasks. For a given hidden state sequence (e.g., hot hot cold), we can
easily compute the output likelihood of 3 1 3.

Let’s see how. First, recall that for hidden Markov models, each hidden state
produces only a single observation. Thus, the sequence of hidden states and the

14 CHAPTER 9 • HIDDEN MARKOV MODELS

Learning: Given an observation sequence O and the set of possible
states in the HMM, learn the HMM parameters A and B.

The input to such a learning algorithm would be an unlabeled sequence of ob-
servations O and a vocabulary of potential hidden states Q. Thus, for the ice cream
task, we would start with a sequence of observations O = {1,3,2, ...,} and the set of
hidden states H and C. For the part-of-speech tagging task we introduce in the next
chapter, we would start with a sequence of word observations O = {w1,w2,w3 . . .}
and a set of hidden states corresponding to parts of speech Noun, Verb, Adjective,...
and so on.

The standard algorithm for HMM training is the forward-backward, or Baum-Forward-
backward

Welch algorithm (Baum, 1972), a special case of the Expectation-MaximizationBaum-Welch
or EM algorithm (Dempster et al., 1977). The algorithm will let us train both theEM
transition probabilities A and the emission probabilities B of the HMM. Crucially,
EM is an iterative algorithm. It works by computing an initial estimate for the
probabilities, then using those estimates to computing a better estimate, and so on,
iteratively improving the probabilities that it learns.

Let us begin by considering the much simpler case of training a Markov chain
rather than a hidden Markov model. Since the states in a Markov chain are ob-
served, we can run the model on the observation sequence and directly see which
path we took through the model and which state generated each observation symbol.
A Markov chain of course has no emission probabilities B (alternatively, we could
view a Markov chain as a degenerate hidden Markov model where all the b proba-
bilities are 1.0 for the observed symbol and 0 for all other symbols). Thus, the only
probabilities we need to train are the transition probability matrix A.

We get the maximum likelihood estimate of the probability ai j of a particular
transition between states i and j by counting the number of times the transition was
taken, which we could call C(i ! j), and then normalizing by the total count of all
times we took any transition from state i:

ai j =
C(i ! j)P

q2Q C(i ! q)
(9.26)

We can directly compute this probability in a Markov chain because we know
which states we were in. For an HMM, we cannot compute these counts directly
from an observation sequence since we don’t know which path of states was taken
through the machine for a given input. The Baum-Welch algorithm uses two neat
intuitions to solve this problem. The first idea is to iteratively estimate the counts.
We will start with an estimate for the transition and observation probabilities and
then use these estimated probabilities to derive better and better probabilities. The
second idea is that we get our estimated probabilities by computing the forward
probability for an observation and then dividing that probability mass among all the
different paths that contributed to this forward probability.

To understand the algorithm, we need to define a useful probability related to the
forward probability and called the backward probability.Backward

probability
The backward probability b is the probability of seeing the observations from

time t +1 to the end, given that we are in state i at time t (and given the automaton
l):

bt(i) = P(ot+1,ot+2 . . .oT |qt = i,l) (9.27)

It is computed inductively in a similar manner to the forward algorithm.

Standard algorithm for HMM training: Forward-backward or Baum-Welch algorithm

Forward and Backward Probabilities

Baum-Welch algorithm iteratively estimates transition & observation
probabilities and uses these values to derive even better estimates.

Require two probabilities to compute estimates for the transition and
observation probabilities:

1. Forward probability: Recall

2. Backward probability:

8 CHAPTER 9 • HIDDEN MARKOV MODELS

coldhot

3

.4

hot
.6

1 3

.3

.2 .1

Figure 9.6 The computation of the joint probability of the ice-cream events 3 1 3 and the
hidden state sequence hot hot cold.

For our particular case, we would sum over the eight 3-event sequences cold cold
cold, cold cold hot, that is,

P(3 1 3) = P(3 1 3,cold cold cold)+P(3 1 3,cold cold hot)+P(3 1 3,hot hot cold)+ ...

For an HMM with N hidden states and an observation sequence of T observa-
tions, there are NT possible hidden sequences. For real tasks, where N and T are
both large, NT is a very large number, so we cannot compute the total observation
likelihood by computing a separate observation likelihood for each hidden state se-
quence and then summing them.

Instead of using such an extremely exponential algorithm, we use an efficient
O(N2T) algorithm called the forward algorithm. The forward algorithm is a kindForward

algorithm
of dynamic programming algorithm, that is, an algorithm that uses a table to store
intermediate values as it builds up the probability of the observation sequence. The
forward algorithm computes the observation probability by summing over the prob-
abilities of all possible hidden state paths that could generate the observation se-
quence, but it does so efficiently by implicitly folding each of these paths into a
single forward trellis.

Figure 9.7 shows an example of the forward trellis for computing the likelihood
of 3 1 3 given the hidden state sequence hot hot cold.

Each cell of the forward algorithm trellis at(j) represents the probability of be-
ing in state j after seeing the first t observations, given the automaton l . The value
of each cell at(j) is computed by summing over the probabilities of every path that
could lead us to this cell. Formally, each cell expresses the following probability:

at(j) = P(o1,o2 . . .ot ,qt = j|l) (9.13)

Here, qt = j means “the tth state in the sequence of states is state j”. We compute
this probability at(j) by summing over the extensions of all the paths that lead to
the current cell. For a given state q j at time t, the value at(j) is computed as

at(j) =
NX

i=1

at�1(i)ai jb j(ot) (9.14)

The three factors that are multiplied in Eq. 9.14 in extending the previous paths
to compute the forward probability at time t are

at�1(i) the previous forward path probability from the previous time step
ai j the transition probability from previous state qi to current state q j

b j(ot) the state observation likelihood of the observation symbol ot given
the current state j

14 CHAPTER 9 • HIDDEN MARKOV MODELS

Learning: Given an observation sequence O and the set of possible
states in the HMM, learn the HMM parameters A and B.

The input to such a learning algorithm would be an unlabeled sequence of ob-
servations O and a vocabulary of potential hidden states Q. Thus, for the ice cream
task, we would start with a sequence of observations O = {1,3,2, ...,} and the set of
hidden states H and C. For the part-of-speech tagging task we introduce in the next
chapter, we would start with a sequence of word observations O = {w1,w2,w3 . . .}
and a set of hidden states corresponding to parts of speech Noun, Verb, Adjective,...
and so on.

The standard algorithm for HMM training is the forward-backward, or Baum-Forward-
backward

Welch algorithm (Baum, 1972), a special case of the Expectation-MaximizationBaum-Welch
or EM algorithm (Dempster et al., 1977). The algorithm will let us train both theEM
transition probabilities A and the emission probabilities B of the HMM. Crucially,
EM is an iterative algorithm. It works by computing an initial estimate for the
probabilities, then using those estimates to computing a better estimate, and so on,
iteratively improving the probabilities that it learns.

Let us begin by considering the much simpler case of training a Markov chain
rather than a hidden Markov model. Since the states in a Markov chain are ob-
served, we can run the model on the observation sequence and directly see which
path we took through the model and which state generated each observation symbol.
A Markov chain of course has no emission probabilities B (alternatively, we could
view a Markov chain as a degenerate hidden Markov model where all the b proba-
bilities are 1.0 for the observed symbol and 0 for all other symbols). Thus, the only
probabilities we need to train are the transition probability matrix A.

We get the maximum likelihood estimate of the probability ai j of a particular
transition between states i and j by counting the number of times the transition was
taken, which we could call C(i ! j), and then normalizing by the total count of all
times we took any transition from state i:

ai j =
C(i ! j)P

q2Q C(i ! q)
(9.26)

We can directly compute this probability in a Markov chain because we know
which states we were in. For an HMM, we cannot compute these counts directly
from an observation sequence since we don’t know which path of states was taken
through the machine for a given input. The Baum-Welch algorithm uses two neat
intuitions to solve this problem. The first idea is to iteratively estimate the counts.
We will start with an estimate for the transition and observation probabilities and
then use these estimated probabilities to derive better and better probabilities. The
second idea is that we get our estimated probabilities by computing the forward
probability for an observation and then dividing that probability mass among all the
different paths that contributed to this forward probability.

To understand the algorithm, we need to define a useful probability related to the
forward probability and called the backward probability.Backward

probability
The backward probability b is the probability of seeing the observations from

time t +1 to the end, given that we are in state i at time t (and given the automaton
l):

bt(i) = P(ot+1,ot+2 . . .oT |qt = i,l) (9.27)

It is computed inductively in a similar manner to the forward algorithm.

Backward probability

12 APPENDIX A • HIDDEN MARKOV MODELS

ity b is the probability of seeing the observations from time t + 1 to the end, given
that we are in state i at time t (and given the automaton l):

bt(i) = P(ot+1,ot+2 . . .oT |qt = i,l) (A.15)

It is computed inductively in a similar manner to the forward algorithm.

1. Initialization:

bT (i) = 1, 1 i N

2. Recursion

bt(i) =
NX

j=1

ai j b j(ot+1) bt+1(j), 1 i N,1 t < T

3. Termination:

P(O|l) =
NX

j=1

p j b j(o1) b1(j)

Figure A.11 illustrates the backward induction step.

ot+1
ot

ai1

ai2

aiN

ai3

b1(ot+1)

βt(i)= Σj βt+1(j) aij bj(ot+1)

q1

q2

q3

qN

q1

qi

q2

q1

q2

ot-1

q3

qN

βt+1(N)

βt+1(3)

βt+1(2)

βt+1(1)

b2(ot+1)
b3(ot+1)

bN(ot+1)

Figure A.11 The computation of bt(i) by summing all the successive values bt+1(j)
weighted by their transition probabilities ai j and their observation probabilities b j(ot+1). Start
and end states not shown.

We are now ready to see how the forward and backward probabilities can help
compute the transition probability ai j and observation probability bi(ot) from an ob-
servation sequence, even though the actual path taken through the model is hidden.

Let’s begin by seeing how to estimate âi j by a variant of simple maximum like-
lihood estimation:

âi j =
expected number of transitions from state i to state j

expected number of transitions from state i
(A.16)

How do we compute the numerator? Here’s the intuition. Assume we had some
estimate of the probability that a given transition i ! j was taken at a particular
point in time t in the observation sequence. If we knew this probability for each

Visualising backward probability computation

12 APPENDIX A • HIDDEN MARKOV MODELS

ity b is the probability of seeing the observations from time t + 1 to the end, given
that we are in state i at time t (and given the automaton l):

bt(i) = P(ot+1,ot+2 . . .oT |qt = i,l) (A.15)

It is computed inductively in a similar manner to the forward algorithm.

1. Initialization:

bT (i) = 1, 1 i N

2. Recursion

bt(i) =
NX

j=1

ai j b j(ot+1) bt+1(j), 1 i N,1 t < T

3. Termination:

P(O|l) =
NX

j=1

p j b j(o1) b1(j)

Figure A.11 illustrates the backward induction step.

ot+1
ot

ai1

ai2

aiN

ai3

b1(ot+1)

βt(i)= Σj βt+1(j) aij bj(ot+1)

q1

q2

q3

qN

q1

qi

q2

q1

q2

ot-1

q3

qN

βt+1(N)

βt+1(3)

βt+1(2)

βt+1(1)

b2(ot+1)
b3(ot+1)

bN(ot+1)

Figure A.11 The computation of bt(i) by summing all the successive values bt+1(j)
weighted by their transition probabilities ai j and their observation probabilities b j(ot+1). Start
and end states not shown.

We are now ready to see how the forward and backward probabilities can help
compute the transition probability ai j and observation probability bi(ot) from an ob-
servation sequence, even though the actual path taken through the model is hidden.

Let’s begin by seeing how to estimate âi j by a variant of simple maximum like-
lihood estimation:

âi j =
expected number of transitions from state i to state j

expected number of transitions from state i
(A.16)

How do we compute the numerator? Here’s the intuition. Assume we had some
estimate of the probability that a given transition i ! j was taken at a particular
point in time t in the observation sequence. If we knew this probability for each

1. Baum-Welch: Estimating !aij

which works out to be

14 APPENDIX A • HIDDEN MARKOV MODELS

So, the final equation for xt is

xt(i, j) =
at(i)ai jb j(ot+1)bt+1(j)

PN
j=1 at(j)bt(j)

(A.22)

The expected number of transitions from state i to state j is then the sum over all
t of x . For our estimate of ai j in Eq. A.16, we just need one more thing: the total
expected number of transitions from state i. We can get this by summing over all
transitions out of state i. Here’s the final formula for âi j:

âi j =

PT�1
t=1 xt(i, j)

PT�1
t=1

PN
k=1 xt(i,k)

(A.23)

We also need a formula for recomputing the observation probability. This is the
probability of a given symbol vk from the observation vocabulary V , given a state j:
b̂ j(vk). We will do this by trying to compute

b̂ j(vk) =
expected number of times in state j and observing symbol vk

expected number of times in state j
(A.24)

For this, we will need to know the probability of being in state j at time t, which
we will call gt(j):

gt(j) = P(qt = j|O,l) (A.25)

Once again, we will compute this by including the observation sequence in the
probability:

gt(j) =
P(qt = j,O|l)

P(O|l) (A.26)

ot+1

αt(j)

ot-1 ot

sj

βt(j)

Figure A.13 The computation of gt(j), the probability of being in state j at time t. Note
that g is really a degenerate case of x and hence this figure is like a version of Fig. A.12 with
state i collapsed with state j. After Rabiner (1989) which is c�1989 IEEE.

As Fig. A.13 shows, the numerator of Eq. A.26 is just the product of the forward
probability and the backward probability:

gt(j) =
at(j)bt(j)

P(O|l) (A.27)

16 CHAPTER 9 • HIDDEN MARKOV MODELS

xt(i, j) = P(qt = i,qt+1 = j|O,l) (9.32)

To compute xt , we first compute a probability which is similar to xt , but differs
in including the probability of the observation; note the different conditioning of O
from Eq. 9.32:

not-quite-xt(i, j) = P(qt = i,qt+1 = j,O|l) (9.33)

ot+2ot+1

αt(i)

ot-1 ot

aijbj(ot+1)

si sj

βt+1(j)

Figure 9.14 Computation of the joint probability of being in state i at time t and state j at
time t + 1. The figure shows the various probabilities that need to be combined to produce
P(qt = i,qt+1 = j,O|l): the a and b probabilities, the transition probability ai j and the
observation probability b j(ot+1). After Rabiner (1989) which is c�1989 IEEE.

Figure 9.14 shows the various probabilities that go into computing not-quite-xt :
the transition probability for the arc in question, the a probability before the arc, the
b probability after the arc, and the observation probability for the symbol just after
the arc. These four are multiplied together to produce not-quite-xt as follows:

not-quite-xt(i, j) = at(i)ai jb j(ot+1)bt+1(j) (9.34)

To compute xt from not-quite-xt , we follow the laws of probability and divide
by P(O|l), since

P(X |Y,Z) = P(X ,Y |Z)
P(Y |Z) (9.35)

The probability of the observation given the model is simply the forward proba-
bility of the whole utterance (or alternatively, the backward probability of the whole
utterance), which can thus be computed in a number of ways:

P(O|l) = aT (qF) = bT (q0) =
NX

j=1

at(j)bt(j) (9.36)

So, the final equation for xt is

xt(i, j) =
at(i)ai jb j(ot+1)bt+1(j)

aT (qF)
(9.37)

16 CHAPTER 9 • HIDDEN MARKOV MODELS

xt(i, j) = P(qt = i,qt+1 = j|O,l) (9.32)

To compute xt , we first compute a probability which is similar to xt , but differs
in including the probability of the observation; note the different conditioning of O
from Eq. 9.32:

not-quite-xt(i, j) = P(qt = i,qt+1 = j,O|l) (9.33)

ot+2ot+1

αt(i)

ot-1 ot

aijbj(ot+1)

si sj

βt+1(j)

Figure 9.14 Computation of the joint probability of being in state i at time t and state j at
time t + 1. The figure shows the various probabilities that need to be combined to produce
P(qt = i,qt+1 = j,O|l): the a and b probabilities, the transition probability ai j and the
observation probability b j(ot+1). After Rabiner (1989) which is c�1989 IEEE.

Figure 9.14 shows the various probabilities that go into computing not-quite-xt :
the transition probability for the arc in question, the a probability before the arc, the
b probability after the arc, and the observation probability for the symbol just after
the arc. These four are multiplied together to produce not-quite-xt as follows:

not-quite-xt(i, j) = at(i)ai jb j(ot+1)bt+1(j) (9.34)

To compute xt from not-quite-xt , we follow the laws of probability and divide
by P(O|l), since

P(X |Y,Z) = P(X ,Y |Z)
P(Y |Z) (9.35)

The probability of the observation given the model is simply the forward proba-
bility of the whole utterance (or alternatively, the backward probability of the whole
utterance), which can thus be computed in a number of ways:

P(O|l) = aT (qF) = bT (q0) =
NX

j=1

at(j)bt(j) (9.36)

So, the final equation for xt is

xt(i, j) =
at(i)ai jb j(ot+1)bt+1(j)

aT (qF)
(9.37)

where

We need to define to estimate aij⇠t(i, j)

9.5 • HMM TRAINING: THE FORWARD-BACKWARD ALGORITHM 17

The expected number of transitions from state i to state j is then the sum over
all t of x . For our estimate of ai j in Eq. 9.31, we just need one more thing: the total
expected number of transitions from state i. We can get this by summing over all
transitions out of state i. Here’s the final formula for âi j:

âi j =

PT�1
t=1 xt(i, j)

PT�1
t=1

PN
k=1 xt(i,k)

(9.38)

We also need a formula for recomputing the observation probability. This is the
probability of a given symbol vk from the observation vocabulary V , given a state j:
b̂ j(vk). We will do this by trying to compute

b̂ j(vk) =
expected number of times in state j and observing symbol vk

expected number of times in state j
(9.39)

For this, we will need to know the probability of being in state j at time t, which
we will call gt(j):

gt(j) = P(qt = j|O,l) (9.40)

Once again, we will compute this by including the observation sequence in the
probability:

gt(j) =
P(qt = j,O|l)

P(O|l) (9.41)

ot+1

αt(j)

ot-1 ot

sj

βt(j)

Figure 9.15 The computation of gt(j), the probability of being in state j at time t. Note
that g is really a degenerate case of x and hence this figure is like a version of Fig. 9.14 with
state i collapsed with state j. After Rabiner (1989) which is c�1989 IEEE.

As Fig. 9.15 shows, the numerator of Eq. 9.41 is just the product of the forward
probability and the backward probability:

gt(j) =
at(j)bt(j)

P(O|l) (9.42)

We are ready to compute b. For the numerator, we sum gt(j) for all time steps
t in which the observation ot is the symbol vk that we are interested in. For the

Then,

9.5 • HMM TRAINING: THE FORWARD-BACKWARD ALGORITHM 17

The expected number of transitions from state i to state j is then the sum over
all t of x . For our estimate of ai j in Eq. 9.31, we just need one more thing: the total
expected number of transitions from state i. We can get this by summing over all
transitions out of state i. Here’s the final formula for âi j:

âi j =

PT�1
t=1 xt(i, j)

PT�1
t=1

PN
k=1 xt(i,k)

(9.38)

We also need a formula for recomputing the observation probability. This is the
probability of a given symbol vk from the observation vocabulary V , given a state j:
b̂ j(vk). We will do this by trying to compute

b̂ j(vk) =
expected number of times in state j and observing symbol vk

expected number of times in state j
(9.39)

For this, we will need to know the probability of being in state j at time t, which
we will call gt(j):

gt(j) = P(qt = j|O,l) (9.40)

Once again, we will compute this by including the observation sequence in the
probability:

gt(j) =
P(qt = j,O|l)

P(O|l) (9.41)

ot+1

αt(j)

ot-1 ot

sj

βt(j)

Figure 9.15 The computation of gt(j), the probability of being in state j at time t. Note
that g is really a degenerate case of x and hence this figure is like a version of Fig. 9.14 with
state i collapsed with state j. After Rabiner (1989) which is c�1989 IEEE.

As Fig. 9.15 shows, the numerator of Eq. 9.41 is just the product of the forward
probability and the backward probability:

gt(j) =
at(j)bt(j)

P(O|l) (9.42)

We are ready to compute b. For the numerator, we sum gt(j) for all time steps
t in which the observation ot is the symbol vk that we are interested in. For the

where

9.5 • HMM TRAINING: THE FORWARD-BACKWARD ALGORITHM 17

The expected number of transitions from state i to state j is then the sum over
all t of x . For our estimate of ai j in Eq. 9.31, we just need one more thing: the total
expected number of transitions from state i. We can get this by summing over all
transitions out of state i. Here’s the final formula for âi j:

âi j =

PT�1
t=1 xt(i, j)

PT�1
t=1

PN
k=1 xt(i,k)

(9.38)

We also need a formula for recomputing the observation probability. This is the
probability of a given symbol vk from the observation vocabulary V , given a state j:
b̂ j(vk). We will do this by trying to compute

b̂ j(vk) =
expected number of times in state j and observing symbol vk

expected number of times in state j
(9.39)

For this, we will need to know the probability of being in state j at time t, which
we will call gt(j):

gt(j) = P(qt = j|O,l) (9.40)

Once again, we will compute this by including the observation sequence in the
probability:

gt(j) =
P(qt = j,O|l)

P(O|l) (9.41)

ot+1

αt(j)

ot-1 ot

sj

βt(j)

Figure 9.15 The computation of gt(j), the probability of being in state j at time t. Note
that g is really a degenerate case of x and hence this figure is like a version of Fig. 9.14 with
state i collapsed with state j. After Rabiner (1989) which is c�1989 IEEE.

As Fig. 9.15 shows, the numerator of Eq. 9.41 is just the product of the forward
probability and the backward probability:

gt(j) =
at(j)bt(j)

P(O|l) (9.42)

We are ready to compute b. For the numerator, we sum gt(j) for all time steps
t in which the observation ot is the symbol vk that we are interested in. For the

which works out to be

9.5 • HMM TRAINING: THE FORWARD-BACKWARD ALGORITHM 17

The expected number of transitions from state i to state j is then the sum over
all t of x . For our estimate of ai j in Eq. 9.31, we just need one more thing: the total
expected number of transitions from state i. We can get this by summing over all
transitions out of state i. Here’s the final formula for âi j:

âi j =

PT�1
t=1 xt(i, j)

PT�1
t=1

PN
k=1 xt(i,k)

(9.38)

We also need a formula for recomputing the observation probability. This is the
probability of a given symbol vk from the observation vocabulary V , given a state j:
b̂ j(vk). We will do this by trying to compute

b̂ j(vk) =
expected number of times in state j and observing symbol vk

expected number of times in state j
(9.39)

For this, we will need to know the probability of being in state j at time t, which
we will call gt(j):

gt(j) = P(qt = j|O,l) (9.40)

Once again, we will compute this by including the observation sequence in the
probability:

gt(j) =
P(qt = j,O|l)

P(O|l) (9.41)

ot+1

αt(j)

ot-1 ot

sj

βt(j)

Figure 9.15 The computation of gt(j), the probability of being in state j at time t. Note
that g is really a degenerate case of x and hence this figure is like a version of Fig. 9.14 with
state i collapsed with state j. After Rabiner (1989) which is c�1989 IEEE.

As Fig. 9.15 shows, the numerator of Eq. 9.41 is just the product of the forward
probability and the backward probability:

gt(j) =
at(j)bt(j)

P(O|l) (9.42)

We are ready to compute b. For the numerator, we sum gt(j) for all time steps
t in which the observation ot is the symbol vk that we are interested in. For the

2. Baum-Welch: Estimating !bj(vk)
We need to define to estimate bj(vk)�t(j)

18 CHAPTER 9 • HIDDEN MARKOV MODELS

denominator, we sum gt(j) over all time steps t. The result is the percentage of the
times that we were in state j and saw symbol vk (the notation

PT
t=1s.t.Ot=vk

means
“sum over all t for which the observation at time t was vk”):

b̂ j(vk) =

PT
t=1s.t.Ot=vk

gt(j)
PT

t=1 gt(j)
(9.43)

We now have ways in Eq. 9.38 and Eq. 9.43 to re-estimate the transition A and
observation B probabilities from an observation sequence O, assuming that we al-
ready have a previous estimate of A and B.

These re-estimations form the core of the iterative forward-backward algorithm.
The forward-backward algorithm (Fig. 9.16) starts with some initial estimate of the
HMM parameters l = (A,B). We then iteratively run two steps. Like other cases of
the EM (expectation-maximization) algorithm, the forward-backward algorithm has
two steps: the expectation step, or E-step, and the maximization step, or M-step.E-step

M-step In the E-step, we compute the expected state occupancy count g and the expected
state transition count x from the earlier A and B probabilities. In the M-step, we use
g and x to recompute new A and B probabilities.

function FORWARD-BACKWARD(observations of len T, output vocabulary V, hidden
state set Q) returns HMM=(A,B)

initialize A and B
iterate until convergence

E-step
gt(j) =

at(j)bt(j)
aT (qF)

8 t and j

xt(i, j) =
at(i)ai jb j(ot+1)bt+1(j)

aT (qF)
8 t, i, and j

M-step

âi j =

T�1X

t=1

xt(i, j)

T�1X

t=1

NX

k=1

xt(i,k)

b̂ j(vk) =

TX

t=1s.t. Ot=vk

gt(j)

TX

t=1

gt(j)

return A, B

Figure 9.16 The forward-backward algorithm.

Although in principle the forward-backward algorithm can do completely unsu-
pervised learning of the A and B parameters, in practice the initial conditions are
very important. For this reason the algorithm is often given extra information. For
example, for speech recognition, in practice the HMM structure is often set by hand,
and only the emission (B) and (non-zero) A transition probabilities are trained from a
set of observation sequences O. Section ?? in Chapter 29 also discusses how initial A
and B estimates are derived in speech recognition. We also show that for speech the

Then, for discrete outputs

State occupancy 
probability

Bringing it all together: Baum-Welch

Estimating HMM parameters iteratively using the EM algorithm.  
For each iteration, do:

E step: For all time-state pairs, compute the state occupation  
probabilities !t(j) and ξt(i, j)

M step: Reestimate HMM parameters, i.e. transition probabilities,  
observation probabilities, based on the estimates derived in the E step

Baum-Welch algorithm (pseudocode)

18 CHAPTER 9 • HIDDEN MARKOV MODELS

denominator, we sum gt(j) over all time steps t. The result is the percentage of the
times that we were in state j and saw symbol vk (the notation

PT
t=1s.t.Ot=vk

means
“sum over all t for which the observation at time t was vk”):

b̂ j(vk) =

PT
t=1s.t.Ot=vk

gt(j)
PT

t=1 gt(j)
(9.43)

We now have ways in Eq. 9.38 and Eq. 9.43 to re-estimate the transition A and
observation B probabilities from an observation sequence O, assuming that we al-
ready have a previous estimate of A and B.

These re-estimations form the core of the iterative forward-backward algorithm.
The forward-backward algorithm (Fig. 9.16) starts with some initial estimate of the
HMM parameters l = (A,B). We then iteratively run two steps. Like other cases of
the EM (expectation-maximization) algorithm, the forward-backward algorithm has
two steps: the expectation step, or E-step, and the maximization step, or M-step.E-step

M-step In the E-step, we compute the expected state occupancy count g and the expected
state transition count x from the earlier A and B probabilities. In the M-step, we use
g and x to recompute new A and B probabilities.

function FORWARD-BACKWARD(observations of len T, output vocabulary V, hidden
state set Q) returns HMM=(A,B)

initialize A and B
iterate until convergence

E-step
gt(j) =

at(j)bt(j)
aT (qF)

8 t and j

xt(i, j) =
at(i)ai jb j(ot+1)bt+1(j)

aT (qF)
8 t, i, and j

M-step

âi j =

T�1X

t=1

xt(i, j)

T�1X

t=1

NX

k=1

xt(i,k)

b̂ j(vk) =

TX

t=1s.t. Ot=vk

gt(j)

TX

t=1

gt(j)

return A, B

Figure 9.16 The forward-backward algorithm.

Although in principle the forward-backward algorithm can do completely unsu-
pervised learning of the A and B parameters, in practice the initial conditions are
very important. For this reason the algorithm is often given extra information. For
example, for speech recognition, in practice the HMM structure is often set by hand,
and only the emission (B) and (non-zero) A transition probabilities are trained from a
set of observation sequences O. Section ?? in Chapter 29 also discusses how initial A
and B estimates are derived in speech recognition. We also show that for speech the

Discrete to continuous outputs

We derived Baum-Welch updates for discrete outputs.

However, HMMs in acoustic models emit real-valued vectors as observations.

Before we understand how Baum-Welch works for acoustic modelling using
HMMs, let’s look at an overview of the Expectation Maximization (EM) algorithm
and establish some notation.

Observed data: i.i.d samples xi, i=1, …, N

Goal: Find where

Initial parameters: θ0 (x is observed and z is hidden)

Iteratively compute θl as follows:

EM Algorithm: Fitting Parameters to Data

Q(✓, ✓`�1) =
NX

i=1

X

z

Pr(z|xi; ✓
`�1) log Pr(xi, z; ✓)

✓` = argmax
✓

Q(✓, ✓`�1)

L(✓) =
NX

i=1

log Pr(xi; ✓)argmax
✓

L(✓)

L(✓)� L(✓`�1) � Q(✓, ✓`�1)�Q(✓`�1, ✓`�1)

Estimate θl cannot get worse over iterations because for all θ:

EM is guaranteed to converge to a local optimum or saddle points [Wu83]

Coin example to illustrate EM

������ ������ ������

"1 = Pr(H) "2 = Pr(H) "3 = Pr(H)

The following sequence is observed: “HH, TT, HH, TT, HH”
How do you estimate "1, "2 and "3?

Toss �������privately  
if it shows H:  
 Toss ������ twice  
else  
 Toss ������ twice

Repeat:

Coin example to illustrate EM

Recall, for partially observed data, the log likelihood is given by:

∈ • each observation xi

where, for the coin example:

X = {HH,HT,TH,TT}

• the hidden variable ∈z Z = {H,T}

L(✓) =
NX

i=1

log Pr(xi; ✓) =
NX

i=1

log
X

z

Pr(xi, z; ✓)

Coin example to illustrate EM

Recall, for partially observed data, the log likelihood is given by:

Pr(x, z; ✓) = Pr(x|z; ✓) Pr(z; ✓)

where Pr(z; ✓) =

(
⇢1 if z = H

1� ⇢1 if z = T

������
"1 = Pr(H)

������ ������

"2 =Pr(H) "3 = Pr(H)

L(✓) =
NX

i=1

log Pr(xi; ✓) =
NX

i=1

log
X

z

Pr(xi, z; ✓)

h : number of heads, t : number of tails

Pr(x|z; ✓) =
(
⇢h2 (1� ⇢2)t if z = H

⇢h3 (1� ⇢3)t if z = T

Our observed data is: {HH, TT, HH, TT, HH}
Let’s use EM to estimate θ = ("1, "2, "3)

= 0.16
= 0.49 What is !(H, TT)?

What is !(H, HH)?
Suppose θl -1 is "1 = 0.3, "2 = 0.4, "3 = 0.6:

[EM Iteration, E-step] 
Compute quantities involved in

 
 where !(z, x) = Pr(z | x ;θl -1)

Q(✓, ✓`�1) =
NX

i=1

X

z

�(z, xi) log Pr(xi, z; ✓)

Coin example to illustrate EM

i.e., compute !(z, xi) for all z and all i

Our observed data is: {HH, TT, HH, TT, HH}

[EM Iteration, M-step] 
Find θ which maximises

Q(✓, ✓`�1) =
NX

i=1

X

z

�(z, xi) log Pr(xi, z; ✓)

Coin example to illustrate EM

⇢2 =

PN
i=1 �(H, xi)hiPN

i=1 �(H, xi)(hi + ti)

⇢1 =

PN
i=1 �(H, xi)

N

⇢3 =

PN
i=1 �(T, xi)hiPN

i=1 �(T, xi)(hi + ti)

Let’s use EM to estimate θ = ("1, "2, "3)

Coin example to illustrate EM

This was a very simple HMM  
(with observations from 2 states)

State remains the same after the first transition

γ estimated the distribution of this state

More generally, will need the distribution of the state at each
time step

EM for general HMMs: Baum-Welch algorithm (1972) 
 (predates the general formulation of EM (1977))

H

T

"1

1-"1

H/"2 T/1-"2

H/"3 T/1-"3

1

1

Observed data: N sequences, xi, i=1…N where xi ∈ V

Parameters θ : transition matrix A, observation probabilities B  

[EM Iteration, E-step] 
Compute quantities involved in Q(θ,θl -1)
!i,t (j) = Pr(zt = j | xi ;θl -1)  
#i,t(j,k) = Pr(zt = j, zt+1 = k | xi ;θl -1)

Baum-Welch Algorithm as EM

Parameters θ : transition matrix A, observation probabilities B  

[EM Iteration, M-step] 
Find θ which maximises Q(θ,θl -1)

Baum-Welch Algorithm as EM

Bj,v =

PN
i=1

P
t:xit=v �i,t(j)PN

i=1

PTi

t=1 �i,t(j)

Aj,k =

PN
i=1

PTi�1
t=1 ⇠i,t(j, k)PN

i=1

PTi�1
t=1

P
k0 ⇠i,t(j, k0)

<latexit sha1_base64="uVFnsJYIYcB5KF/iC5IN0q4U0tA=">AAACY3ichVHLSgMxFM2MWrW+xsdOhGARLdQyUwXdFKpuXIlCq0KnDpk0Y2MzD5I7Yh3mJ925c+N/mD4WWgUvBM495x5ucuIngiuw7XfDnJmdK8wvLBaXlldW16z1jVsVp5KyFo1FLO99opjgEWsBB8HuE8lI6At25/cvhvrdM5OKx1ETBgnrhOQx4gGnBDTlWa9nXvZU6ee4jt1AEpq5Kg29jNed/OEKjxsYNlnT44dOjt0XruUK5AfaVs7/nx9R/f0p534596ySXbVHhX8DZwJKaFLXnvXmdmOahiwCKohSbcdOoJMRCZwKlhfdVLGE0D55ZG0NIxIy1clGGeV4TzNdHMRSnwjwiP3uyEio1CD09WRIoKemtSH5l9ZOITjtZDxKUmARHS8KUoEhxsPAcZdLRkEMNCBUcn1XTHtERw36W4o6BGf6yb/Bba3qHFVrN8elxvkkjgW0jXbRAXLQCWqgS3SNWoiiD6NgrBmW8WkumRvm1njUNCaeTfSjzJ0vOj62QQ==</latexit>

Observed data: N sequences, xi, i=1…N where xi ∈ V

Discrete to continuous outputs

We derived Baum-Welch updates for discrete outputs.

However, HMMs in acoustic models emit real-valued vectors as observations.

Use probability density functions to define observation probabilities

If � were 1D values, HMM observation probabilities: �
where � is the mean associated with state � and � is its variance

x bj(x) = $(x |μj, σ2
j)

μj j σ2
j

If � , then we use multivariate Gaussians, �  
where � is the covariance matrix associated with state j

x ∈ℝd bj(x) = $(x |μj, Σj)
Σj

BW for Gaussian Observation Model

Parameters θ : transition matrix A, observation prob. B = {(μj,Σj)} for all j  

[EM Iteration, M-step] 
Find θ which maximises Q(θ,θl -1)

µj =

PN
i=1

PTi

t=1 �i,t(j)xitPN
i=1

PTi

t=1 �i,t(j)

⌃j =

PN
i=1

PTi

t=1 �i,t(j)(xit � µj)(xit � µj)TPN
i=1

PTi

t=1 �i,t(j)

A same as with discrete outputs

Observed data: N sequences, xi = (xi1, …, xiTi), i=1…N where xit ∈ ℝd

B = {(μj,Σj)} for all j

Gaussian Mixture Model

• More generally, we use a “mixture of Gaussians” to
allow for acoustic vectors associated with a state to
be non-Gaussian.

• Instead of � in the single Gaussian
case, � can be an M-component mixture model:  

bj(x) = $(x |μj, Σj)
bj(x)

where cjm is the mixing probability for Gaussian component m of state j
MX

m=1

cjm = 1, cjm � 0

bj(x) =
MX

m=1

cjmN (x|µjm,⌃jm)
<latexit sha1_base64="ZpmSZEggz1V14OmOhiizYlXlrOw=">AAACRnicbVBNS8QwEJ2uX+v6terRS3ARFGRpVdCLIHrxoqzoqrCtJc2mazRpS5KKS+2v8+LZmz/BiwdFvJrWPfg1EPJ47w0z84KEM6Vt+8mqDA2PjI5Vx2sTk1PTM/XZuVMVp5LQNol5LM8DrChnEW1rpjk9TyTFIuD0LLjeK/SzGyoVi6MT3U+oJ3AvYiEjWBvKr3uBf7XsCqwvgzC7zVfQNnJVKvxMbDv5xQEifnYlclQ6CObZYf7NfecGMe+qvjCfK9LSuuoes57AJV7x6w27aZeF/gJnABowqJZff3S7MUkFjTThWKmOYyfay7DUjHCa19xU0QSTa9yjHQMjLKjysjKGHC0ZpovCWJoXaVSy3zsyLFSxrHEWJ6jfWkH+p3VSHW55GYuSVNOIfA0KU450jIpMUZdJSjTvG4CJZGZXRC6xxESb5GsmBOf3yX/B6VrTWW+uHW00dnYHcVRhARZhGRzYhB3Yhxa0gcA9PMMrvFkP1ov1bn18WSvWoGceflQFPgGPU7MV</latexit>

• Assuming that observations associated with a state
follow a Gaussian distribution is too simplistic.

BW for Gaussian Mixture Model

Parameters θ : transition matrix A, observation prob. B = {(μjm,Σjm,cjm)} for all j,m  

[EM Iteration, M-step] 
Find θ which maximises Q(θ,θl -1)

µjm =

PN
i=1

PTi

t=1 �i,t(j,m)xitPN
i=1

PTi

t=1 �i,t(j,m)

⌃jm =

PN
i=1

PTi

t=1 �i,t(j,m)(xit � µjm)(xit � µjm)T
PN

i=1

PTi

t=1 �i,t(j,m)

cjm =

PN
i=1

PTi

t=1 �i,t(j,m)
PN

i=1

PTi

t=1

PM
m0=1 �i,t(j,m

0)
<latexit sha1_base64="CDwhDXmujKSHp4qwkxirtQ7FuFA=">AAACaHichVFdS8MwFE3r9/yqX4j4Ehyigox2CvoiiL74oig4FdZZ0iydcUlbklthlOJ/9M0f4Iu/wnTbgzrBC4Fzz7mHm5yEqeAaXPfdssfGJyanpmcqs3PzC4vO0vKdTjJFWYMmIlEPIdFM8Jg1gINgD6liRIaC3Yfd81K/f2FK8yS+hV7KWpJ0Yh5xSsBQgfNKg/xZFvgE+5EiNPd1JoOcn3jF4xUeNFA2+W3AC+x3iJTE6PtQ7D7vy73iP0OfkDslczli39krAqfq1tx+4VHgDUEVDes6cN78dkIzyWKggmjd9NwUWjlRwKlgRcXPNEsJ7ZIOaxoYE8l0K+8HVeBtw7RxlChzYsB99rsjJ1LrngzNpCTwpH9rJfmX1swgOm7lPE4zYDEdLIoygSHBZeq4zRWjIHoGEKq4uSumT8QEDuZvKiYE7/eTR8FdveYd1Oo3h9XTs2Ec02gTbaFd5KEjdIou0DVqIIo+rFlr1VqzPm3HXrc3BqO2NfSsoB9lb30BIRG5Eg==</latexit>

Observed data: N sequences, xi = (xi1, …, xiTi), i=1…N where xit ∈ ℝd

Prob. of component m  
of state j at time t

B = {(μjm,Σjm,cjm)} for all j,m

Baum Welch: In summary

[Every EM Iteration] 
Compute θ = { Ajk, (μjm,Σjm,cjm) } for all j,k,m

µjm =

PN
i=1

PTi

t=1 �i,t(j,m)xitPN
i=1

PTi

t=1 �i,t(j,m)

⌃jm =

PN
i=1

PTi

t=1 �i,t(j,m)(xit � µjm)(xit � µjm)T
PN

i=1

PTi

t=1 �i,t(j,m)

cjm =

PN
i=1

PTi

t=1 �i,t(j,m)
PN

i=1

PTi

t=1

PM
m0=1 �i,t(j,m

0)
<latexit sha1_base64="CDwhDXmujKSHp4qwkxirtQ7FuFA=">AAACaHichVFdS8MwFE3r9/yqX4j4Ehyigox2CvoiiL74oig4FdZZ0iydcUlbklthlOJ/9M0f4Iu/wnTbgzrBC4Fzz7mHm5yEqeAaXPfdssfGJyanpmcqs3PzC4vO0vKdTjJFWYMmIlEPIdFM8Jg1gINgD6liRIaC3Yfd81K/f2FK8yS+hV7KWpJ0Yh5xSsBQgfNKg/xZFvgE+5EiNPd1JoOcn3jF4xUeNFA2+W3AC+x3iJTE6PtQ7D7vy73iP0OfkDslczli39krAqfq1tx+4VHgDUEVDes6cN78dkIzyWKggmjd9NwUWjlRwKlgRcXPNEsJ7ZIOaxoYE8l0K+8HVeBtw7RxlChzYsB99rsjJ1LrngzNpCTwpH9rJfmX1swgOm7lPE4zYDEdLIoygSHBZeq4zRWjIHoGEKq4uSumT8QEDuZvKiYE7/eTR8FdveYd1Oo3h9XTs2Ec02gTbaFd5KEjdIou0DVqIIo+rFlr1VqzPm3HXrc3BqO2NfSsoB9lb30BIRG5Eg==</latexit>

Aj,k =

PN
i=1

PTi

t=2 ⇠i,t(j, k)PN
i=1

PTi

t=2

P
k0 ⇠i,t(j, k0)

