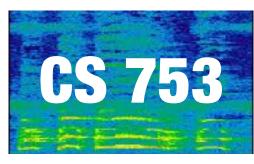
HMMs for Acoustic Modeling (Part II) Lecture 3



Instructor: Preethi Jyothi

Recap: HMMs for Acoustic Modeling

- What are (first-order) HMMs?
- What are the simplifying assumptions governing HMMs?
- What are the three fundamental problems related to HMMs?
- 1. What is the forward algorithm? What is it used to compute?
 - **Computing Likelihood:** Given an HMM $\lambda = (A, B)$ and an observation sequence *O*, determine the likelihood $P(O|\lambda)$.
- 2. What is the Viterbi algorithm? What is it used to compute?

 $Q = q_1 q_2 q_3 \dots q_T.$

Decoding: Given as input an HMM $\lambda = (A, B)$ and a sequence of observations $O = o_1, o_2, ..., o_T$, find the most probable sequence of states

Problem 1 (Likelihood):	Given an
Problem 2 (Decoding):	quence (Given an
	(A,B), d
Problem 3 (Learning):	Given an
	in the HI

Learning: Given an observation sequence *O* and the set of possible states in the HMM, learn the HMM parameters *A* and *B*.

Standard algorithm for HMM training: Forward-backward or Baum-Welch algorithm

In HMM $\lambda = (A, B)$ and an observation se-O, determine the likelihood $P(O|\lambda)$. In observation sequence O and an HMM $\lambda =$ discover the best hidden state sequence Q. In observation sequence O and the set of states MM, learn the HMM parameters A and B.

Forward and Backward Probabilities

Baum-Welch algorithm iteratively estimates transition & observation probabilities and uses these values to derive even better estimates.

Require two probabilities to compute estimates for the transition and observation probabilities:

- 1. Forward probability: Recall
- 2. Backward probability: $\beta_t(i)$

$$\boldsymbol{\alpha}_t(j) = P(o_1, o_2 \dots o_t, q_t = j | \boldsymbol{\lambda})$$

$$\dot{v} = P(o_{t+1}, o_{t+2} \dots o_T | q_t = i, \lambda)$$

Backward probability

1. Initialization:

2. Recursion

i=1

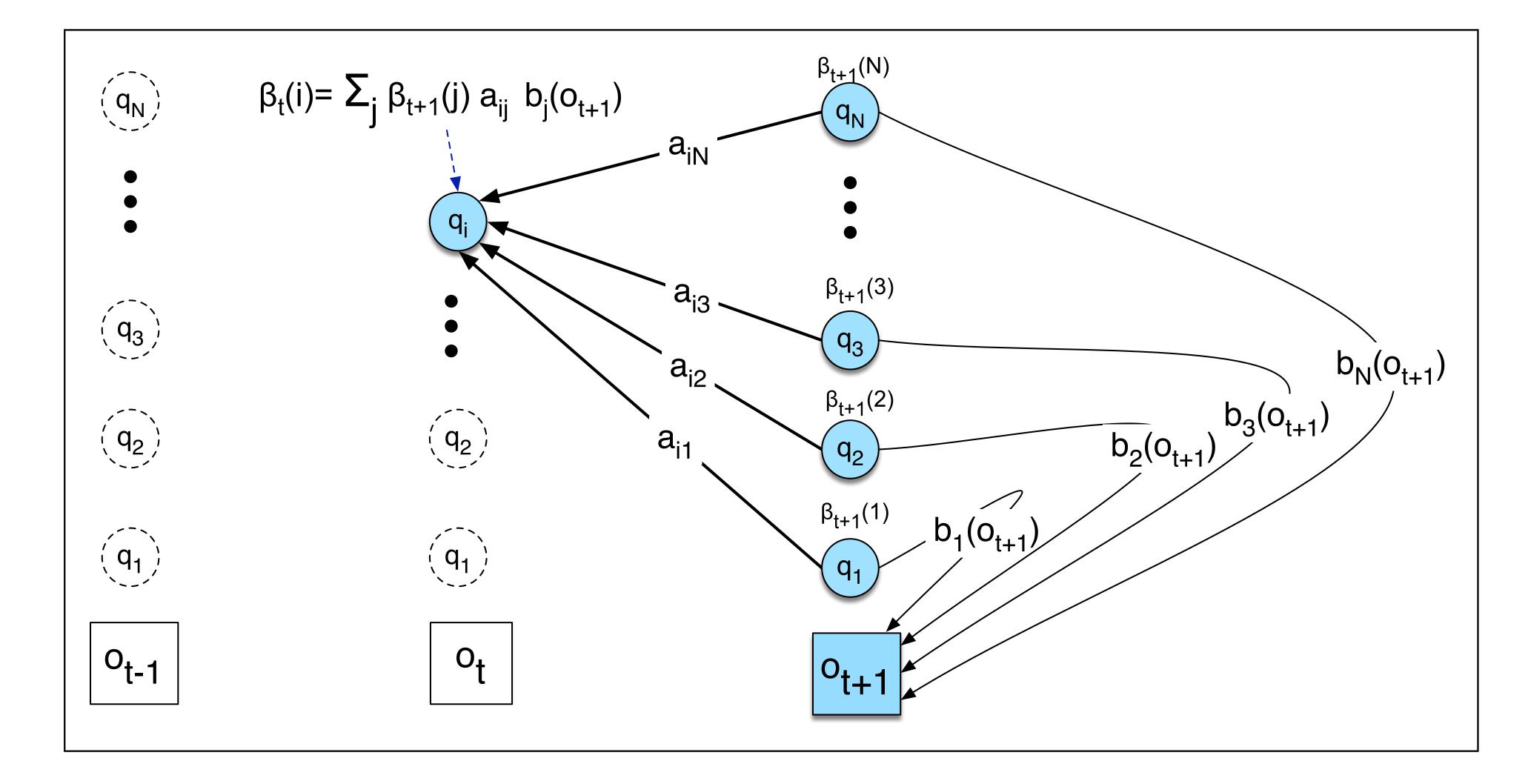
3. Termination:

$\beta_T(i) = 1, \quad 1 \leq i \leq N$

$\beta_t(i) = \sum_{i=1}^N a_{ij} \, b_j(o_{t+1}) \, \beta_{t+1}(j), \quad 1 \le i \le N, 1 \le t < T$

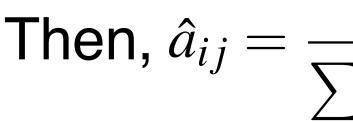
 $P(O|\lambda) = \sum_{j=1}^{N} \pi_j b_j(o_1) \beta_1(j)$ *j*=1

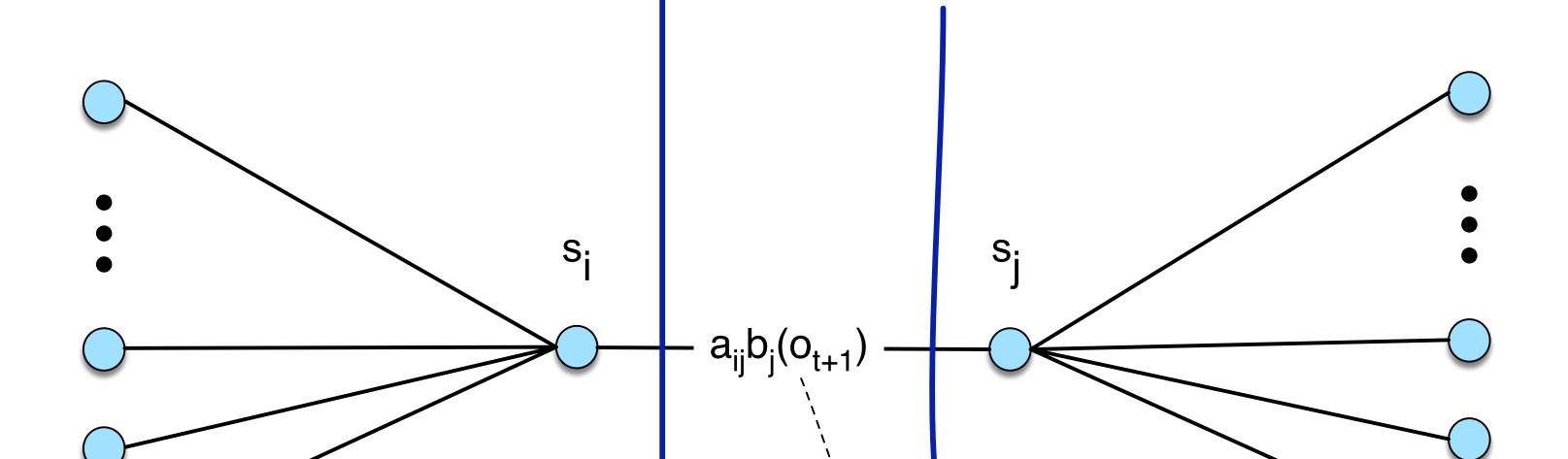
Visualising backward probability computation



1. Baum-Welch: Estimating a_{ii}

- We need to define $\xi_t(i, j)$ to estimate a_{ij}



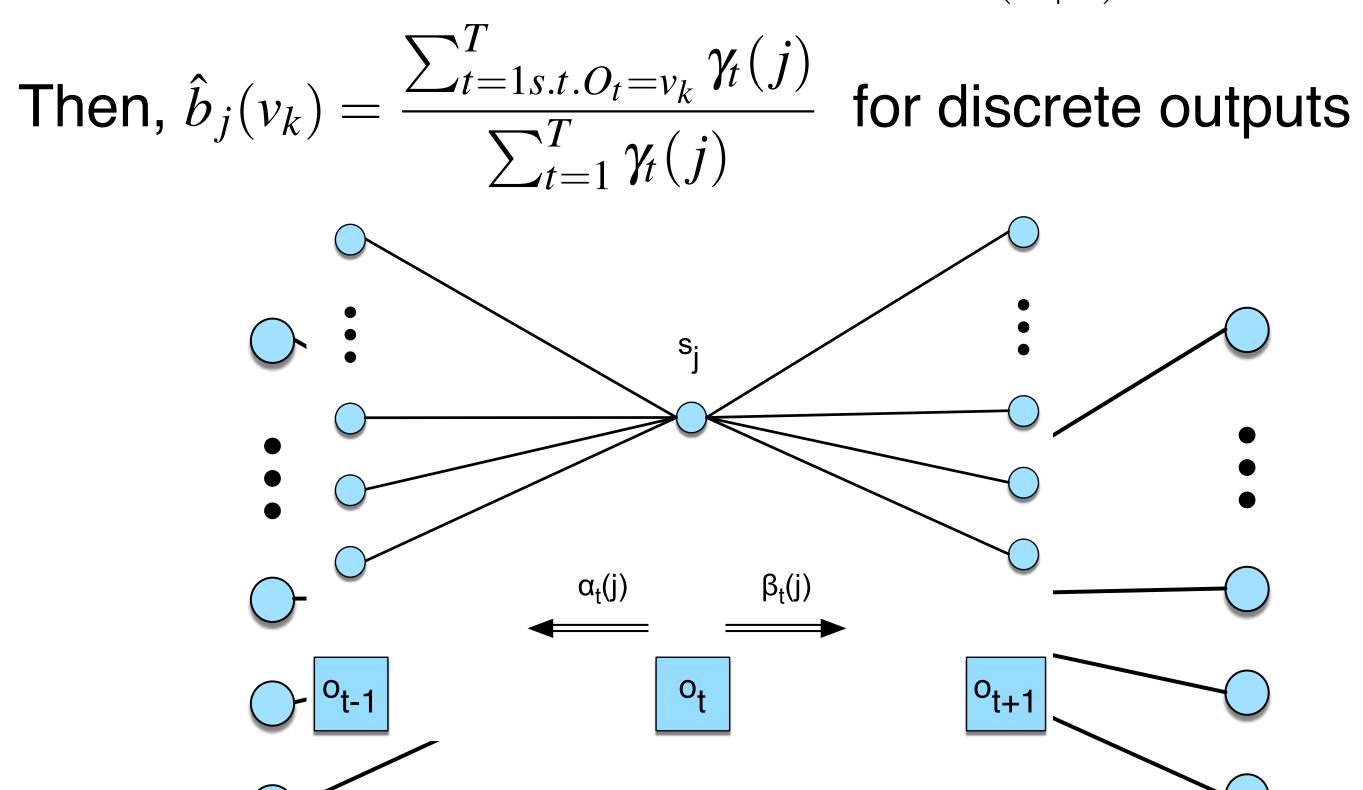


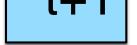
where $\xi_t(i, j) = P(q_t = i, q_{t+1} = j | O, \lambda)$ which works out to be $\xi_t(i,j) = \frac{\alpha_t(i)a_{ij}b_j(o_{t+1})\beta_{t+1}(j)}{\sum_{j=1}^N \alpha_t(j)\beta_t(j)}$ Then, $\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \sum_{k=1}^N \xi_t(i,k)}$



2. Baum-Welch: Estimating $b_i(v_k)$

which works out





We need to define $\gamma_t(j)$ to estimate $b_j(v_k)$

to be
$$\gamma_t(j) = rac{lpha_t(j)eta_t(j)}{P(O|\lambda)}$$

State occupancy probability

Bringing it all together: Baum-Welch

Estimating HMM parameters iteratively using the EM algorithm. For each iteration, do:

E step: For all time-state pairs, compute the state occupation probabilities $\gamma_t(j)$ and $\xi_t(i, j)$

M step: Reestimate HMM parameters, i.e. transition probabilities, observation probabilities, based on the estimates derived in the E step

Baum-Welch algorithm (pseudocode)

function FORWARD-BACKWARD(*observations* of len *T*, *output vocabulary V*, *hidden state set Q*) **returns** HMM=(A,B)

initialize A and B
iterate until convergence
E-step

$$\gamma_t(j) = \frac{\alpha_t(j)\beta_t(j)}{\alpha_T(q_F)} \forall t \text{ and } j$$

$$\xi_t(i,j) = \frac{\alpha_t(i)a_{ij}b_j(o_{t+1})\beta_{t+1}(j)}{\alpha_T(q_F)}$$

M-step

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \sum_{k=1}^{N} \xi_t(i,k)}$$
$$\hat{b}_j(v_k) = \frac{\sum_{t=1s.t.\ O_t = v_k}^{T} \gamma_t(j)}{\sum_{t=1}^{T} \gamma_t(j)}$$

return A, B

(j) $\forall t, i, and j$

Discrete to continuous outputs

We derived Baum-Welch updates for discrete outputs.

However, HMMs in acoustic models emit real-valued vectors as observations.

Before we understand how Baum-Welch works for acoustic modelling using HMMs, let's look at an overview of the Expectation Maximization (**EM**) algorithm and establish some notation.

EM Algorithm: Fitting Parameters to Data

Observed data: i.i.d samples x_{i} , i=1Goal: Find $\arg \max \mathcal{L}(\theta)$ where $\mathcal{L}(\theta) =$ Initial parameters: θ^0 (x is observed Iteratively compute θ^{ℓ} as follows:

$$Q(\theta, \theta^{\ell-1}) = \sum_{i=1}^{N} \sum_{z} \Pr(z|x_i; \theta^{\ell-1}) \log \Pr(x_i, z; \theta)$$
$$\theta^{\ell} = \arg\max_{\theta} Q(\theta, \theta^{\ell-1})$$

Estimate θ^{ℓ} cannot get worse over iterations because for all θ :

$$\mathcal{L}(\theta) - \mathcal{L}(\theta^{\ell-1}) \ge Q(\theta, \theta^{\ell-1}) - Q(\theta^{\ell-1}, \theta^{\ell-1})$$

EM is guaranteed to converge to a local optimum or saddle points [Wu83]

I, ...,
$$N$$

= $\sum_{i=1}^{N} \log \Pr(x_i; \theta)$
d and z is hidden

 $\rho_1 = \Pr(H)$

- Repeat:

 - else

 $\rho_2 = \Pr(H)$

Toss Coin | privately

if it shows H:

Toss Coin 2 twice

Toss Coin 3 twice

The following sequence is observed: "HH, TT, HH, TT, HH"

How do you estimate ρ_1 , ρ_2 and ρ_3 ?

Recall, for partially observed data, the log likelihood is given by:

$$\mathcal{L}(\theta) = \sum_{i=1}^{N} \log \Pr(x_i; \theta) = \sum_{i=1}^{N} \log \sum_{z} \Pr(x_i, z; \theta)$$

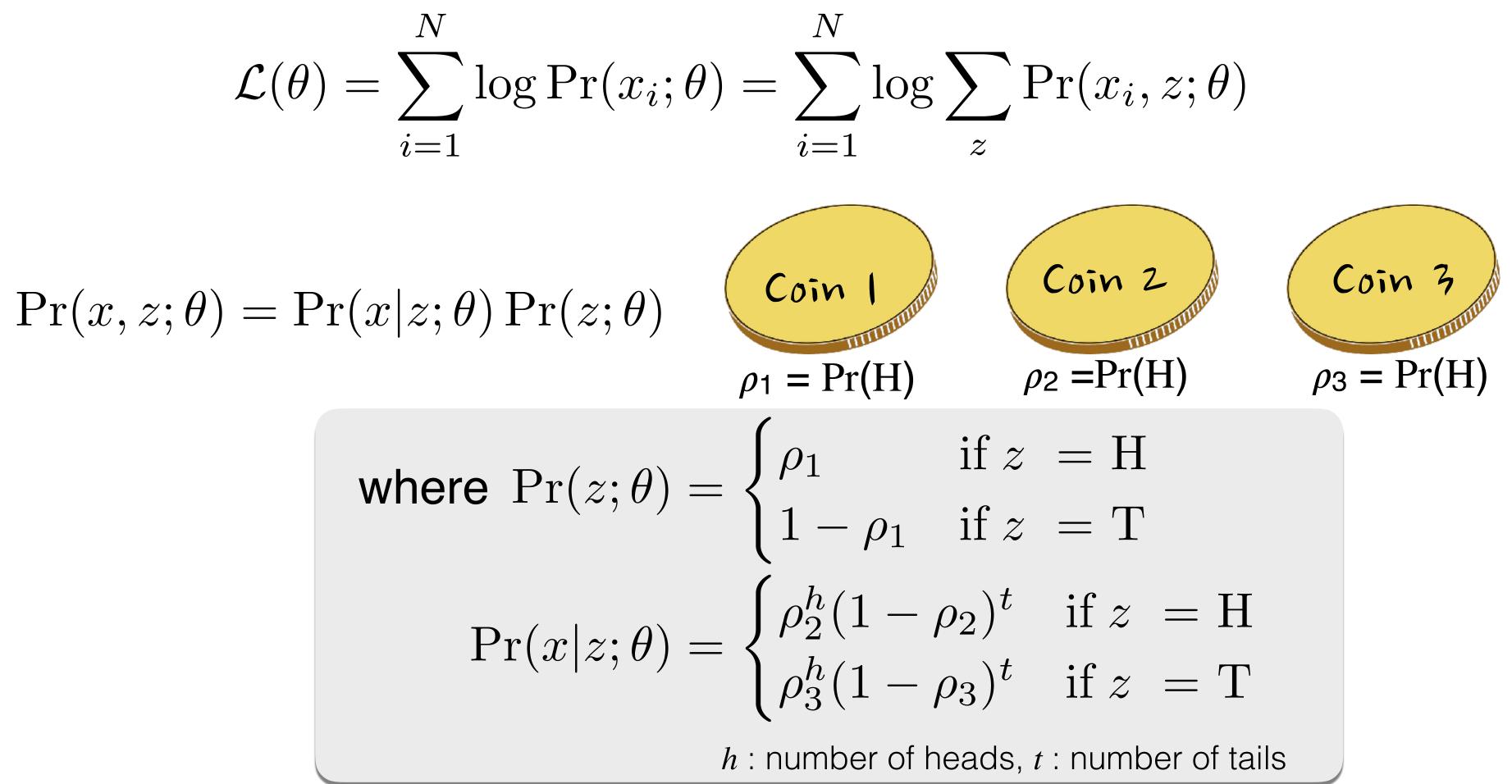
where, for the coin example:

- the hidden variable $z \in \mathcal{Z} = \{H, T\}$

• each observation $x_i \in \mathcal{X} = \{HH, HT, TH, TT\}$

Recall, for partially observed data, the log likelihood is given by:

$$\mathcal{L}(\theta) = \sum_{i=1}^{N} \log \Pr(x_i;$$



[EM Iteration, E-step] Compute quantities involved in i=1 z where $\gamma(z, x) = \Pr(z \mid x; \theta^{\ell-1})$

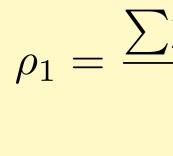
Suppose $\theta^{\ell-1}$ is $\rho_1 = 0.3$, $\rho_2 = 0.4$, $\rho_3 = 0.6$: What is $\gamma(H, HH)? = 0.16$ What is $\gamma(H, TT)? = 0.49$

Our observed data is: {HH, TT, HH, TT, HH} Let's use EM to estimate $\theta = (\rho_1, \rho_2, \rho_3)$

 $Q(\theta, \theta^{\ell-1}) = \sum \sum \gamma(z, x_i) \log \Pr(x_i, z; \theta)$

- i.e., compute $\gamma(z, x_i)$ for all z and all i

[EM Iteration, M-step] Find θ which maximises N $Q(\theta, \theta^{\ell-1}) = \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \sum_{j=1}^{\ell} \sum_{j=1}^{\ell} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \sum_{j=1}^{\ell}$ i=1



 $\rho_3 = -$

$$\rho_1 = \frac{\sum_{i=1}^N \gamma(\mathbf{H}, x_i)}{N}$$
$$\rho_2 = \frac{\sum_{i=1}^N \gamma(\mathbf{H}, x_i) h_i}{\sum_{i=1}^N \gamma(\mathbf{H}, x_i) (h_i + t_i)}$$

Our observed data is: {HH, TT, HH, TT, HH} Let's use EM to estimate $\theta = (\rho_1, \rho_2, \rho_3)$

$$\sum_{z} \gamma(z, x_i) \log \Pr(x_i, z; \theta)$$

$$\frac{\sum_{i=1}^{N} \gamma(\mathbf{T}, x_i) h_i}{\sum_{i=1}^{N} \gamma(\mathbf{T}, x_i) (h_i + t_i)}$$

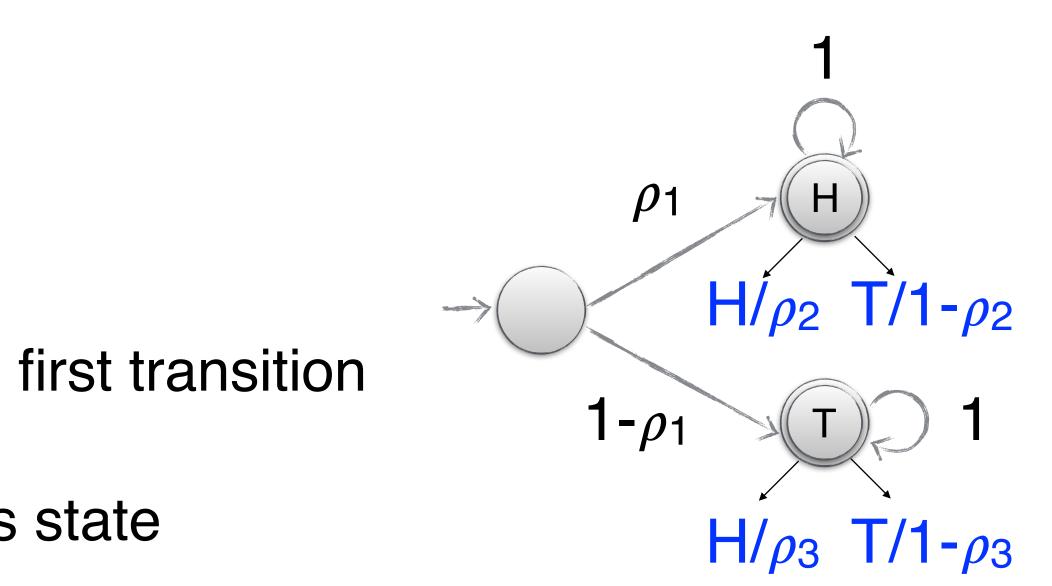
This was a very simple HMM (with observations from 2 states)

State remains the same after the first transition

 γ estimated the distribution of this state

More generally, will need the distribution of the state at each time step

EM for general HMMs: Baum-Welch algorithm (1972) (predates the general formulation of EM (1977))



Baum-Welch Algorithm as EM

Observed data: N sequences, x_i , i=1...N where $x_i \in V$ Parameters θ : transition matrix A, observation probabilities B

> [EM Iteration, E-step] Compute quantities involved in $Q(\theta, \theta^{\ell-1})$ $\gamma_{i,t}(j) = \Pr(z_t = j \mid x_i; \theta^{\ell-1})$ $\xi_{i,t}(j,k) = \Pr(z_t = j, z_{t+1} = k \mid x_i; \theta^{\ell-1})$

Baum-Welch Algorithm as EM

[EM Iteration, M-step] Find θ which maximises $Q(\theta, \theta^{\ell-1})$

 $A_{j,k} = \frac{\sum_{i=1}^{N}}{\sum_{i=1}^{N}}$

 B_{i} J, U

Observed data: N sequences, x_i , i=1...N where $x_i \in V$

Parameters θ : transition matrix A, observation probabilities B

$$\frac{\sum_{i=1}^{N} \sum_{t=1}^{T_i - 1} \xi_{i,t}(j,k)}{\sum_{t=1}^{T_i - 1} \sum_{k'} \xi_{i,t}(j,k')}$$

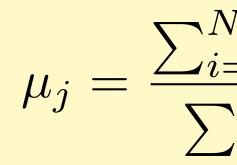
$$\frac{\sum_{i=1}^{T_{i}}\sum_{i=1}^{T_{i}}\gamma_{i,t}(j)}{\sum_{i=1}^{N}\sum_{t=1}^{T_{i}}\gamma_{i,t}(j)}$$

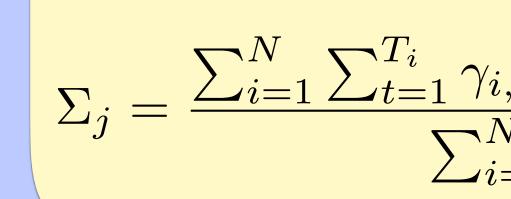
Discrete to continuous outputs

We derived Baum-Welch updates for discrete outputs. However, HMMs in acoustic models emit real-valued vectors as observations. Use probability density functions to define observation probabilities If x were 1D values, HMM observation probabilities: $b_i(x) = \mathcal{N}(x \mid \mu_i, \sigma_i^2)$ where μ_i is the mean associated with state j and σ_i^2 is its variance If $\mathbf{x} \in \mathbb{R}^d$, then we use multivariate Gaussians, $b_i(\mathbf{x}) = \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$ where Σ_i is the covariance matrix associated with state j

BW for Gaussian Observation Model

[EM Iteration, M-step] Find θ which maximises $Q(\theta, \theta^{\ell-1})$





Observed data: N sequences, $x_i = (x_{i1}, ..., x_{iT_i}), i=1...N$ where $x_{it} \in \mathbb{R}^d$ Parameters θ : transition matrix A, observation prob. B = {(μ_i, Σ_i)} for all j

A same as with discrete outputs

$$\sum_{i=1}^{N} \sum_{t=1}^{T_i} \gamma_{i,t}(j) x_{it}$$

$$\sum_{i=1}^{N} \sum_{t=1}^{T_i} \gamma_{i,t}(j)$$

$$\frac{\gamma_{i,t}(j)(x_{it} - \mu_j)(x_{it} - \mu_j)^T}{\sum_{i=1}^{N} \sum_{t=1}^{T_i} \gamma_{i,t}(j)}$$

Gaussian Mixture Model

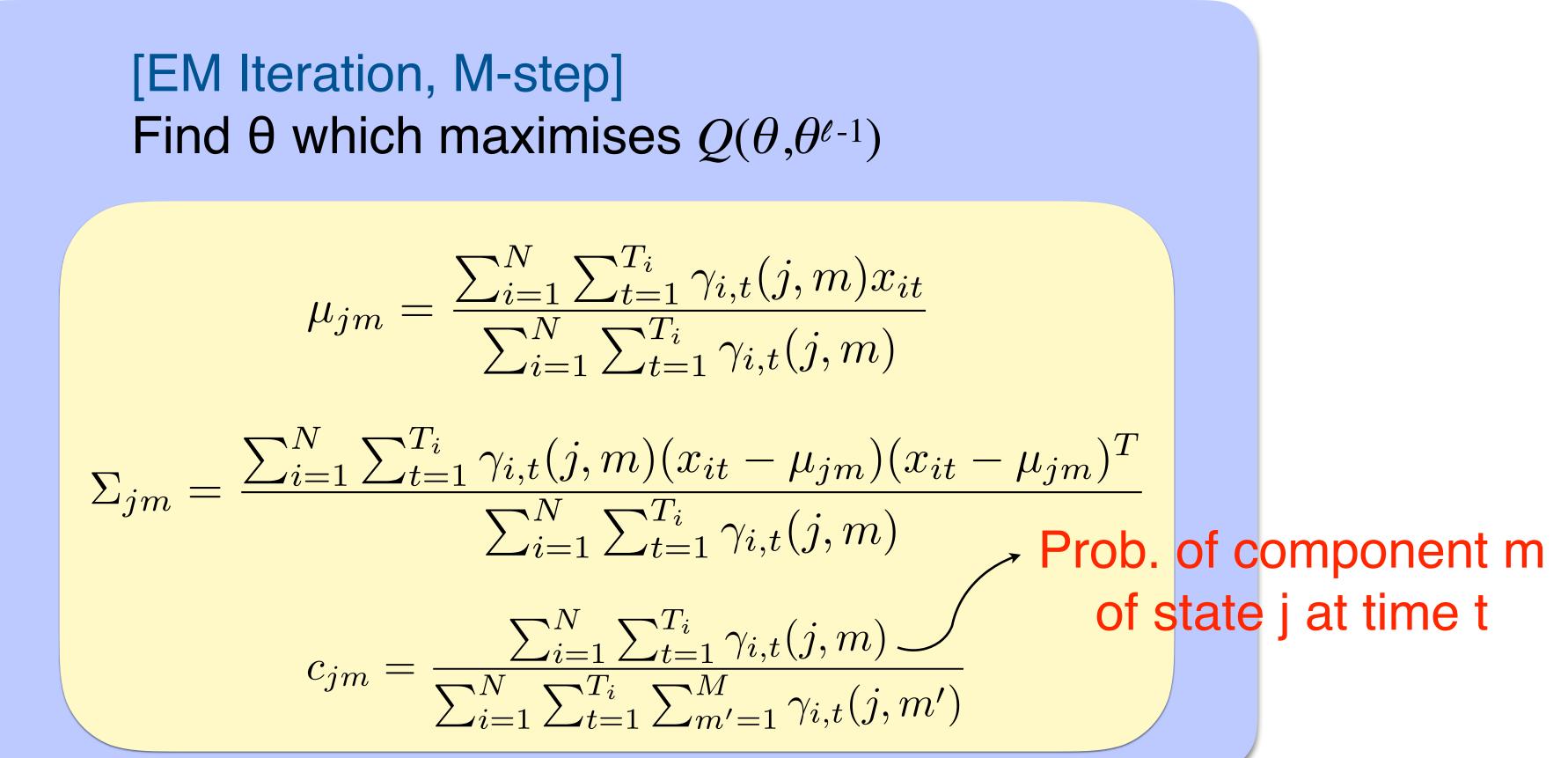
- Assuming that observations associated with a state follow a Gaussian distribution is too simplistic.
- More generally, we use a "mixture of Gaussians" to allow for acoustic vectors associated with a state to be non-Gaussian.
- Instead of $b_i(\mathbf{x}) = \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$ in the single Gaussian case, $b_j(\mathbf{x})$ can be an M-component mixture model: $b_j(\mathbf{x}) = \sum c$ m=1

$$\sum_{m=1}^{M} c_{jm} = 1, \ c_{jm} \ge 0$$

$$\Sigma_{jm} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{jm}, \Sigma_{jm})$$

where c_{jm} is the mixing probability for Gaussian component m of state j

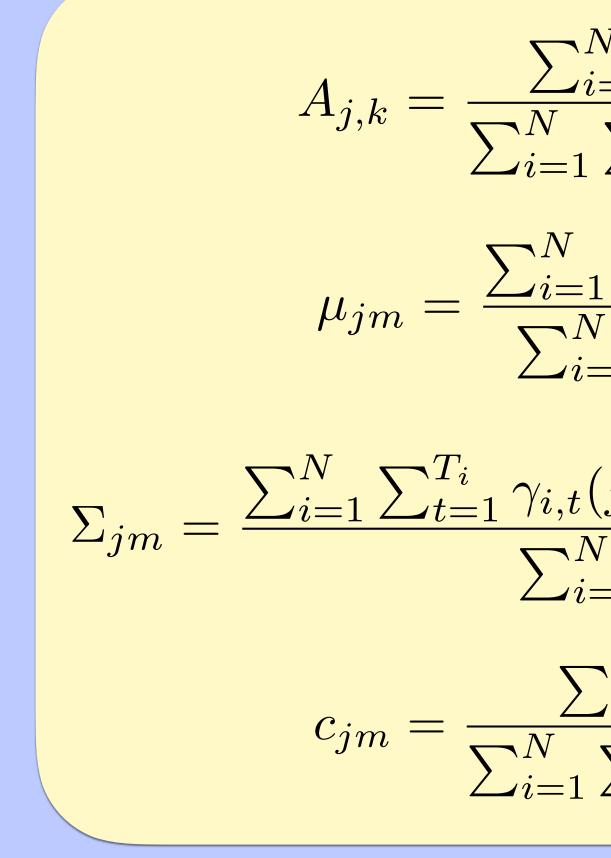
BW for Gaussian Mixture Model



Observed data: N sequences, $x_i = (x_{i1}, ..., x_{iT_i}), i=1...N$ where $x_{it} \in \mathbb{R}^d$ Parameters θ : transition matrix A, observation prob. B = {($\mu_{jm}, \Sigma_{jm}, C_{jm}$)} for all j,m

Baum Welch: In summary

[Every EM Iteration] Compute $\theta = \{ A_{jk}, (\mu_{jm}, \Sigma_{jm}, C_{jm}) \}$ for all j,k,m



$$\frac{\sum_{i=1}^{N} \sum_{t=2}^{T_i} \xi_{i,t}(j,k)}{\sum_{t=2}^{T_i} \sum_{k'} \xi_{i,t}(j,k')}$$

$$\frac{1}{V} \sum_{t=1}^{T_{i}} \gamma_{i,t}(j,m) x_{it}}{\sum_{t=1}^{V} \sum_{t=1}^{T_{i}} \gamma_{i,t}(j,m)}$$

$$\frac{(j,m)(x_{it} - \mu_{jm})(x_{it} - \mu_{jm})^T}{\sum_{i=1}^{N} \sum_{t=1}^{T_i} \gamma_{i,t}(j,m)}$$

$$\frac{\sum_{i=1}^{N} \sum_{t=1}^{T_{i}} \gamma_{i,t}(j,m)}{\sum_{t=1}^{T_{i}} \sum_{m'=1}^{M} \gamma_{i,t}(j,m')}$$