
Instructor: Preethi Jyothi

HMMs and WFSTs

Lecture 4

CS 753

Recap: HMMs for Acoustic Modeling

What are the three fundamental problems related to HMMs?

1. What is the forward algorithm? What is it used to compute?

6 CHAPTER 9 • HIDDEN MARKOV MODELS

22 443311

33

22

44

11

Figure 9.4 Two 4-state hidden Markov models; a left-to-right (Bakis) HMM on the left and
a fully connected (ergodic) HMM on the right. In the Bakis model, all transitions not shown
have zero probability.

Now that we have seen the structure of an HMM, we turn to algorithms for
computing things with them. An influential tutorial by Rabiner (1989), based on
tutorials by Jack Ferguson in the 1960s, introduced the idea that hidden Markov
models should be characterized by three fundamental problems:

Problem 1 (Likelihood): Given an HMM l = (A,B) and an observation se-
quence O, determine the likelihood P(O|l).

Problem 2 (Decoding): Given an observation sequence O and an HMM l =
(A,B), discover the best hidden state sequence Q.

Problem 3 (Learning): Given an observation sequence O and the set of states
in the HMM, learn the HMM parameters A and B.

We already saw an example of Problem 2 in Chapter 10. In the next three sec-
tions we introduce all three problems more formally.

9.3 Likelihood Computation: The Forward Algorithm

Our first problem is to compute the likelihood of a particular observation sequence.
For example, given the HMM in Fig. 9.3, what is the probability of the sequence 3
1 3? More formally:

Computing Likelihood: Given an HMM l = (A,B) and an observa-
tion sequence O, determine the likelihood P(O|l).

For a Markov chain, where the surface observations are the same as the hidden
events, we could compute the probability of 3 1 3 just by following the states labeled
3 1 3 and multiplying the probabilities along the arcs. For a hidden Markov model,
things are not so simple. We want to determine the probability of an ice-cream
observation sequence like 3 1 3, but we don’t know what the hidden state sequence
is!

Let’s start with a slightly simpler situation. Suppose we already knew the weather
and wanted to predict how much ice cream Jason would eat. This is a useful part
of many HMM tasks. For a given hidden state sequence (e.g., hot hot cold), we can
easily compute the output likelihood of 3 1 3.

Let’s see how. First, recall that for hidden Markov models, each hidden state
produces only a single observation. Thus, the sequence of hidden states and the

2. What is the Viterbi algorithm? What is it used to compute?

10 CHAPTER 9 • HIDDEN MARKOV MODELS

ot-1 ot

a1j

a2j

aNj

a3j

bj(ot)

αt(j)= Σi αt-1(i) aij bj(ot)

q1

q2

q3

qN

q1

qj

q2

q1

q2

ot+1ot-2

q1

q2

q3 q3

qN qN

αt-1(N)

αt-1(3)

αt-1(2)

αt-1(1)

αt-2(N)

αt-2(3)

αt-2(2)

αt-2(1)

Figure 9.8 Visualizing the computation of a single element at(i) in the trellis by summing
all the previous values at�1, weighted by their transition probabilities a, and multiplying by
the observation probability bi(ot+1). For many applications of HMMs, many of the transition
probabilities are 0, so not all previous states will contribute to the forward probability of the
current state. Hidden states are in circles, observations in squares. Shaded nodes are included
in the probability computation for at(i). Start and end states are not shown.

function FORWARD(observations of len T, state-graph of len N) returns forward-prob

create a probability matrix forward[N+2,T]
for each state s from 1 to N do ; initialization step

forward[s,1] a0,s ⇤ bs(o1)
for each time step t from 2 to T do ; recursion step

for each state s from 1 to N do

forward[s, t]
NX

s0=1

forward[s0, t�1] ⇤ as0,s ⇤ bs(ot)

forward[qF ,T]
NX

s=1

forward[s,T] ⇤ as,qF ; termination step

return forward[qF ,T]

Figure 9.9 The forward algorithm. We’ve used the notation forward[s, t] to represent
at(s).

9.4 Decoding: The Viterbi Algorithm

For any model, such as an HMM, that contains hidden variables, the task of deter-
mining which sequence of variables is the underlying source of some sequence of
observations is called the decoding task. In the ice-cream domain, given a sequenceDecoding

of ice-cream observations 3 1 3 and an HMM, the task of the decoder is to find theDecoder
best hidden weather sequence (H H H). More formally,

Decoding: Given as input an HMM l = (A,B) and a sequence of ob-
servations O = o1,o2, ...,oT , find the most probable sequence of states
Q = q1q2q3 . . .qT .

3. What is the Baum-Welch algorithm? What does it compute?
14 CHAPTER 9 • HIDDEN MARKOV MODELS

Learning: Given an observation sequence O and the set of possible
states in the HMM, learn the HMM parameters A and B.

The input to such a learning algorithm would be an unlabeled sequence of ob-
servations O and a vocabulary of potential hidden states Q. Thus, for the ice cream
task, we would start with a sequence of observations O = {1,3,2, ...,} and the set of
hidden states H and C. For the part-of-speech tagging task we introduce in the next
chapter, we would start with a sequence of word observations O = {w1,w2,w3 . . .}
and a set of hidden states corresponding to parts of speech Noun, Verb, Adjective,...
and so on.

The standard algorithm for HMM training is the forward-backward, or Baum-Forward-
backward

Welch algorithm (Baum, 1972), a special case of the Expectation-MaximizationBaum-Welch
or EM algorithm (Dempster et al., 1977). The algorithm will let us train both theEM
transition probabilities A and the emission probabilities B of the HMM. Crucially,
EM is an iterative algorithm. It works by computing an initial estimate for the
probabilities, then using those estimates to computing a better estimate, and so on,
iteratively improving the probabilities that it learns.

Let us begin by considering the much simpler case of training a Markov chain
rather than a hidden Markov model. Since the states in a Markov chain are ob-
served, we can run the model on the observation sequence and directly see which
path we took through the model and which state generated each observation symbol.
A Markov chain of course has no emission probabilities B (alternatively, we could
view a Markov chain as a degenerate hidden Markov model where all the b proba-
bilities are 1.0 for the observed symbol and 0 for all other symbols). Thus, the only
probabilities we need to train are the transition probability matrix A.

We get the maximum likelihood estimate of the probability ai j of a particular
transition between states i and j by counting the number of times the transition was
taken, which we could call C(i ! j), and then normalizing by the total count of all
times we took any transition from state i:

ai j =
C(i ! j)P

q2Q C(i ! q)
(9.26)

We can directly compute this probability in a Markov chain because we know
which states we were in. For an HMM, we cannot compute these counts directly
from an observation sequence since we don’t know which path of states was taken
through the machine for a given input. The Baum-Welch algorithm uses two neat
intuitions to solve this problem. The first idea is to iteratively estimate the counts.
We will start with an estimate for the transition and observation probabilities and
then use these estimated probabilities to derive better and better probabilities. The
second idea is that we get our estimated probabilities by computing the forward
probability for an observation and then dividing that probability mass among all the
different paths that contributed to this forward probability.

To understand the algorithm, we need to define a useful probability related to the
forward probability and called the backward probability.Backward

probability
The backward probability b is the probability of seeing the observations from

time t +1 to the end, given that we are in state i at time t (and given the automaton
l):

bt(i) = P(ot+1,ot+2 . . .oT |qt = i,l) (9.27)

It is computed inductively in a similar manner to the forward algorithm.

Monophone HMMs? Not good enough. Need Triphones.

• A phone is affected by its phonetic context.

- E.g. Coarticulation: Production of a speech sound is affected by adjacent speech sounds.

“soon” vs. “seat”. “ten” vs. “tenth”.

• For modelling, use phones in context instead of monophones. E.g. diphones or
triphones.

• Triphones are commonly used in ASR systems. Phone p with left context l and
right context r is written as “l-p+r”

- “hello world” � sil-h+eh h-eh+l eh-l+ow l-ow+w ow-w-er w-er+l er-l+d l-d+sil→

Overall Summary
Training

� → O1
1 , …, O1

t1 �and w1 = w1
1 , …, w1

ℓ1

Estimate AM parameters θ = {Ajk, (μjm,Σjm,cjm)}
over all triphone states. Use Baum-Welch.

HMM of ith training utterance determined by
using a word-to-triphone mapping applied to
�wi

1, …, wi
ℓi

Estimate LM parameters � using �β w1, …, wN

� → O2
1 , …, O2

t2

⋮
� → ON

1 , …, ON
tN

�and w2 = w2
1 , …, w2

ℓ2

�and wN = wN
1 , …, wN

ℓN

… …

Test

O = O1, …, OT

W* = arg max
W

P(W |O) = arg max
W

Pθ(O |W)Pβ(W)

Compute using Viterbi algorithm

Search all possible state sequences
arising from all word sequences most
likely to have generated �O
Computationally infeasible for
continuous speech! WFSTs to the
rescue, to make this more tractable.

What are Weighted Finite State Transducers (WFSTs)?

(Weighted) Automaton

• Accepts a subset of strings (over an alphabet), and rejects the rest
• Mathematically, specified by L ⊆ Σ* or equivalently f : Σ* → {0,1}

• Weighted: outputs a “weight” as well (e.g., probability)
• f : Σ* → W

• Transducer: outputs another string (over possibly another alphabet)
• f : Σ* ⨉ Δ* → W

α β γ A B C, 0.2

(Weighted) Finite State Automaton

• Functions that can be implemented using a machine which:
• reads the string one symbol at a time
• has a fixed amount of memory: so, at any moment, the machine

can be in only one of finitely many states, irrespective of the length
of the input string

• Allows efficient algorithms to reason about the machine
• e.g., output string with maximum weight for input αβγ

α β γ A B C, 0.2

Why WFSTs?

• Powerful enough to (reasonably) model processes in
language, speech, computational biology and other
machine learning applications

• Simpler WFSTs can be combined to create complex
WFSTs, e.g., speech recognition systems

• If using WFST models, efficient algorithms available to train
the models and to make inferences

• Toolkits that don’t have domain specific dependencies

Elements of an FST

β:b

γ:b

α:a
0

• States
• Start state (0)
• Final states (1 & 2)

• Arcs (transitions)
• Input symbols (from alphabet Σ)
• Output symbols (from alphabet Δ)

 FST maps input strings to output strings

Structure: Finite State Transducer (FST)

Path

• A successful “path” → Sequence of transitions from the start
state to any final state

• Input label of a path → Concatenation of input labels on arcs.
Similarly for output label of a path.

β:b

γ:b

α:a
0

FSAs and FSTs

• Finite state acceptors (FSAs)
• Each transition has a source & destination state, and  

a label
• FSA accepts a set of strings, L ⊆ Σ*

• Finite state transducers (FSTs)
• Each transition has a source & destination state,  

an input label and an output label
• FST represents a relation, R ⊆ Σ* ⨉ Δ*

FSA�can�
be�though

t�of�as�a
�

special�ki
nd�of�FST

Example of an FSA

b

c

a
0

Accepts strings 
{c, a, ab}

Equivalent FST

b:b

c:c

a:a
0

Accepts strings 
{c, a, ab} 

and outputs identical strings 
{c, a, ab}

Σ = { yelp, bark }, Δ = { a, …, z }

ε:fε:o ε:wε:o

Special symbol, ε (epsilon) : allows to make a move
without consuming an input symbol

7
bark:w

0 4 5 6 8

10
ε:oε:f

or without producing an output symbol

1
yelp:y

2 3
ε:i ε:p

3 9
ε:o

yelp → y i p. bark → w o o f | w o o f w o o f |…

Barking dog FST

Weighted Path

• “Weights” can be probabilities, negative log-likelihoods, or any
cost function representing the cost incurred in mapping an input
sequence to an output sequence

• How are the weights accumulated along a path?

ε:n/1.0

a:a/0.5

an:a/0.5
0

Weighted Path: Probabilistic FST

• T(αβ,ab) = Pr[output=ab, accepts | input=αβ, start]  
  

β:b/0.5β:b/0.5

α:a/0.25

α:a/0.5 α:a/1.0
1 20

w(e) = Pr[e taken | state=0,in-symbol=α]

β:B/1.0

α:a/1.0

β:b/1.0

α:A/0.25

e1

e2

e3 e4

π1 = e1e2
π2 = e3e4

= Pr[e1 | input=αβ, start] × Pr[e2 | input=αβ, start, e1]
= Pr[e1 | state=0, in-symb=α] × Pr[e2 | state=2, in-symb=β]
= w(e1) × w(e2) = 0.25×1.0 = 0.25

= w(e3) ×
w(e4) =
0.5×0.5 = 0.25

= 0.25 + 0.25 =
0.5

= Pr[π1 | input=αβ, start] + Pr[π2 | input=αβ, start]

• T(αβ,ab) = Pr[output=ab, accepts | input=αβ, start]  
  

β:b/0.5β:b/0.5

α:a/0.25

α:a/0.5 α:a/1.0
1 20

w(e) = Pr[e taken | state=0,in-symbol=α]

β:B/1.0

α:a/1.0

β:b/1.0

α:A/0.25

e1

e2

e3 e4

π1 = e1e2
π2 = e3e4

= Pr[π1 | input=αβ, start] + Pr[π2 | input=αβ, start]

• More generally, T(x,y) = Σπ ∈ P(x,y) Πe ∈ π w(e) 
where P(x,y) is the set of all accepting paths with input x and output y

Weighted Path: Probabilistic FST

β:b/0.5β:b/0.5

α:a/0.25

α:a/0.5 α:a/1.0
0

β:B/1.0

α:a/1.0

β:b/1.0

α:A/0.25

• But not all WFSTs are probabilistic FSTs

• Weight is often a “score” and maybe accumulated differently

• But helpful to retain some basic algebraic properties of
weights: abstracted as semirings

Weighted Path

Semirings

A semiring is a set of values associated with two operations ⊕
and ⊗, along with their identity values and 0̄ 1̄

Weight assigned to an input/output pair 
T(x,y) = ⊕π ∈ P(x,y) ⊗e ∈ π w(e)

where P(x,y) is the set of all accepting paths with input x, output y

(generalizing the weight function for a probabilistic FST)

Semirings

Some popular semirings [M02]

SEMIRING SET ⊕ ⊗

Boolean {F,T} ∨ ∧ F T

Real ℝ+ + ⨉ 0 1

Log ℝ ∪ {-∞, +∞} ⊕log + +∞ 0

Tropical ℝ ∪ {-∞, +∞} min + +∞ 0

1̄0̄

Is there
a path
for x:y
Pr[y|x]

-log Pr[y|x]

“Viterbi
Approx.” of
-log Pr[y|x]

Operator ⊕log defined as: x ⊕log y = -log (e-x + e-y)

[M02] Mohri, M. Semiring frameworks and algorithms for shortest-distance problems,
Journal of Automata, Languages and Combinatorics, 7(3):321—350, 2002.

• Weight of a path π is the ⊗-product of all the transitions in π 

• Weight of a sequence “x,y” is the ⊕-sum of all paths labeled with “x,y” 
w((an), (a n)) = (1.5 ⊕ 0)̅ = min(1.5, ∞) = 1.5

ε:n/1.0

a:a/0.5

an:a/0.5
0

⊕=min ⊗=+

w(π): (0.5 ⊗ 1.0) = 0.5 + 1.0 = 1.5

Weighted Path: Tropical Semiring

• Weight of a sequence “x,y” is the ⊕-sum of all paths labeled with “x,y”
w((an), (a n)) = ?

Path 1: (0.5 ⊗ 1.0) = 1.5
Path 2: (0.3 ⊗ 0.1) = 0.4
Weight of “((an), (a n))” = (1.5 ⊕ 0.4) = 0.4

ε:n/1.0

a:a/0.5

an:a/0.5
0

4
an:a/0.3 ε:n/0.1

Weighted Path: Tropical Semiring

⊕=min ⊗=+

Shortest Path

• Recall T(x,y) = ⊕π ∈ P(x,y) w(π) 
where P(x,y) = set of paths with input/output (x,y); w(π) = ⊗e ∈ π w(e) 
 
 

• In the tropical semiring ⊕ is min. T(x,y) associated with a single path in
P(x,y) : Shortest Path

• Can be found using Dijkstra’s algorithm : Θ(|E| + |Q|⋅log|Q|) time

Shortest Path

β:b/0.5β:b/0.5

α:a/0.25

α:a/0.5 α:a/1.0
0

β:B/1.0

α:a/1.0

β:b/1.0

α:A/0.25

T(“α”, “a”) = ?

T(“αα”, “aa”) = ?

Inversion

ε:n

a:a

an:a
0

Swap the input and output labels in each transition

a:a

a:an n:ε

Weights (if they exist) are retained on the arcs

This operation comes in handy, especially during
composition!

Projection
Project onto the input or output alphabet

ε:n/1.0

a:a/0.5

an:a/0.5
0

ε/1.0

a/0.5

an/0.5
0

Project
onto output

Basic FST Operations (Rational Operations)

The set of weighted transducers are closed under the following
operations [Mohri ‘02]:

1. Sum or Union: (T1 ⊕ T2)(x, y) = T1(x, y) ⊕ T2(x, y)

2. Product or Concatenation: (T1 ⊗ T2)(x, y) = T1(x1, y1) ⊗ T2(x2, y2)

3. Kleene-closure: T*(x, y) = Tn(x, y)

x=x1x2
y=y1y2

⊕

⊕
n=0

∞

x=x1x2
y=y1y2

⊕

⊕
n=0

∞

Basic FST Operations (Rational Operations)

The set of weighted transducers are closed under the following
operations [Mohri ‘02]:

1. Sum or Union: (T1 ⊕ T2)(x, y) = T1(x, y) ⊕ T2(x, y)

2. Product or Concatenation: (T1 ⊗ T2)(x, y) = T1(x1, y1) ⊗ T2(x2, y2)

3. Kleene-closure: T*(x, y) = Tn(x, y)

ε:fε:o ε:wε:o
7

bark:w
0 4 5 6 8

10
ε:oε:f

1
yelp:y

2 3
ε:i ε:p

3 9
ε:o

Example: Recall Barking Dog

Animal farm!

ε:fε:o ε:wε:obark:w
0 4 5 6 8

ε:oε:f
1

yelp:y
2ε:i ε:p 9ε:o

ε:oε:omoo:m

ε:aε:ableat:b ε:b

ε:aε:a

ε:ε

ε:ε

ε:ε

Example: Union

Basic FST Operations (Rational Operations)

⊕
n=0

∞

The set of weighted transducers are closed under the following
operations [Mohri ‘02]:

1. Sum or Union: (T1 ⊕ T2)(x, y) = T1(x, y) ⊕ T2(x, y)

2. Product or Concatenation: (T1 ⊗ T2)(x, y) = T1(x1, y1) ⊗ T2(x2, y2)

3. Kleene-closure: T*(x, y) = Tn(x, y)

x=x1x2
y=y1y2

⊕

⊕
n=0

∞

Suppose the last “baa” in a bleat should be followed by one or
more a’s 

 
(e.g., “baabaa” is not OK, but “baaa” and “baabaaaaa” are)

ε:aε:ableat:b ε:b

ε:aε:a

ε:a
ε:a

ε:ε

Example: Concatenation

Basic FST Operations (Rational Operations)

x=x1x2
y=y1y2

⊕

The set of weighted transducers are closed under the following
operations [Mohri ‘02]:

1. Sum or Union: (T1 ⊕ T2)(x, y) = T1(x, y) ⊕ T2(x, y)

2. Product or Concatenation: (T1 ⊗ T2)(x, y) = T1(x1, y1) ⊗ T2(x2, y2)

3. Kleene-closure: T*(x, y) = Tn(x, y)⊕
n=0

∞
x=x1x2
y=y1y2

⊕

Animal farm: allow arbitrarily long sequence of sounds!

bark moo yelp bleat → w o o f w o o f m o o y i p b a a b a a

ε:fε:o ε:wε:obark:w
0 4 5 6 8

ε:oε:f
1

yelp:y
2ε:i ε:p 9ε:o

ε:oε:omoo:m

ε:aε:ableat:b ε:b

ε:aε:a

ε:ε

ε:ε

ε:ε

ε:ε

ε:ε
ε:ε

ε:ε

Example: Closure

Easily�com
bine�

simple�FS
Ts� 

into�more
�

complex�o
nes

Acoustic Model WFST

a-a+b

One 3-state  
HMM for  

each  
triphone

f1:ε

} FST Union +
Closure

f2:ε

f3:ε f5:ε

f4:ε f6:εf0:a-a+b

a-b+b
.
.
.

y-x+z

0 .
.
.

Composition

• If T1 transduces x to z, and T2 transduces z to y, then T1 ○ T2
transduces x to y

• (T1 ○ T2)(x, y) = T1 (x, z) ⊗ T2 (z, y)

α β γ a b c A B C

⊕
z

α:X

α:A

β:b

b:B

a:X

γ:b

γ:B

α:a

a:A

β:B

M1 M2

M1 ○ M2

Composition: Construction

Composition

a:X

a:A

α:X

α:A

β:b

b:B

γ:b

α:a

β:B

M1 M2

M1 ○ M2

γ:B

α:a β:b

γ:b

a:A

b:B

α:A β:B

γ:B

M1

M2

M1 ○ M2

Composition: Example 1

T2�translates�the�
output�from�one�

alphabet�to�another

Composition: Example 2

α:a β:b

γ:b

a:a

a:a

δ:a

b:b

α:a
α:a

δ:a

δ:a

β:b

γ:b

M1 M2

M1 ○ M2

T2�restricts�the�output�

string�to�aab.�

T1�○�T2�is�a�“lattice”.

